

Mr. William Willets, PE Chief, Permitting Section, Division of Air Quality NC Department of Environmental Quality 1641 Mail Service Center Raleigh, NC 27699-1641

Re: Application for Air Quality Permit Modification Enviva Pellets Hamlet, LLC Hamlet, North Carolina Richmond County Permit No.: 10365R04 Facility ID: 7700096

Dear Mr. Willets:

Enclosed please find a North Carolina Department of Environmental Quality (NC DEQ) permit application package for an air quality permit modification for Enviva Pellets Hamlet, LLC (Enviva) (NC DEQ Facility ID #7700096) in Richmond County. This permit application is being submitted in accordance with the Settlement Agreement, dated June 3, 2019, entered into by Enviva, DEQ, and Clean Air Carolina in Contested Case 19 EHR 00866.

Under the Settlement Agreement, Enviva agreed to submit a permit application within 180 days (no later than December 2, 2019) for the installation of additional control technology or an equivalent engineering alternative to control volatile organic compound (VOC) emissions from the Dry Hammermills (ES-HM-1 through 8).

As part of this application, Enviva is also requesting removal of the 85% limit on Dry Hammermill throughput that was included in Air Quality Permit No. 10365R04, and the inclusion of the existing furnace bypass stack in the permit. Implementation of the Dry Hammermill VOC control will result in a significant decrease in the VOC emissions (127 tpy) and the plant will no longer require a throughput limitation for the Dry Hammermills to be classified as a minor source with respect to PSD. The Hamlet plant will remain a synthetic minor PSD source for all PSD-regulated pollutants.

As required, three (3) copies of the complete permit application package are enclosed. The application processing fee of \$970 will be paid electronically through the ePayments System.

ENVIRONMENT & HEALTH

Received

DEC 0 2 2019

Air Permits Section

Date November 26, 2019

Ramboll 8235 YMCA Plaza Drive Suite 300 Baton Rouge, LA 70810 USA

T +1 225-408-2691 www.ramboll.com

Thank you for your prompt attention to this matter. If you have any questions regarding this request, please contact me at (225) 408-2691 or Kai Simonsen, Air Permit Engineer at Enviva, at (984) 789-3628.

Yours sincerely,

MAS 2

Michael Carbon Managing Principal

D 225-408-2691 M 225-907-3822 mcarbon@ramboll.com

cc: Yana Kravtsova (Enviva) Kai Simonsen (Enviva)

Enclosures: Permit Application

Prepared for Enviva Pellets Hamlet, LLC Richmond County, North Carolina

Prepared By Ramboll US Corporation Research Triangle Park, North Carolina

Date November 2019

APPLICATION FOR AIR QUALITY PERMIT MODIFICATION ENVIVA PELLETS HAMLET, LLC

CONTENTS

1.	INTRODUCTION	1
2.	REQUESTED PERMIT REVISIONS	3
3.	PROJECT DESCRIPTION	4
3.1	Dry Hammermills	4
3.2	Furnace and Dryer Bypass Stacks	6
4.	POTENTIAL EMISSIONS QUANTIFICATION	8
4.1	Dry Hammermills (ES-HM-1 through ES-HM-8)	8
4.2	Furnace Bypass Cold Start-up (ES-FURNACEBYPASS)	9
4.3	Furnace Bypass Idle Mode (ES-FURNACEBYPASS)	9
5.	STATE AND FEDERAL PERMITTING APPLICABILITY	10
5.1	Federal Permitting Programs	10
5.2	North Carolina Permitting Program	11
6.	REGULATORY APPLICABILITY	12
6.1	National Emission Standards for Hazardous Air Pollutants	12
6.2	Compliance Assurance Monitoring	12
6.3	North Carolina Administrative Code	13

APPENDIX

- Appendix A Settlement Agreement
- Appendix B Permit Application Forms
- Appendix C Area Map
- Appendix D Process Flow Diagrams
- Appendix E Potential Emissions Calculations

ACRONYMS AND ABBREVIATIONS

AP-42	Compilation of Air Pollutant Emission Factors
bhp	brake horsepower
BMP	Best Management Practice
CAA	Clean Air Act
CAM	Compliance Assurance Monitoring
CFR	Code of Federal Regulations
CI	Compression Ignition
со	Carbon Monoxide
DAQ	Division of Air Quality
DENR	Department of Environment and Natural Resources
FSC	Forest Stewardship Council
HAP	Hazardous Air Pollutant
hp	horsepower
lb	Pound
MACT	Maximum Achievable Control Technology
MMBtu	Million British thermal units
NAAQS	National Ambient Air Quality Standards
NCAC	North Carolina Administrative Code
NCASI	National Council for Air and Stream Improvement
NCDEQ	North Carolina Department of Environmental Quality
NESHAP	National Emission Standards for Hazardous Air Pollutants
NNSR	Nonattainment New Source Review
NO _X	Nitrogen Oxides (NO + NO ₂)
NSPS	New Source Performance Standards
NSR	New Source Review
ODT	Oven Dried Tons
PEFC	Programme for the Endorsement of Forest Certifications
PM	Particulate Matter
PM _{2.5}	Particulate Matter Less Than 2.5 Micrometers in Aerodynamic Diameter
PM10	Particulate Matter Less Than 10 Micrometers in Aerodynamic Diameter
PSD	Prevention of Significant Deterioration

Application for Air Quality Permit Modification Enviva Pellets Hamlet, LLC Richmond County, North Carolina

PSEU	Pollutant Specific Emission Unit
RCO	Regenerative Catalytic Oxidizer
RTO	Regenerative Thermal Oxidizer
SIP	State Implementation Plan
SO2	Sulfur Dioxide
SFI	Sustainable Forestry Initiative
ТАР	Toxic Air Pollutant
tph	tons per hour
tpy	tons per year
EPA	US Environmental Protection Agency
VOC	Volatile Organic Compounds
WESP	Wet Electrostatic Precipitator

1. INTRODUCTION

Enviva Pellets Hamlet, LLC (Enviva) was initially permitted to construct a wood pellets manufacturing plant (referred to herein as "the Hamlet plant" or "the facility") in Richmond County, North Carolina under the authorization of Prevention of Significant Deterioration (PSD) Permit No. 10365R00 issued by the North Carolina Department of Environment and Natural Resources (DENR), now the NC Department of Environmental Quality (NCDEQ), Division of Air Quality (NC DAQ) on March 29, 2016.¹

Enviva submitted a permit modification application on May 14, 2018 to authorize planned changes for the Hamlet plant in order to meet new customer softwood percentage and production rate demands and to incorporate significant emission reduction efforts to minimize emissions impacts associated with the project. NC DAQ issued Air Quality Permit No. 10365R03 on January 14, 2019 to authorize these changes. In addition, Enviva submitted a permit modification application on July 2, 2019 in accordance with a Settlement Agreement, dated June 3, 2019, entered into by Enviva, NCDEQ, and Clean Air Carolina in Contested Case 19 EHR 00866 (the "Settlement Agreement"). A copy of the Settlement Agreement is provided in Appendix A. Under the Settlement Agreement, Enviva agreed to submit an application for modification of Permit R03 to include an express 85% limit on throughput of the Dry Hammermills (DHMs) at the Facility as was contemplated by the Permit R03 application. Air Quality Permit No. 10365R04 was issued on October 30, 2019 that incorporated this throughput limit.

This permit application is being submitted in accordance with the Settlement Agreement under which Enviva agreed to submit a permit application within 180 days (no later than December 2, 2019) for the installation of additional control technology or an equivalent engineering alternative to control volatile organic compound (VOC) emissions from the Dry Hammermills (ES-HM-1 through 8). Per the Settlement Agreement, the selected control technology or engineering alternative shall consist of exhausting 100% of the Dry Hammermill emissions to one or a combination of the following options:

- i. To a dedicated regenerative thermal oxidizer (RTO) or regenerative catalytic oxidizer (RCO) on the Dry Hammermills;
- ii. To the pellet cooler RCO, the dryer furnace, or to the wood dryer RTO.

With this application, Enviva requests authorization from DAQ to meet the requirements of the Settlement Agreement by modifying Permit R04 to provide for either of the following two options:

Control Option 1: Recirculation of a portion of the exhaust from each Dry Hammermill back into the Dry Hammermill, with the remaining exhaust being routed through the existing baghouses and then to a new dedicated quench system and RTO/RCO to be installed downstream of the existing baghouses to control VOC emissions from the eight (8) Dry Hammermills.

¹ Permit Nos. 10365R01, 10365R02, 10365R03 were subsequently issued on April 7, 2017, June 8, 2017, and January 14, 2019, respectively.

Control Option 2: Recirculation of a portion of exhaust from each Dry Hammermill back into the Dry Hammermill, with the remaining exhaust being routed through the existing baghouses followed by a new quench system and then to either:

- a. the existing furnace, wet electrostatic precipitator (WESP), and RTO;
- b. directly to the existing WESP and RTO; or
- **c.** in the event that the furnace is not operational, the exhaust would be routed directly to the existing RTO.

Under both control options, total emissions from each Dry Hammermill will still be vented to a baghouse. The purpose of the recirculation is to reduce the volume of air that is routed to the downstream control device (i.e., RTO or RTO/RCO). In this application, Enviva has evaluated potential emissions for both Control Options 1 and 2 and requests that both options be included in the air permit. Under each control option, 100% of the dry hammermill exhaust will be controlled by a baghouse and RTO or RTO/RCO. A more detailed description of each control option is provided in Section 3 of this application.

As part of this application, Enviva is also requesting removal of the 85% limit on Dry Hammermill throughput that was included in Permit R04, and the inclusion of the existing furnace bypass stack in the permit. Implementation of the proposed Dry Hammermill VOC control will result in a significant decrease in VOC emissions (127 tpy) and the plant will no longer require a throughput limitation for the Dry Hammermills to be classified as a minor source with respect to PSD. There will also be a significant decrease in total Hazardous Air Pollutant (HAP) emissions (14 tpy) as a result of the proposed changes.

With this application, there will be a decrease in PM and PM_{10} emissions and an increase in the emissions of carbon dioxide (CO), nitrogen oxides (NO_x), $PM_{2.5}$, and sulfur dioxide (SO₂). The Hamlet plant will remain a synthetic minor PSD source for all PSD-regulated pollutants.

Requested permit conditions are included in Section 2 and a description of the proposed control options is provided in Section 3. Methodologies used to quantify potential emissions associated with each control option are summarized in Section 4. Section 5 describes the applicability of federal and state permitting programs. Section 6 includes a detailed applicability analysis of both federal and state regulations. The completed air permit application forms are included in Appendix B.

2. REQUESTED PERMIT REVISIONS

With implementation of VOC control for the Dry Hammermills, Enviva requests that the requirement for at least 15% of the total facility-wide throughput to bypass the Dry Hammermills, included in Air Quality Permit No. 10365R04, be removed. Specifically, Enviva requests that the throughput limit of 531,259 oven dried tons (ODT) per year (yr) for the Dry Hammermills be revised to 625,011 ODT/yr and that the following permit conditions be removed from Air Quality Permit No. 10365R04:

- Condition 2.2(A)(2)(b)(iv): The total dry hammermill throughput shall not exceed 85% of the total facility-wide wood pellet production, on a 12-month rolling basis, rolled monthly.
- Condition 2.2(A)(2)(j): The Permittee shall monitor and record the total dry hammermill throughput, in ODT and as a percentage of total pellet production, on a monthly and 12month rolling basis.
- Condition 2.2(A)(2)(k)(iii): The monthly and 12-month rolling total dry hammermill throughput and percentage of total pellet production.

Enviva requests that the following permit conditions be added for Control Option 1:

- i. The Permittee shall operate the RTO/RCO during all periods in which any of the dry hammermill lines ("ES-HM-1" through "ES-HM-8") are in operation.
- ii. Until the first VOC performance testing following utilization of an RTO/RCO to control VOC emissions from the dry hammermills, the Permittee shall operate the RTO/RCO at or above the temperature recommended by the manufacturers of the RTO/RCO. After such testing the Permittee shall maintain the combustion chamber temperature of the RTO/RCO at or above the level approved by the Division in writing. Until such approval is granted, the Permittee shall maintain the combustion chamber temperature of the RTO/RCO at or above the temperature of the RTO/RCO at or above the temperature of the RTO/RCO at or above the temperature at which testing was performed.
- iii. The Permittee shall install, calibrate, operate, maintain, and inspect a continuous temperature monitoring and recording system, in accordance with the manufacturers' recommendations, to monitor the temperature in the combustion chamber (the second half of the oxidizer away from the flame zone) to ensure the average combustion temperature does not drop below the temperature range established under ii above.

Enviva requests that the following permit conditions be added for Control Option 2:

i. The Permittee shall operate the dryer line RTO during all periods in which any of the dry hammermill lines ("ES-HM-1" through "ES-HM-8") are in operation.

Enviva also requests that permit condition 2.2(A)(2)(c)(vii) be removed because the temperature at the inlet of the RCO is not relevant to destruction efficiency.

The following sections of this application include a description of the proposed new emission control options, methodologies used to quantify potential emissions, applicability of federal and state permitting programs, and a detailed applicability analysis of both federal and state regulations.

3. **PROJECT DESCRIPTION**

Enviva manufactures wood pellets for use as a renewable fuel for energy generation and industrial customers. Enviva's customers use wood pellets in place of coal, significantly reducing emissions of pollutants such as lifecycle CO₂/greenhouse gases, mercury, arsenic and lead. The company is dedicated to improving the environmental profile of energy generation while promoting sustainable forestry in the southeastern United States. Enviva holds certifications from the Forest Stewardship Council (FSC), Sustainable Forestry Initiative (SFI), Programme for the Endorsement of Forest Certification (PEFC), and Sustainable Biomass Program (SBP). Enviva requires that all suppliers adhere to state-developed "Best Management Practices" (BMPs) in their activities to protect water quality and sensitive ecosystems. In addition, Enviva is implementing an industry leading "track and trace" system to further ensure that all fiber resources come from responsible harvests. Enviva pays particular attention to: land use change, use and effectiveness of BMPs, wetlands, biodiversity, and certification status. All of this combined ensures that Enviva's forestry activities contribute to healthy forests both today and in the future. A detailed description of Enviva's Responsible Wood Supply Program can be found at:

http://www.envivabiomass.com/sustainability/wood-sourcing/responsible-wood-supply-program/

The following sections provide a description of the sources that are relevant to this application. An area map and process flow diagram are provided in Appendices C and D, respectively.

3.1 Dry Hammermills

Prior to pelletization, dried wood is reduced to the appropriate size using eight (8) Dry Hammermills operating in parallel (ES-HM-1 through ES-HM-8). Each Dry Hammermill includes a product recovery cyclone for capturing additional dried wood for further processing. Particulate emissions from the eight (8) Dry Hammermills are controlled using eight (8) individual baghouses (CD-HM-BH-1 through 8). In order to control VOC emissions from the Dry Hammermills pursuant to the Settlement Agreement, Enviva is requesting to permit two emission control options as detailed below.

3.1.1 Control Option 1

Under Control Option 1, a portion of the exhaust from each Dry Hammermill will be recirculated back into the Dry Hammermill. Under the current configuration, 15,000 acfm of fresh air is pulled into the Dry Hammermill which then exhausts through the baghouse to the atmosphere. Under the revised configuration, 10,000 acfm of the exhaust from the Dry Hammermill would be recirculated back into the Dry Hammermill rather than being routed through the baghouse. Although total emissions from each Dry Hammermill will still be vented to a baghouse, recirculation results in only 5,000 acfm of fresh air being pulled into the Dry Hammermill and 5,000 acfm being routed through the baghouse. From the baghouse, the exhaust will be routed to a new dedicated quench system and RTO/RCO. The purpose of the recirculation is to reduce the volume of air that is routed to the RTO/RCO. The quench system will be installed to protect the RTO/RCO and reduce the risk of fire/explosion that would exist if a baghouse was located directly upstream of a combustion device (i.e., RTO/RCO). The RTO/RCO will provide 95% destruction efficiency of VOC, HAP, and Toxic Air Pollutant (TAP) emissions. Under this control option, 100% of the dry hammermill exhaust will be controlled by a baghouse and RTO/RCO.

Current Configuration 15,000 acfm (fresh air) Revised Configuration under Control Option 1 10,000 acfm

3.1.2 Control Option 2

Similar to Control Option 1, a portion of the exhaust from each Dry Hammermill will be recirculated back into the Dry Hammermill. Under the revised configuration, 10,000 acfm of the exhaust from the Dry Hammermill will be recirculated back into the Dry Hammermill and 5,000 acfm will be routed through the baghouse. Total emissions from each Dry Hammermill will still be vented to a baghouse. From the baghouse, the exhaust will be routed to a new quench system and then to the furnace and WESP with subsequent control of VOC emissions by the dryer line RTO. Any surplus air volume, should there be any, will be routed from the quench system directly to either the existing WESP followed by RTO or directly to the RTO for control of VOC emissions. The feed screws of the Dry Hammermills will be interlocked with the RTO to prevent operation of the Dry Hammermills when the RTO is not ready to receive and control the Dry Hammermill exhaust. If the furnace is not operational, the Dry Hammermill exhaust will be routed directly from the quench system to either the WESP followed by the RTO or directly to the RTO. The RTO will provide 95% destruction efficiency of VOC, HAP, and TAP emissions. Since the Dry Hammermill exhaust may not be controlled by the WESP under this control option, potential emissions were evaluated assuming no additional control of PM emissions by the WESP. Under this control option, 100% of the dry hammermill exhaust will be controlled by a baghouse and RTO. Figures depicting the current and proposed configuration are provided below.

Current Configuration 15,000 acfm 15,000 acfm Dry (To Baghouse) (fresh air) Hammermill **Revised Configuration under Control Option 2** 5,000 acfm 10,000 acfm (To Baghouse, Quench System, 5,000 acfm then either to Dry (fresh air) furnace/WESP/RTO, Hammermill or directly to WESP/RTO, or RTO)

3.2 Furnace and Dryer Bypass Stacks

Bypass stacks for the furnace and dryer are used to exhaust hot gases during start-ups (for temperature control), shutdowns, and malfunctions. Specifically, the Furnace Bypass Stack is used in the following situations:

- Cold Start-ups: The furnace bypass stack is used when the furnace is started up from a cold shutdown until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). The bypass stack is then closed, and the furnace is slowly brought up to a normal operating rate.
- Malfunction: The furnace itself can abort and open the bypass stack in the event of a malfunction. This may be caused by failsafe interlocks associated with the furnace or dryer and emissions control systems as well as failures of or interruptions in utility supply systems (i.e., electricity, compressed air, water/fire protection). As soon as the furnace aborts it automatically switches to "idle mode" (defined as operation at up to a maximum heat input rate of 15 MMBtu/hr). The fuel feed is then stopped and the heat input rate drops rapidly.
- Planned Shutdown: In the event of a planned shutdown, the furnace heat input is decreased and all remaining fuel is moved through the system to prevent a fire. The remaining fuel is combusted prior to opening the furnace bypass stack. The furnace bypass stack is not utilized until after the furnace achieves an idle state (15 MMBtu/hr or less). Until this time, emissions continue to be controlled by the WESP and RTO.

Conditions under which the dryer bypass stack is used are as follows:

- **Malfunction:** The dryer system can abort due to power failure, equipment failure, or furnace abort. If the RTO goes offline because of an interlock failure, the dryer will immediately abort. This may occur if the dryer temperature is out of range or due to equipment or power failure. Dryer abort is also triggered if a spark is detected in the dryer system.

- **Planned Shutdown:** During planned shutdowns, as the remaining fuel is combusted by the furnace, the Operator reduces the chip input to the dryer. When only a small amount of chips remain the dryer drum is emptied. The dryer bypass stack is then opened, and a purge air fan is used to ensure no explosive build-up occurs in the drum. Emissions during this time are negligible, as the furnace is directed to its abort stack (see furnace planned shutdown above) and the dryer is no longer operating.

Use of the Furnace Bypass Stack for start-up and shutdown will not exceed 50 hours per year. Additionally, the furnace may operate up to 500 hours per year in "idle mode" with emissions routed to the Furnace Bypass Stack. The purpose of operation in "idle mode" is to maintain the temperature of the fire brick lining the furnaces which may be damaged if it cools too rapidly. Operation in "idle mode" also significantly reduces the amount of time required to restart the dryer. Emissions from start-up, shutdown, and furnace idle mode operations are quantified and included in the facility-wide potential emissions presented in this permit application.

Malfunctions are infrequent, unpredictable, and minimized to the maximum extent possible. These emissions cannot reasonably be quantified and are not included in the facility-wide potential emissions.

Under Control Option 2, the Dry Hammermill baghouses will exhaust to either the furnace followed by WESP and RTO, to WESP followed by RTO, or directly to the dryer RTO if the dryer line is not operational. In the event of a furnace malfunction, emissions from the Dry Hammermills will be diverted to the WESP and RTO or directly to the dryer RTO for emissions control until the Dry Hammermills are shut down.

4. POTENTIAL EMISSIONS QUANTIFICATION

As a result of this proposed permit modification, there will be a small increase in potential CO, NO_x, SO₂, particulate matter, and GHG emissions associated with the control of Dry Hammermill emissions. There will be a significant decrease in the actual and potential VOC and HAP emissions due to the installation of controls on the Dry Hammermills under both control options. Furthermore, as discussed previously, Enviva is updating facility-wide permitted emissions to include emissions associated with Furnace Bypass Cold Start-up and idle mode operations. This section discusses quantification of potential emissions for only those sources that will be impacted by this application. The revised facility-wide potential emissions are included in Appendix E.

4.1 Dry Hammermills (ES-HM-1 through ES-HM-8)

Dry Hammermill operations generate PM, HAP, and VOC emissions during sizing of dried wood. Each of the eight (8) Dry Hammermills is equipped with a dedicated baghouse for control of PM emissions (CD-HM-BH-1 through 8). VOC, HAP, and TAP emissions from the Dry Hammermill operations will be controlled using either Control Option 1 or Control Option 2. The following subsections discuss emissions estimates for Control Options 1 and 2.

4.1.1 Control Option 1

Under Control Option 1, 10,000 acfm of the exhaust from each Dry Hammermill will be recirculated back into the Dry Hammermill to reduce the volume of air that is routed to the downstream RTO/RCO. The remaining 5,000 acfm of exhaust from each Dry Hammermill will be routed to its dedicated baghouse. Total emissions from each Dry Hammermill will still be vented to a baghouse. The eight (8) Dry Hammermill baghouses will be routed to a new quench system and RTO/RCO (CD-RCO-2) for control of VOC and HAP/TAP emissions. The oxidizer will operate in thermal mode as an RTO during catalyst cleaning. The RTO/RCO will provide 95% destruction efficiency of VOC and HAP/TAP emissions. PM emissions from the Dry Hammermills were calculated based on a maximum exit grain loading rate and the maximum exhaust flow rate for the baghouses. The PM_{2.5} speciation used in the potential emissions calculations for the Dry Hammermill baghouses is being updated as part of this application. No control efficiency was applied for the quench system which is being installed for safety purposes only. Refer to Appendix E, Table 7 for detailed potential PM emissions calculations for the baghouses.

Uncontrolled VOC and HAP emissions at the outlet of the Dry Hammermill baghouses (CD-HM-BH-1 through 8) were quantified based on stack testing data from comparable Enviva plants. Controlled emissions were estimated based on a 95% destruction efficiency for the RTO/RCO. Operation in thermal mode will achieve the same control efficiency and will have no impact on the calculated emissions for all pollutants. NO_x and CO emissions resulting from thermal oxidation were calculated using AP-42 Section 1.4, *Natural Gas Combustion*², and the maximum high heating value of the anticipated VOC constituents. Detailed calculations are provided in Appendix E, Table 8.

Emissions of criteria pollutants, HAP, and TAP from natural gas combustion by the RTO/RCO burners were estimated using emission factors from AP-42 Section 1.4. Potential GHG emissions from natural gas combustion were quantified based on emission factors from

² USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

Subpart C of 40 CFR Part 98. Emissions were converted to carbon dioxide equivalent (CO_2e) based on Global Warming Potentials from Subpart A of 40 CFR 98.

4.1.2 Control Option 2

Similar to Control Option 1, under Control Option 2 10,000 acfm of the exhaust from each of the eight (8) Dry Hammermills will be recirculated back into each Dry Hammermill to decrease the volume of air that is ultimately controlled by the dryer line RTO. The remaining 5,000 acfm of exhaust from each Dry Hammermill would be routed to the baghouse. The Dry Hammermill baghouse exhaust will be routed through a quench system and then will be routed to either 1) the inlet of the furnace with subsequent control by the WESP/RTO control system, 2) the inlet of the WESP/RTO control system, or 3) directly to the inlet of the RTO. The RTO will provide 95% destruction efficiency of VOC and HAP/TAP emissions. Since the Dry Hammermill exhaust stream may not be controlled by the WESP, PM emissions from the Dry Hammermills were calculated based on a maximum exit grain loading rate and the maximum exhaust flow rate for the proposed baghouses and no additional control was assumed for the WESP. The PM_{2.5}e speciation used in the potential emissions calculations for the Dry Hammermill baghouses is being updated as part of this application. No control efficiency was applied for the quench system, which is being installed for safety purposes only. Refer to Appendix E, Table 7 for detailed potential PM emissions calculations for the baghouses and Appendix E, Table 4b for potential emissions calculations for the RTO.

Uncontrolled VOC and HAP emissions at the outlet of the Dry Hammermill baghouses (CD-HM-BH1 through 8) were quantified based on stack testing data from comparable Enviva plants. Controlled emissions were estimated based on a 95% destruction efficiency for the dryer/furnace RTO. Detailed calculations are provided in Appendix E, Table 4b.

4.2 Furnace Bypass Cold Start-up (ES-FURNACEBYPASS)

Potential emissions of CO, NO_x, SO₂, PM, VOC and HAP for furnace bypass conditions were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*.³ GHG emissions were calculated based on emission factors for biomass combustion from Tables C-1 and C-2 of 40 CFR Part 98 and global warming potentials from Table A-1. Emissions were based on 15% of the maximum heat input capacity of the furnace (15% of 250.4 MMBtu/hr) and 50 hours per year. Detailed potential emission calculations are included in Appendix E, Table 5.

4.3 Furnace Bypass Idle Mode (ES-FURNACEBYPASS)

The furnace will operate up to 500 hours per year in "idle mode", which is defined as operation up to a maximum heat input rate of 15 MMBtu/hr. During this time, emissions will exhaust out of the furnace bypass stack. Potential emissions of CO, NOx, SO₂, VOC, and HAP were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*.⁴ GHG emissions were calculated based on emission factors for biomass combustion from Tables C-1 and C-2 of 40 CFR Part 98 and global warming potentials from Table A-1. Detailed potential emission calculations are included in Appendix E, Table 6.

³ U.S. EPA AP-42 Section 1.6 Wood Residue Combustion in Boilers (09/03).

⁴ Ibid.

5. STATE AND FEDERAL PERMITTING APPLICABILITY

The Enviva Hamlet plant is subject to federal and state air quality permitting requirements. The following sections summarize the applicability of these requirements to the proposed permit modifications.

5.1 Federal Permitting Programs

The federal New Source Review (NSR) permitting program includes requirements for construction of new sources, and modifications to existing sources, while the Title V Operating Permit Program includes requirements for operation of Title V major sources. The following sections discuss the applicability of these requirements to the Hamlet plant.

5.1.1 New Source Review

NSR is a federal pre-construction permitting program that applies to certain major stationary sources. The federal NSR permitting program is implemented in North Carolina pursuant to 15A NCAC 2D .0530 and 15A NCAC 2D .0531. The primary purpose of NSR is to support the attainment and maintenance of ambient air quality standards across the country. There are two distinct permitting programs under NSR. The particular program that applies depends on the ambient air quality in the geographic area in which the source is located. The two programs are nonattainment New Source Review (NNSR) (15A NCAC 2D .0531) and PSD (15A NCAC 2D .0530). Because NNSR and PSD requirements are pollutant-specific, a stationary source can be subject to NNSR requirements for one or more regulated NSR pollutants and to PSD requirements for the remaining regulated NSR pollutants.

NNSR permitting requirements apply to new or existing stationary sources located in an area where concentrations of a "criteria pollutant"⁵ exceed the National Ambient Air Quality Standard (NAAQS) for that pollutant. PSD permitting requirements apply to stationary sources located in areas designated as attainment or unclassifiable with respect to the NAAQS.

The Hamlet plant is located in Richmond County which is classified as attainment or unclassifiable for all criteria pollutants.⁶ The Hamlet plant is currently permitted as a synthetic minor PSD source because the Hamlet plant's potential emissions are limited to less than the major source threshold of 250 tpy for all PSD-regulated pollutants by federally enforceable requirements in the current permit (Air Quality Permit No. 10365R04, Condition 2.2-A.2). Addition of controls for the Dry Hammermills (ES-HM-1 through 8), removal of the Dry Hammermill throughput limitation, and addition of the existing Furnace Bypass Stack (ES-FURNACEBYPASS) will not change this status.

5.1.2 Title V Operating Permit Program

The federal Title V Operating Permit program is promulgated in 40 CFR 70 and is implemented in North Carolina via 15A NCAC 2Q .0500. The Hamlet plant is a major source with respect to the Title V Operating Permit Program because facility-wide emissions of one or more criteria pollutants exceed the major source threshold of 100 tpy. Subsequent to the proposed changes, the plant will remain a major source. Additionally, the plant is currently considered a major source of HAP due to total HAP emissions and maximum individual HAP

⁵ The following are "criteria pollutants" under current NSR regulations: CO, nitrogen dioxide, SO₂, PM₁₀, PM_{2.5}, ozone (VOCs and NO_x), and lead.

⁶ 40 CFR 81.334

emissions exceeding the major source thresholds of 25 tpy and 10 tpy, respectively. Controlling the exhaust stream from the Dry Hammermills (ES-HM-1 through 8) under Control Option 1 or 2 will result in a significant decrease in HAP emissions and the plant will no longer be considered a major source of HAP, based on the single or aggregate HAP major source criteria.

5.2 North Carolina Permitting Program

In addition to the Title V permitting requirements in 15 NCAC 02Q .0500, specific requirements for permitting of construction and operation of new and modified sources are included in 15A NCAC 02Q .0300, in accordance with North Carolina's State Implementation Plan (SIP). The proposed changes are subject to the permitting procedures under 15A NCAC 02Q .0300 and the required application forms are included as Appendix B.

6. **REGULATORY APPLICABILITY**

The Hamlet plant is subject to federal and state air quality regulations. The following addresses all regulations potentially applicable to the proposed permit modifications.

6.1 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAP) regulate HAP emissions and are applicable to certain major and area sources of HAP. NESHAP can be found in 40 CFR Part 63 and have been incorporated by reference in 15A NCAC 02D .1111. As previously discussed, the Hamlet plant will no longer be considered a major source of HAP after installation of Dry Hammermill controls since facility-wide total HAP emissions will not exceed 25 tpy and maximum individual HAP emissions will not exceed 10 tpy.

6.1.1 40 CFR 63 Subpart A – General Provisions

All sources subject to a NESHAP are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. After installation of controls proposed in this application, the Dry Hammermills (ES-HM-1 through 8) will no longer be subject to Subpart A.

6.1.2 40 CFR 63 Subpart B – Requirements for Control Technology Determinations for Major Sources in Accordance with Clean Air Act Section 112(g)

Clean Air Act (CAA) Section 112(g)(2)(B) requires that a new or reconstructed major HAP stationary source that does not belong to a regulated "source category" for which a NESHAP has been promulgated must control emissions to levels that reflect "maximum achievable control technology" (MACT). Because Wood Pellet Manufacturing Plants are not a regulated source category under 40 CFR 63, the Hamlet plant was subject to 112(g) and underwent a case-by-case MACT analysis pursuant to 40 CFR 63 Subpart B as part of the initial PSD construction permitting process. The facility will no longer be a major source for HAP emissions following the implementation of Dry Hammermill controls and thus is not subject to case-by-case MACT requirements.

6.2 Compliance Assurance Monitoring

Compliance Assurance Monitoring (CAM) under 40 CFR 64 is applicable to emission units located at a Title V major source that use a control device to achieve compliance with an emission limit and whose pre-controlled emissions exceed the major source thresholds. A CAM plan is required to be submitted with the initial Title V operating permit application for emission units whose post-controlled emissions exceed the major source thresholds (i.e., large pollutant-specific emission units [PSEU]).⁷ For emission units with post-controlled emissions below the major source thresholds, a CAM plan must be submitted with the first Title V permit renewal application.⁸

The Dry Hammermills (ES-HM-1 through 8) have post-controlled emissions below the major source threshold and thus, a CAM plan will not need to be addressed until the first Title V

⁷ §64.5(a)

⁸ §64.5(b)

permit renewal application. CAM will not be applicable to the Furnace Bypass Stack (ES-FURNACEBYPASS).

6.3 North Carolina Administrative Code

The Hamlet plant sources are subject to regulations contained within 15A NCAC 02D and 02Q. Regulations that are potentially applicable to the proposed project are addressed in the following sections.

6.3.1 15A NCAC 02D .0515 Particulates from Miscellaneous Industrial Processes

PM emissions from all industrial processes subject to permitting and for which no other emission control standards are applicable are regulated under 15A NCAC 02D .0515. This regulation limits particulate emissions based on process throughput using the equation E = $4.10 \times P^{0.67}$, for process rates (P) less than or equal to 30 tons per hour (tph) and E=55 x $P^{0.11}$ -40 for process rates greater than 30 tph.

This requirement applies to all processes at the Hamlet plant before and after implementation of the proposed changes.

6.3.2 15A NCAC 02D .0516 Sulfur Dioxide Emissions from Combustion Sources

Emissions of SO₂ from combustion sources cannot exceed 2.3 pounds of SO₂ per MMBtu input. The Dryer furnace burner system combusts bark and wood chips and the existing RTO and proposed RTO/RCO utilize natural gas, each of which contain low amounts of sulfur and will result in SO₂ emissions well below the limit of 2.3 lb/MMBtu.

6.3.3 15A NCAC 02D .0521 Control of Visible Emissions

For sources manufactured after July 1, 1971, visible emissions cannot exceed 20 percent opacity when averaged over a six-minute period except under the following conditions:

- No six-minute period exceeds 87 percent opacity,
- No more than one six-minute period exceeds 20 percent opacity in any hour, and
- No more than four six-minute periods exceed 20 percent opacity in any 24-hour period.

This rule applies to all processes at the facility that may have visible emissions. If installed, the new RTO/RCO (CD-RCO-2) for the Dry Hammermills (ES-HM-1 through 8) and the existing Furnace Bypass Stack (ES-FURNACEBYPASS) must comply with this requirement.

6.3.4 15A NCAC 02D .1100 Control of Toxic Air Pollutants

15A NCAC 02D .1100 outlines the procedures that must be followed if a TAP permit and associated modeling are required under 15A NCAC 02Q .0700. Under 15A NCAC 02Q .0704(d), a TAP permit application is required to include an evaluation of the TAP emissions from a facility's sources, excluding exempt sources listed in Rule .0702 of this Section. The proposed changes requested in this application will not result in an increase in TAP emissions. Potential TAP emissions will decrease by 14 tpy. As such, a TAP permit and associated TAP evaluation and TAP modeling are not required.

Application for Air Quality Permit Modification Enviva Pellets Hamlet, LLC Richmond County, North Carolina

APPENDIX A SETTLEMENT AGREEMENT

κ.

STATE OF NORTH CAROLINA

COUNTY OF RICHMOND

Clean Air Carolina, Petitioner, v. North Carolina Department of Environmental Quality, Division of Air Quality, Respondent, Enviva Pellets Hamlet, LLC, Respondent-Intervenor,

IN THE OFFICE OF ADMINISTRATIVE HEARINGS 19 EHR 00866

SETTLEMENT AGREEMENT

The North Carolina Department of Environmental Quality ("DEQ"), Division of Air Quality ("DAQ" or the "Division"), Petitioner Clean Air Carolina, ("CAC"), and Respondent-Intervenor Enviva Pellets Hamlet, LLC ("Enviva") enter into this Settlement Agreement ("Agreement") to resolve matters in controversy between them fully and finally. DAQ, CAC, and Enviva shall be referred to collectively herein as the "Parties."

)

))

)

)

)

)

The Parties hereby stipulate that:

1. On January 14, 2019, DAQ issued Permit No. 10365R03 ("Permit R03") to Enviva.

2. In its Petition for Contested Case Hearing, Docket No. 19 EHR 00866 ("Petition"), Petitioner alleges that DAQ violated the North Carolina Air Pollution Control Act, the federal Clean Air Act, implementing regulations, and other applicable law and standards by, *inter alia*: (i) improperly classifying Enviva's proposed wood pellet manufacturing facility in Hamlet, North Carolina (the "Facility") as a minor source of air pollution and therefore failing to require the Facility to obtain a major source construction permit under North Carolina's Prevention of Significant Deterioration ("PSD") Program; (ii) failing to incorporate enforceable permit conditions sufficient to limit the Facility's potential to emit below certain thresholds; (iii) arbitrarily relying on emission estimates in the air permit application; and (iv) failing to provide a reasoned response to public comments.

3. DEQ and Enviva filed prehearing statements and denied all material allegations of the same.

4. The Parties have been correctly designated and that there is no question as to misjoinder or nonjoinder.

5. Following settlement discussions, the Parties have agreed to settle this contested case on the terms set out herein to avoid the expense and burden of further litigation.

6. Without making any admission of liability, violation, or wrongdoing, while expressly denying the same, and in the interest of resolving the contested case, Enviva agrees that it shall:

a. Within thirty (30) days after execution of this Agreement by all Parties, submit an application for modification of Permit R03 to include an express 85% limit on throughput on the dry hammermills at the Facility as was contemplated by the Permit R03 application. The application shall request the following permit conditions:

- i. The Permittee shall monitor and record the total dry hammermill throughput, in terms of oven dried tons, on a monthly and 12-month rolling basis;
- ii. The total dry hammermill throughput, in oven dried tons, shall not exceed85% of the total facility-wide wood pellet production on a 12-monthrolling basis, rolled monthly.
- iii. Modification of Condition 2.2(A)(2)(j) of Permit R03, which governs the required semi-annual summary report, to explicitly provide that in addition to other information already identified in that permit condition, the semiannual summary report must include the facility's monthly and 12-month

rolling total dry hammermill throughput (as required to be monitored in (i), above); monthly and 12-month rolling total facility-wide throughput (as required to be monitored by Condition 2.2(A)(2)(h) of Permit R03), and monthly hardwood/softwood mix (as required to be monitored by Condition 2.2(A)(2)(h) of Permit R03).

b. Enviva shall provide CAC with an electronic copy of each semi-annual summary report (as referred to in Paragraph 6(a)(iii)) within ten (10) days of filing such report with the Division, for a period of three (3) years from the date of execution of this Agreement.

c. Enviva shall use commercially reasonable efforts to, within one-hundred-twenty (120) days of execution of this Agreement by all Parties, submit an application for the installation of additional control technology or an equivalent engineering alternative, as set out below, to control volatile organic compound ("VOC") emissions from the Facility's dry hammermills. In any event, Enviva shall submit such application within one-hundred-eighty (180) days of execution of this Agreement by all Parties. The selected control technology or engineering alternative shall consist of exhausting 100% of the dry hammermill emissions to one or a combination of the following options:

- i. To a dedicated regenerative thermal or catalytic oxidizer ("RTO" or "RCO") on the dry hammermills;
- ii. To the pellet cooler RCO ("CD-RCO" under Permit R03), to the dryer furnace, or to the wood dryer RTO ("CD-RTO-1" under Permit R03).

d. The application shall further request the incorporation of the following permit conditions for whichever RTO/RCO the dry hammermill exhaust will be routed through:

- The Permittee shall operate the [RTO/RCO] during all periods in which any of the dry hammermill lines ("ES-HM-1" through "ES-HM-8" under Permit R03) are in operation.
- ii. Until the first VOC performance testing following utilization of an [RTO/RCO] to control VOC emissions from the dry hammermills, the Permittee shall operate the [RTO/RCO] at or above the temperature recommended by the manufacturers of the [RTO/RCO]. After such testing the Permittee shall maintain the combustion chamber temperature of the [RTO/RCO] at or above the level approved by the Division in writing. Until such approval is granted, the Permittee shall maintain the combustion chamber temperature of the [RTO/RCO] at or above the temperature at which testing was performed.
- iii. The Permittee shall install, calibrate, operate, maintain, and inspect a continuous temperature monitoring and recording system, in accordance with the manufacturers' recommendations, to monitor the combustion chamber temperature of the [RTO/RCO] substantially similar to the requirements of Condition 2.2(A)(2)(e) of Permit R03.

e. Enviva will use commercially reasonable efforts to, within twelve (12) months of issuance of a permit authorizing the control or engineering alternative specified in Paragraph 6(c), install and commence operation of that control or engineering alternative. In any event, Enviva shall install and commence operation of that control or engineering alternative within eighteen (18) months of issuance of a permit authorizing the control or engineering alternative.

f. Within sixty (60) days of receipt of the results of the initial compliance testing required by Condition 2.2(A)(2)(c) of Permit R03, Enviva shall establish a site-specific emission

factor for VOCs for the Facility's dry hammermills, calculate its facility-wide potential emissions at the tested softwood percentage, and provide such emissions calculation to the Division with a copy to CAC. Enviva will perform this VOC emissions calculation, as well as future VOC emissions calculations for the Facility, utilizing a calculation methodology that has been approved by the Division in writing. Enviva will provide CAC with documentation of the Division's approval of such methodology within seven (7) days of receipt of such documentation from the Division. If actual VOC emissions from the Facility are estimated to be at or above 250 tons per year ("tpy"), Enviva shall curtail Facility production to stay below 250 tpy actual total VOCs until VOCs from the dry hammermills are controlled as required by Paragraph 6(c) of this Agreement. Enviva shall continue to utilize a VOC emission factor for uncontrolled emissions from the dry hammermills until Enviva conducts new performance testing following utilization of an [RTO/RCO] to control dry hammermill VOC emissions, and the Division approves a new dry hammermill emission factor based on such performance testing. Notwithstanding the above emission calculation requirement, nothing herein shall restrict any Party from utilizing credible evidence to demonstrate Enviva's compliance (or noncompliance) with applicable VOC emission limits.

7. CAC agrees not to oppose the modification of Permit R03 to the extent that such modification is addressed by, and complies with, the terms of this Agreement.

8. All notices or documents required to be provided to CAC under this Agreement shall be provided electronically to the following:

June Blotnick Clean Air Carolina june@cleanaircarolina.org

Heather M. Hillaker, Esq. Southern Environmental Law Center hhillaker@selcnc.org

5

Keri N Powell, Esq. Powell Environmental Law kpowell@powellenvironmentallaw.com

9. DAQ, which makes no admission of liability, violation, or wrongdoing, will use its best efforts to expeditiously review and process all permit applications required by this Agreement.

10. Within fourteen (14) days of execution of this Agreement by all Parties, the Parties shall jointly move to stay the Petition. Within fourteen (14) days of the effective date of a final revised permit for the Facility that satisfies Paragraphs 6(a), 6(c), and 6(d) above, CAC shall file a Voluntary Withdrawal with Prejudice of its Petition for Contested Case Hearing, Docket No. 19 EHR 00866.

11. The Parties agree that each shall bear its own costs related to any disputes covered by this Settlement Agreement. No Party shall apply for attorney fees or costs under any rule or law, and no Party shall be liable for any attorney fees, costs, or expenses incurred by the other.

12. The Parties agree that the consideration for this settlement are the promises contained herein and that this Settlement Agreement contains the whole agreement between them relating to the subject matter thereof.

13. This Settlement Agreement shall be binding upon the Parties, their successors and assigns, and is entered into knowingly, intelligently, and voluntarily upon execution by the undersigned, who represent and warrant that they are authorized to enter into this Settlement Agreement on behalf of the Parties hereto.

14. This Agreement may be executed and delivered in counterparts by electronic mail, each of which so executed and delivered counterpart is original, and such counterparts, together, shall constitute but the same instrument.

[Signature Page to Follow]

CLEAN AIR CAROLINA

By:

June Blotnick Executive Director

June 3, 2019 Date:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY, DIVISION OF AIR QUALITY

By:

Michael Abraczinskas, Director Division of Air Quality

Date:

ENVIVA PELLETS HAMLET, LLC

Marin By:

Yana Kravtsova VP, Environmental Affairs and Chief Compliance Officer

Date: May 30, 2019

CLEAN AIR CAROLINA

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY, DIVISION OF AIR QUALITY

By: _____ June Blotnick Executive Director

.

.

Agra By:__ Michael Abraczinskas, Director

Division of Air Quality

Date: _____

Date: 5/30/19

ENVIVA PELLETS HAMLET, LLC

By: _____ Yana Kravtsova VP, Environmental Affairs and Chief Compliance Officer

Date: _____

Application for Air Quality Permit Modification Enviva Pellets Hamlet, LLC Richmond County, North Carolina

APPENDIX B PERMIT APPLICATION FORMS

Received

FORM A

DEC 0 2 2019

	GENERAL FACILITY	INFORMATION			
VISED 09/22/16	NCDEQ/Division of Air Quality - Application	n for Air Permit to Constru	ict/Operate Air PC	ermits Section	
NOT	E-APPLICATION WILL NOT BE PROCE				
Local Zoning Consistency Determin (new or modification only)	ation I Appropriate Number of Copie	es of Application	Application Fe	e (please check one oplion below)	
Responsible Official/Authorized Cor	atact Signature 🔽 P.E. Seal (if required)		Not Required	ePayment Check Enclosed	d l
A STREET STREET STREET STREET	GENERAL INFOR	MATION	and the second second		
Legal Corporate/Owner Name: Enviva Po	ellets Hamlet, LLC				
Site Name: Enviva Pellets Hamlet, LLC					
Site Address (911 Address) Line 1; 1125 Nor	th NC Highway 177				
Site Address Line 2:					-
Cily: Hanilet		State: North Car	olina		
Zip Code: 28345		County: Richmond	1		
	CONTACT INFOR	MATION	S. B. M. Bar	A THE REPORT OF A SU	100
Responsible Official/Authorized Contact:		Invoice Contact:			
Name/Title: Paul Pereira, Plant Manager		Name/Title: Mat Riem	enschneider, EHS Mana	ger	
Mailing Address Line 1: 1125 North NC Highway 17	7	Mailing Address Line 1: 1	125 North NC Highway 1	77	
Mailing Address Line 2;		Mailing Address Line 2:			
City: Hamlet State: NC	Zip Code: 28345	City: Hamlet	State: NC	Zip Code: 28345	
Primary Phone No.: (919) 218-0800	Fax No.:	Primary Phone No.: (919) 616-3316	Fax No.:	_
Secondary Phone No.:		Secondary Phone No .:			_
Email Address: Paul, Pereira Genvivabiomass.com		Email Address: Mat.Riem	enschneider@envivcabi	omass.com	
Facility/Inspection Contact: Mat Riemenschneid	ler	Permit/Technical Contact	t:		_
Name/Title: Environmental, Health, and Safety M	lanager	Name/Title: Kai Simor	1501		
Mailing Address Line 1: 1125 North NC Highway 17	7	Mailing Address Line 1: 4	242 Six Forks Road, Suite	: 1050	
Mailing Address Line 2:		Mailing Address Line 2:			
City: Hamlet State: NC	Zip Code: 28345	City: Raleigh	State: NC	Zip Code: 27609	_
Primary Phone No.: 919-616-3316	Fax No.:	Primary Phone No.: (!	919) 428-0289	Fax No.:	_
Secondary Phone No.:		Secondary Phone No.:			
ail Address: Mat.Riemenschneider@envivcabion		Email Address: Kal.Simor	nsen@envivabiomass.co	<u>m</u>	
	APPLICATION IS BEIN	g made for			
New Non-permitted Facility/Greenfield	Modification of Facility (permitted)	Renewal Title V	Renewal	Non-Title V	_
Name Change D Ownership Change	Administrative Amendment	Renewal with Modifi			
	FACILITY CLASSIFICATION AFTER AP	And an owner of the local data and the local data a	and the second se		214
General			Synthetic Minor	☑ Title V	
After description of a standard section.	FACILITY (Plant Site) II	NFORMATION			TUC
Wood pellet manufacturing facility					
		Facility ID No. 7700096			
Primary SIC/NAICS Code: 2499 (Wood Products, not		Current/Previous Air Permit	l No, 10365R04	Expiration Date: 02/28/2021	
Facility Coordinates: Latitude: 34 degrees, 56 minutes, 2.4 seconds Longitude: 79 degrees, 38 minutes, 3,3 seconds Dees this application contain					
Does this application contain	YES I NO application			ubmitting this	
		,			_
	PERSON OR FIRM THAT PREF	r			
Person Name: Michael Carbon		Firm Name: Ramboll US C	orporaglion		
Mailing Address Line 1: 8234 YMCA Plaza Drive		Mailing Address Line 2:			_
City: Baton Rouge	State: Louisiana	Zip Code: 70810		County:	_
Phone No.: (225) 408-2691		Email Address: mcarbon@			_
Name (himed), David Smith	SIGNATURE OF RESPONSIBLE OFFIC				12.0.
Name (typed): Royal Smith X Signature(Blue Ink)		Tille: Executive VP of Open	alions		_
A Orginardi e (Dille inter		Date: 11/18/19)		
- At	Attach Additional Chaste As	1. 1. 1	1	Dama 4	
	Attach Additional Sheets As	necessary		Page 1 c	11 2

FORM A (continued, page 2 of 2) **GENERAL FACILITY INFORMATION**

	VEITER				
VISED 09/22/16	NCDEQ/Division of Air C ECTION AA1 - APPLIC	Quality - Application for Air			
					CHERRY DOCUM
There have been no modifications to the originally permitte		y Name) hereby formally rec arein that would require an al			
Is your facility subject to 40 CFR Part 68 "Prevnetion of Ac			· · · · · · · · · · · · · · · · · · ·		
If yes, have you already submitted a Risk Manage Plan (Ri	· -	YES	D NO	Date Submitted:	
Did you attach a current emissions inventory?	YES Via AER(NO NO			
If no, did you submit the inventory via AERO or by mail?				Date Mailed:	
In apportance with the provisions of Title 154 20, 0512 th	SECTION AA2- APPL	ICATION FOR TITLE	V PERMIT RE		
In accordance with the provisions of Title 15A 2Q .0513, th hereby formally requests renewal of Air Permit No.	e responsible official of	(Air Pe	rmit No.) and furth	(Company Name)	
(1) The current air quality permit identifies ar	nd describes all emissions uni				
North Carolina Title V regulations at 15A	NCAC 2Q .0500;				
 (2) The current air quality permit cits all appli requirements; 	icable requirements and provi	ides the method or methods	for determing con	npliance with the applicable	
(3) The facility is currently in compliance, and					
compliance with the conditions of the per-					
(4) For applicable requirements that become (5) The facility shall fulfill applicable enhance					
The responsible official (signature on page 1) certifies under				-	
formed after reasonable inquiry, are true, accurate, and co					
	SECTION AA3-	APPLICATION FOR I	NAME CHANC	3E	
New Facility Name:					
Former Facility Name:					
An official facility name change is requested as described a	above for the air permit menti	oned on page 1 of this form.	Complete the oth	ner sections if there have been	
modifications to the originally premitted facility that would re-	equie an air quality permit sind	ce the last permit was issued	and if ther has be	een an ownership change	
associated with this name change.					
	SECTION AAA- APPI	ICATION FOR AN O	NNERSHIP C	HANGE	
this application we hereby request transfer of Air Quality				owner to the new owner as described below.	
ransfer of permit responsibility, coverage and liability				nsert date.) The legal ownership of the	
raulity described on page 1 of this form has been or will be			(dale). There has	ve been no modifications to the originally	
permitted facility that would require an air quality permit sin	ce the last permit was issued.	•			
Signature of New (Buyer) Responsible Official/Authorized C	Contact (as typed on page 1):				
X Signature (Blue Ink):					
Date:				2	
New Facility Name:					
Former Facility Name:					
Signature of Former (Seller) Responsible Official/Authorize	d Contrat:				
	G COIRBCL				
Name (typed or print):					
Title:					
X Signature (Blue Ink):					
Date:					
Former Legal Corporate/Owner Name:					
	on this form a letter m	av he submitted with th	o coller's cian	ature indicating the ownership change	
		ay be submitted with a	ie actier a algit	active moleating the ownership change	
	ECTION AA5- APPLIC		TRATIVE AM	ENDMENT	
Describe the requested administrative amendment here (al	tech additional documents as	necessary):			
	Attach Additio	nal Sheets As Nece	eeanv		Page 2 of 2
			Jogury		1 898 4 91 4

Page 2 of 2

FORMS A2, A3 EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 3

112r APPLICABILITY INFORMATION - A

REVISED 09/22/16	NCDEQ/Division of Air Quality - A	pplication for Air Permit to Constru	ct/Operate	A2
	EMISSION SOURCE LISTING: New, Me	odified, Previously Unpermit	ted, Replaced, Deleted	
EMISSION SOURCE	EMISSION SOURCE	CONTROL DEVICE	CONTROL DEVICE	
ID NO.	DESCRIPTION	ID NO.	DESCRIPTION	
	Equipment To Be ADDED By This Applie	cation (New, Previously Unpe	ermitted, or Replacement)	
ES-FURNACEBYPASS	Furnace Bypass Stacks	N/A		
	Existing Permitted Equipment	nt To Be MODIFIED By This	s Application	15,2,015
ES-HM-1 through 8 (Control Option 1)	Eight (8) Dry Hammermills	CD-HM-BH-1 through 8, CD- RCO-2	Baghouses, RTO/RCO	
ES-HM-1 through 8 (Control Option 2)	Eight (8) Dry Hammermills	CD-HM-BH-1 through 8, CD- RTO-1	Baghouses, RTO	
	Equipment To Be I	DELETED By This Applicat	ion	
N/A				

	112(r) APPLICABIL	ITY INFORMATION		A 3		
your facility subject to 40 CFR Part 68 "Prevention of Accidental Releases" - Section 112(r) of the Federal Clean Air Act? Ves 🗹 No						
No, please specify in detail how your facility avoided applicability: The Hamlet plant will not store any regulated substances in excess of their						
threshold quantities, as determined under §68.115.						
If your facility is Subject to 112(r), please complete the following:						
A. Have you already submitted a Risk Management Plan (RI	MP) to EPA Pursuant to 40 CF	FR Part 68.10 or Part 68.150?				
Yes No Specify required RMP s	ubmittal date:	If submitted, RMP submittal date:				
B. Are you using administrative controls to subject your facili	ity to a lesser 112(r) program	standard?				
Yes No If yes, please specify:						
C. List the processes subject to 112(r) at your facility:						
	PROCESS LEVEL (1, 2, or		MAXIMUM INTE	NDED		
PROCESS DESCRIPTION	3)	HAZARDOUS CHEMICAL	INVENTORY (LBS)		
1						
				Î		
L						

Attach Additional Sheets As Necessary

FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

		ality - Application for Air Permit		ite	1	D1
CRITERIA	AIR POLLUTA	NT EMISSIONS INFORMATION	N - FACILITY-WID	E		
		EXPECTED ACTUAL EMISSIONS (AFTER CONTROLS /	POTENTIAL EMIS	ROLS /	(AFTER C	L EMISSION CONTROLS / ATIONS)
AIR POLLUTANT EMITTED		LIMITATIONS) tons/yr	tons/yr	13)	-	ns/yr
PARTICULATE MATTER (PM)		Lonsry	tonsryi		1	lisryi
PARTICULATE MATTER < 10 MICRONS (PM ₁₁)	1				
PARTICULATE MATTER < 2.5 MICRONS (PM		1				
SULFUR DIOXIDE (SO2)	.5/	4				
NITROGEN OXIDES (NOx)		4				
CARBON MONOXIDE (CO)		- See Emissi	on Calculations in	1 Append	dix E	
VOLATILE ORGANIC COMPOUNDS (VOC)		1				
LEAD		1				
GREENHOUSE GASES (GHG) (SHORT TONS)	1				
OTHER	/	1				
	AIR POLLUT	ANT EMISSIONS INFORMATI	ON - FACILITY-W	IDE	10.1	1.5.1.0
		EXPECTED ACTUAL	1			
		EMISSIONS	POTENTIAL EMIS			L EMISSION
		(AFTER CONTROLS /	(BEFORE CONT			ONTROLS /
		LIMITATIONS)	LIMITATION	IS)		ATIONS)
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tons/yr	tons/yr		to	ns/yr
TOXIC AI		EMISSIONS INFORMATION				RATE
(TPER) IN 15A NCAC 2Q .0711 MAY REQUIRE						
			N	Nodeling I	Required ?	
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr lb/day	lb/year	Yes	No	
		See Emission Calculations in	n Appendix E			
COMMENTS:	Affach Ad	ditional Sheets As Nece	86374	ž		

FORM D4 EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

EVISED 09/22/16	NCDEQ/Division of Air Quality -	Application for Air Perm	nit to Construct/Operate	D4			
	ACTIVITIES EXE			118.51.1			
IN	INSIGNIFICANT ACTIVITIES PER 2Q .0503 FOR TITLE V SOURCES						
		SIZE OR					
		PRODUCTION	BASIS FOR EXEMPTION	OR			
DESCRIPTIC	ON OF EMISSION SOURCE	RATE	INSIGNIFICANT ACTIV	ITY			
			1				

Attach Additional Sheets As Necessary

			FORM D5					
			TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION					
	/15	ED 09/22/16 PRO\ DEMOI	NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate D5 /IDE DETAILED TECHNICAL CALCULATIONS TO SUPPORT ALL EMISSION, CONTROL, AND REGULATORY NSTRATIONS MADE IN THIS APPLICATION. INCLUDE A COMPREHENSIVE PROCESS FLOW DIAGRAM AS NECESSARY TO SUPPORT AND CLARIFY CALCULATIONS AND ASSUMPTIONS. ADDRESS THE FOLLOWING SPECIFIC ISSUES ON SEPARATE PAGES: FOR Construction of the page of the pa					
	M/ CA	SPECIFIC EMISSIONS SOURCE (EMISSION INFORMATION) (FORM B and B1 through B9) - SHOW CALCULATIONS USED, INCLUDING EMISSION FACTORS, MATERIAL BALANCES, AND/OR OTHER METHODS FROM WHICH THE POLLUTANT EMISSION RATES IN THIS APPLICATION WERE DERIVED. INCLUDE CALCULATION OF POTENTIAL BEFORE AND, WHERE APPLICABLE, AFTER CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MADE AND PROVIDE ANY REFERENCES AS NEEDED TO SUPPORT MATERIAL BALANCE CALCULATIONS.						
×	INI RE RA SIA PC	DIVIDUAL SOURCE EQUIREMENTS) FOI ATES OR OTHER OI GNIFICANT DETERI DLLUTANTS (NESH/ ACILITY, SUBMIT AI	SOURCE (REGULATORY INFORMATION)(FORM E2 - TITLE V ONLY) -PROVIDE AN ANALYSIS OF ANY REGULATIONS APPLICABLE TO S AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSION OUTING METHODS (e.g. FOR TESTING AND/OR MONITORING R COMPLYING WITH APPLICABLE REGULATIONS, PARTICULARLY THOSE REGULATIONS LIMITING EMISSIONS BASED ON PROCESS PERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FOR AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION OF IORATION (PSD), NEW SOURCE PERFORMANCE STANDARDS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR APS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDERAL REGULATIONS WHICH WOULD OTHERWISE BE APPLICABLE TO THIS NY REQUIRED INFORMATION TO DOCUMENT COMPLIANCE WITH ANY REGULATIONS. INCLUDE EMISSION RATES CALCULATED IN TES OF MANUFACTURE, CONTROL EQUIPMENT, ETC. TO SUPPORT THESE CALCULATIONS.					
	EF OF AF	CONTROL DEVICE ANALYSIS (FORM C and C1 through C9) - PROVIDE A TECHNICAL EVALUATION WITH SUPPORTING REFERENCES FOR ANY CONTROL EFFICIENCIES LISTED ON SECTION C FORMS, OR USED TO REDUCE EMISSION RATES IN CALCULATIONS UNDER ITEM "A" ABOVE. INCLUDE PERTINENT OPERATING PARAMETERS (e.g. OPERATING CONDITIONS, MANUFACTURING RECOMMENDATIONS, AND PARAMETERS AS APPLIED FOR IN THIS APPLICATION) CRITICAL TO ENSURING PROPER PERFORMANCE OF THE CONTROL DEVICES). INCLUDE AND LIMITATIONS OR MALFUNCTION POTENTIAL FOR THE PARTICULAR CONTROL DEVICES AS EMPLOYED AT THIS FACILITY, DETAIL PROCEDURES FOR ASSURING PROPER OPERATION OF THE CONTROL DEVICE INCLUDING MONITORING SYSTEMS AND MAINTENANCE TO BE PERFORMED.						
E	PF	PROCESS AND OPERATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ONLY)- SHOWING HOW COMPLIANCE WILL BE ACHIEVED WHEN USING PROCESS, OPERATIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. REFER TO COMPLIANCE REQUIREMENTS IN THE REGULATORY ANALYSIS IN ITEM "B" WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAMETERS THAT CAN BE MONITORED AND REPORTED TO DEMONSTRATE COMPLIANCE WITH THE APPLICABLE REGULATIONS.						
ľ	A		SINEERING SEAL - PURSUANT TO 15A NCAC 2Q ,0112 "APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL," NGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIONS FOR FURTHER APPLICABILITY).					
	1	Dussell Komm	attest that this application for Enviva Pellets Hamlet, LLC					
	de	I. Envive Pellets Hamlet, LLC In the engineering plans, calculations, and all other supporting documentation to the best of my knowledge. I further attest that to the best of my knowledge the proposed design has been prepared in accordance with the applicable regulations. Although certain portions of this submittal package may have been developed by other professionals, inclusion of these materials under my seal signifies that I have reviewed this material and have judged it to be consistent with the proposed design. Note: In accordance with NC General Statutes 143-215,6A and 143-215,6B, any person the tervine makes any false statement, representation, or certification in any application shall be guilty of a Class 2 misdemeanor which may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation.						
			INK TO COMPLETE THE FOLLOWING) DEC 0 2 2019 PLACE NORTH CAROLINA SEAL HERE					
	N/ D/ C(AL TE SI	LEASE USE BLUE AME: ATE: OMPANY: DDRESS: ELEPHONE: IGNATURE: AGES CERTIFIED:	Russell Kemp, MS, PE PLACE NORTH CAROLINA SEAL HERE 20 Non code					
		(1	DENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT THAT IS BEING CERTIFIED BY THIS SEAL)					

Attach Additional Sheets As Necessary
FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EVISED 09/22/16 NCDE	Q/Division of	Air Quality - A	Application fo	r Air Permit t	o Construct/O	perate		В
EMISSION SOURCE DESCRIPTION:	EMISSION SOURCE ID NO: ES-HM-1 through 8							
Eight (8) Hammermills								
					EVICE ID NO			, CD-RCO-2
OPERATING SCENARIO OF	2		D A MAN	EMISSION P	OINT (STACK)	ID NO(S): EI	P-11	
Dried materials are reduced to the appropriate size r								
Dried materials are reduced to the appropriate size r	leeaea for pe	lietization usir	ig eight namr	nermilis.				
TYPE OF EMISSION SOURCE (CHECK AND		PPROPRIATE	FORM B1-B	9 ON THE FOL	LOWING PA	GESI	
Coal,wood,oil, gas, other burner (Form B1)		-	king (Form B4)				patings/inks (F	orm B7)
Int.combustion engine/generator (Form B2)			nishing/printing			tion (Form B8)	w (
Liquid storage tanks (Form B3)			ilos/bins (Form		V Other (F			
START CONSTRUCTION DATE: TBD		× ×	DATE MANUI	FACTURED:				
MANUFACTURER / MODEL NO.: TBD			EXPECTED (DP. SCHEDUI	E: 24 HR/	DAY 7 D	AY/WK 52	WK/YR
IS THIS SOURCE SUBJECT TO? NSPS	(SUBPARTS	?):		NESH	AP (SUBPART			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FE	B 25% MA	R-MAY 25%	JUN-AUG 2	25% SEP-NO	OV 25%			
CRITERIA AIR P	OLLUTAN	T EMISSION	IS INFORM	ATION FC	R THIS SO	URCE		
		SOURCE OF	EXPECTE	D ACTUAL	1	POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONTI	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTR	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)								
PARTICULATE MATTER<10 MICRONS (PM10)]						
PARTICULATE MATTER<2.5 MICRONS (PM2.5)								
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)		See Emission	n Calculations	s in Appendix	E			
CARBON MONOXIDE (CO)		4						
VOLATILE ORGANIC COMPOUNDS (VOC)		4						
LEAD OTHER		4						
HAZARDOUS AIR	POLLUTA	NT EMISSIO	INE INFOR	MATION	OD THIS S	OUDCE		
TIALANDOUS AIR	FULLUIA	SOURCE OF		DACTUAL	OK THIS S		EMISSIONS	
		EMISSION	(AFTER CONTR		(BEFORE CONT		(AFTER CONTR	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	ib/hr	tons/yr	lb/hr	tons/yr
	ono no.	TAGION	10/11	toriaryi	10/11	toriaryi	10/11	torisiyi
		1						
		1						
					_			
		See Emission	n Calculations	s in Appendix	E			
		1						
	· /]						
TOXIC AIR POL	LUTANT		INFORMA	TION FOR	THIS SOU	RCE	1.52 1.62	
		SOURCE	EXPEC	TED ACTUAL	EMISSIONS A	AFTER CONT	ROLS / LIMITA	TIONS
TOXIC AID DOLLUTANT		OF						
TOXIC AIR POLLUTANT	CAS NO.	EMISSION	/di	/hr	l lb/c	lay	lb/	yr
		1						1
		1						
		See Emission	1 Calculations	s in Annendix	E			
		1		in the second				
		1						
		1						
Attachments: (1) emissions calculations and supporting documer	ntation; (2) indica	ate all requested :	state and federa	l enforceable pe	rmit limits (e.g. h	ours of operation	n, emission rates) and describe

how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application	for Air Permit to Construct/Ope	erate B9
EMISSION SOURCE DESCRIPTION:	S-HM-1 through 8		
Eight (8) Hammermills		CONTROL DEVICE ID NO(S): 2	CD-HM-BH-1 through 8, CD-RC
OPERATING SCENARIO: _1 OF2		EMISSION POINT (STACK) ID	NO(S): EP-11
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):		
Dried materials are reduced to the appropriate size needed for p	elletization u	sing eight hammermills.	
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Dried Wood	ODT	80	80
MATERIALS ENTERING PROCESS - BATCH OPERAT	ION	MAX. DESIGN	REQUESTED CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	(R):	
FUEL USED: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION E	BTU/HR): N/A
MAX. CAPACITY HOURLY FUEL USE: N/A		D CAPACITY ANNUAL FUEL US	
COMMENTS:			

Attach Additional Sheets as Necessary

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Divis	sion of Air Quality -	Applicatio	n for Ai	r Permit to C	onstru	ct/Operate	e			C1
CONTROL DEVICE ID NO: CD-HM-BH-1 through 8	CONTROLS EMIS	SIONS FR	OM WH	ICH EMISSIC	N SOU	RCE ID N	O(S): E	S-HM-1 th	ough 8	
EMISSION POINT (STACK) ID NO(S): EP-11	POSITION IN SER	IES OF CO	NTROL	.S		NO.	1	OF 2	UNITS	
OPERATING SCENARIO:										
OF		P.E. SEAL	REQU	IRED (PER 2	q .0112)? 🗸	YES		NO	
DESCRIBE CONTROL SYSTEM: Eight (8) identical bagbouses are utilized for emission recirculated back to the dry hammermill and the rema dedicated quench system to CD-RCO-2. The quench sy hammermills will be controlled by a baghouse. The pu	aining 5,000 acfm wi stem will be installe	ill be route d for safet	d to the y purpo	baghouse. T ses only and	he exha is not a	ust gas wi control d	ill then evice. <i>A</i>	be passed t All emission	hrough a	dry
POLLUTANTS COLLECTED:		PM	_	P M 10		PM _{2.5}				
BEFORE CONTROL EMISSION RATE (LB/HR):		<u> </u>								
CAPTURE EFFICIENCY:			_%		%		%		%	
CONTROL DEVICE EFFICIENCY:		~99.9	_%	~99.9	%	~99.9	%		%	
CORRESPONDING OVERALL EFFICIENCY:			_%		%		%		%	
EFFICIENCY DETERMINATION CODE:			- 3							
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		-	lations	in Appendix	E					
PRESSURE DROP (IN H ₂ 0): MIN: MAX:TBD	GAUGE? 🗸			NO	-					
BULK PARTICLE DENSITY (LB/FT ³): TBD	GR/FT ³			TURE (°F):	TBD		_			
POLLUTANT LOADING RATE: 0.004 LB/HR	GRIFT			RATURE (°F)						
INLET AIR FLOW RATE (ACFM): 5,000 each		4	PERAI	ING TEMP (TH OF BA		TPD		_
	PER COMPARTMEN		CT21. T	20		ETER OF B				
NO. OF CARTRIDGES: TBD FILTER SURFA	AIR TO CLOTH R							.). 100		
DRAFT TYPE: V INDUCED/NEGATIVE	FORCED/POSITIV			FILTER MA	FRIAL	· []	WOVE		FELTED	
DESCRIBE CLEANING PROCEDURES	1010201100111							IZE DISTR		
	SONIC					SIZE	1	EIGHT %	CUMUL	ATIVE
	SIMPLE BAG COL	LAPSE				CRONS)		TOTAL	%	
	RING BAG COLLA					0-1	1	Unk	nown	
					<u> </u>	1-10				
DESCRIBE INCOMING AIR STREAM:					<u> </u>	10-25	1			
The air stream contains wood dust particles. Larger	particles are remove	ved by the	upstrea	um cyclone	:	25-50				
for product recovery.					5	0-100				
						>100				
								TOTA	L = 100	
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOV			THE CO				SSION	SOURCE(S).	
COMMENTS:		NOTHE OF								

Attach Additional Sheets As Necessary

FORM C3 CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 09/22/16	NCDEQ/Division of Air C	uality - Application fo	r Air Permit to Cons	struct/Operate	C3
AS REQUIRED BY 15A NCAC 2Q.	0112, THIS FORM MUST BE	SEALED BY A PROF	ESSIONAL ENGINE	ER (P.E.) LICENSED IN N	IORTH CAROLINA.
CONTROL DEVICE ID NO: CD-RCO-2	CONTROL	LS EMISSIONS FROM	WHICH EMISSION S	SOURCE ID NO(S) ES-H	M-1 through 8
EMISSION POINT (STACK) ID NO(S): EP-11	POSITION	IN SERIES OF CONT	ROLS	NO. <u>2</u> C	DF UNITS
MANUFACTURER: TBD		MODEL NO: TBD			
OPERATING SCENA	RIO:				
OF2					
	SENERATIVE THERMAL OXI		UPERATIVE THERI		CATALYTIC OXIDATION
EXPECTED LIFE OF CATALYST (YRS): TE				S REPLACMENT: Annua	
CATALYST MASKING AGENT IN AIR STREA	termine and the second s	SILICONE		IOROUS COMPOUND	HEAVY METAL
	SULFUR COMPOU		ER (SPECIFY) TBE		NONE
TYPE OF CATALYST: TBD	CATALYST VOL (FT ³): TB	D VELOC	ITY THROUGH CAT	ALYST (FPS): TBD	
SCFM THROUGH CATALYST: TBD					
DESCRIBE CONTROL SYSTEM, INCLUDING					
Emissions leaving the Dry Hammermill bag	houses (CD-HM-BH-1 throug	gh 8) will pass throug	h a quench system	and enter the RCO (with	thermal mode backup)
prior to being emitted to the atmosphere.					
POLLUTANT(S) COLLECTED:	VOC				
BEFORE CONTROL EMISSION RATE (LB/HF	ج):				
CAPTURE EFFICIENCY:	-	%	%	%	%
CONTROL DEVICE EFFICIENCY:	95	%	%	%	%
CORRESPONDING OVERALL EFFICIENCY:		%	%	%	%
EFFICIENCY DETERMINATION CODE:					
TOTAL AFTER CONTROL EMISSION RATE	(LB/HR) : See calcu	lations in Appendix E			
PRESSURE DROP (IN. H ₂ O): MIN	MAX TBD	OUTLET TEMP		TBD_MIN	MAX
INLET TEMPERATURE (°F): MIN	MAX TBD		ME (SECONDS): TB		
INLET AIR FLOW RATE (ACFM): TBD	(SCFM): TBD		TEMPERATURE (°F		
COMBUSTION CHAMBER VOLUME (FT ³): TE % EXCESS AIR: TBD	30		RE CONTENT (%): 1	TBD INLET	TBD OUTLET
		CONCENTRAT			OUTLET
AUXILIARY FUEL USED: Natural Gas			JM FIRING RATE (M	ILLION BTU/HR): 24.8	
DESCRIBE MAINTENANCE PROCEDURES:					
As per manufacturer's specifications					
DESCRIBE ANY AUXILIARY MATERIALS INT	BODUCED INTO THE CONT	DOL EVETEM.			
N/A	RODUCED INTO THE CONT	RUL STSTEM:			
COMMENTS:					
COMMENCO.		Manual Blands A			

Attach Additional Sheets As Necessary

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate									
IISSION SOURCE DESCRIPTION: EMISSION SOURCE ID NO: ES-HM-1 through 8									
Eight (8) Hammermills									
OPERATING SCENARIO 2 OF 2			CONTROL DEVICE ID NO(S): CD-HM-BH-1 through 8, CD-R EMISSION POINT (STACK) ID NO(S): EP-1						
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATT		CDAM).	EMISSION P	UINT (STACK	() ID NO(5): EI	P-1			
Dried materials are reduced to the appropriate size needed for p			ormille						
Inted materials are reduced to the appropriate size needed for p		ng eignt nann	lienniis.						
TYPE OF EMISSION SOURCE (CHECK AN	D COMPLETE A	PPROPRIATE	FORM B1-B	9 ON THE FO	LLOWING PA	GES):			
Coal,wood,oil, gas, other burner (Form B1)	Woodworl	king (Form B4)		Manuf.	of chemicals/co	oatings/inks (F	orm B7)		
Int.combustion engine/generator (Form B2)	Coating/fi	nishing/printing	(Form B5)	Incinera	ation (Form B8)) – .	·		
Liquid storage tanks (Form B3)	Storage si	ilos/bins (Form		J Other (Form B9)				
START CONSTRUCTION DATE: TBD		DATE MANUF							
MANUFACTURER / MODEL NO.: TBD		EXPECTED C				AY/WK 52	WK/YR		
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART				AP (SUBPAR	TS?):				
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% N									
CRITERIA AIR POLLUTA				OR THIS SC		11.0	1967 (1988)		
	SOURCE OF					EMISSIONS			
	EMISSION	(AFTER CONTR	· · ·	<u> </u>	TROLS / LIMITS)	(AFTER CONTR			
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM)	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10)									
PARTICULATE MATTER<2.5 MICRONS (PM10)	-								
SULFUR DIOXIDE (SO2)	-								
NITROGEN OXIDES (NOX)	See Emission	n Calculations	; in Appendix	E		1			
CARBON MONOXIDE (CO)				_					
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD									
OTHER									
HAZARDOUS AIR POLLUT				OR THIS S		K B Wall	122		
	SOURCE OF					EMISSIONS			
	EMISSION	(AFTER CONTR			TROLS / LIMITS)	(AFTER CONTR			
HAZARDOUS AIR POLLUTANT CAS NO	. FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
·····	_								
	-See Emission	n Calculations	in Appendix	E					
TOXIC AIR POLLUTAN	EMISSIONS	INFORMA	TION FOR	THIS SOL	IRCE	1. B. A. B.			
	SOURCE	EXPEC		EMISSIONS	AFTER CONT	ROLS / LIMITA	TIONS		
	OF								
TOXIC AIR POLLUTANT CAS NO	. EMISSION	lb/	hr	l lb.	/day	lb/	yr		
	_								
		n Calculations	in Annondia	F					
			an Appendix						
	-1								
Attachments: (1) emissions calculations and supporting documentation; (2) ind	licate all requested	state and federal	enforceable pe	rmit limits (e.g.	hours of operation	n, emission rates) and describe		

how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

ETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application	for Air Permit to Construct/Ope	erate B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: E	S-HM-1 through 8
Eight (8) Hammermills		CONTROL DEVICE ID NO(S): 1	CD-HM-BH-1 through 8, CD-RTO-
OPERATING SCENARIO: _1 OF2		EMISSION POINT (STACK) ID	NO(S): EP-1
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM	<i>I</i>):		
Dried materials are reduced to the appropriate size needed for p	pelletization u	sing eight hammermills.	
MATERIALS ENTERING PROCESS - CONTINUOUS PRO		MAX. DESIGN	REQUESTED CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Dried Wood	ODT	80	80
		1	
MATERIALS ENTERING PROCESS - BATCH OPERAT	TION	MAX. DESIGN	REQUESTED CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	(R):	
FUEL USED: N/A	TOTAL MAX	MUM FIRING RATE (MILLION E	3TU/HR): N/A
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL US	E: N/A
COMMENTS:			
Attach Additio	onal Sheet	s as Necessary	

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Divis	sion of Air Quality -	Applicatio	on for Ai	r Permit to C	construct/Oper	ate		C1
CONTROL DEVICE ID NO: CD-HM-BH-1 through 8	CONTROLS EMIS	SIONS FR	OM WHI	CH EMISSIC	N SOURCE ID	NO(S):	ES-HM-1 th	rough 8
EMISSION POINT (STACK) ID NO(S): EP-1	POSITION IN SER	IES OF CO	ONTROL	s	N	D. 1	OF 2	UNITS
OPERATING SCENARIO:	Prefer Strange							
2OF_2		P.E. SEAL	L REQUI	RED (PER 2	.q.0112)?	YES		1 NO
DESCRIBE CONTROL SYSTEM:				, <u>, , , , , , , , , , , , , , , , , , </u>				
Eight (8) baghouses are utilized for emission control back to the dry hammermill and the remaining 5,000								
 a. The existing furnace, CD-WESP, and CD-RTO-1; b. Directly to CD-WESP and CD-RTO-1; or c. In the event that the furnace is not operational, the 	exhaust would be	routed dir	ectly to	CD-RTO-1.				
All emissions from the dry hammermills will be contr RTO-1.	olled by a baghous	e. The pu	rpose of	the recircu	lation is to redu	ice the v	olume of ai	r routed to CD-
POLLUTANTS COLLECTED:		PM	-	PM ₁₀	PM _{2.5}	_		
BEFORE CONTROL EMISSION RATE (LB/HR):						_		
CAPTURE EFFICIENCY:			_%		%	%		.%
CONTROL DEVICE EFFICIENCY:		~99.9	_%	~99.9	% ~99.9	_%		%
CORRESPONDING OVERALL EFFICIENCY:			%		%	_%		%
EFFICIENCY DETERMINATION CODE:			- 2		5			
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):			lations	in Appendix	E	_		
PRESSURE DROP (IN H ₂ 0): MIN: MAX:TBD	GAUGE? 🗸	YES		NO				
BULK PARTICLE DENSITY (LB/FT): TBD	0.0/57	<u> </u>			TBD			
POLLUTANT LOADING RATE: 0.004 LB/HR	GR/FT			ATURE (°F)				
INLET AIR FLOW RATE (ACFM): 5,000 each			PERATI	NG TEMP (°	1			
	PER COMPARTMEN		2		LENGTH OF B			
	CE AREA PER CAP			D	DIAMETER OF	BAG (IN	1.): TBD	
TOTAL FILTER SURFACE AREA (FT'): TBD	AIR TO CLOTH R							
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIV	Έ		FILTER MAT		wov		FELTED
DESCRIBE CLEANING PROCEDURES					PAI	RTICLE S	NZE DISTRI	BUTION
AIR PULSE	SONIC	_			SIZE		EIGHT %	CUMULATIVE
	SIMPLE BAG COL	LAPSE			(MICRONS)	OF	- TOTAL	%
	RING BAG COLLA	PSE			0-1		Unk	nown
					1-10	-		
DESCRIBE INCOMING AIR STREAM:					10-25	_		
The air stream contains wood dust particles. Larger for product recovery.	particles are remov	/ed by the	upstream	m cycione	25-50	_		
ior product recovery.					50-100	_		
					>100			
							TOTA	L = 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOW	ING THE RELATIO	NSHIP OF	THE CO			ISSION	SOURCE(S)	r
COMMENTS:								

Attach Additional Sheets As Necessary

FORM C3 CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 09/22/16 NCDEQ/Divis		y - Application for Air F		,	1	C3
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FOR					NOPTH CAS	
				SOURCE ID NO(S): ES-I		
CONTROL DEVICE ID NO: CD-RTO-1	and ES-GHM-1					on an
EMISSION POINT (STACK) ID NO(S): EP-1		ERIES OF CONTROLS		NO2	OF 2	UNITS
MANUFACTURER: Lundberg		EL NO: TBD				
OPERATING SCENARIO:	< all the set					
OF						
TYPE AFTERBURNER	ERMAL OXIDATI	ON RECUPER	ATIVE THER	MAL OXIDATION	CATALYT	COXIDATION
EXPECTED LIFE OF CATALYST (YRS): TBD	METHOD OF D	ETECTING WHEN CAT	ALYST NEED	S REPLACMENT: Annu	al sampling	and analysis
	DGEN	SILICONE	PHOSP	HOROUS COMPOUND		HEAVY METAL
	RCOMPOUND		PECIFY) TB			NONE
TYPE OF CATALYST: TBD CATALYST VC	L (FT ⁺): TBD	VELOCITY TH	ROUGH CA	TALYST (FPS): TBD		
SCFM THROUGH CATALYST: TBD						
DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO C				TTACH DIAGRAM OF S	YSTEM:	
Emissions leaving the dry hammermill baghouses will enter POLLUTANT(S) COLLECTED:		being emitted to the a	itmosphere.			
BEFORE CONTROL EMISSION RATE (LB/HR):	VOC					
CAPTURE EFFICIENCY:		%			s 	
CONTROL DEVICE EFFICIENCY:	95	-%	<u>%</u>	%		%
CORRESPONDING OVERALL EFFICIENCY:		-%		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	%
EFFICIENCY DETERMINATION CODE:						^{%0}
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) ;	See calculation	is in Appendix E				
					-	
PRESSURE DROP (IN. H ₂ O): MIN MAX TBD		OUTLET TEMPERAT	JRE ("F):	TBD MIN	TBD	MAX
INLET TEMPERATURE ("F): MIN MAX TBD		RESIDENCE TIME (SE	CONDS): TE	BD		
INLET AIR FLOW RATE (ACFM): TBD (SCFM): TBD		COMBUSTION TEMPI				
COMBUSTION CHAMBER VOLUME (FT ⁻): TBD		INLET MOISTURE CO				
% EXCESS AIR: TBD		CONCENTRATION (p		TBD_INLET	<u> </u>	DUTLET
AUXILIARY FUEL USED: Natural Gas		TOTAL MAXIMUM FIR	ING RATE (N	MILLION BTU/HR): 32		
DESCRIBE MAINTENANCE PROCEDURES:						
As per manufacturer's specifications						
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO	THE CONTROL	CVCTEM.			_	
N/A	THE CONTROL	OTOTEM.				
COMMENTS:						

Attach Additional Sheets As Necessary

•

Application for Air Quality Permit Modification Enviva Pellets Hamlet, LLC Richmond County, North Carolina

APPENDIX C AREA MAP

Application for Air Quality Permit Modification Enviva Pellets Hamlet, LLC Richmond County, North Carolina

APPENDIX D PROCESS FLOW DIAGRAM

()

Table 1Calculation InputsEnviva Pellets Hamlet, LLCHamlet, Richmond County, North Carolina

Operational Data								
Green Hammermills, Dryers, Pellet Coolers								
Short-Term Maximum Throughput (ODT/hr)	80							
Annual Throughput (ODT/yr)	625,011							
Hours of Operation (hr/yr)	8,760							
Softwood Composition 85%								
Dry Hammermills								
Short-Term Maximum Throughput (ODT/hr)	80							
Annual Throughput (ODT/yr)	625,011							
Hours of Operation (hr/yr)	8,760							
Softwood Composition	85%							

Table 2a Summary of Facility-wide Potential Emissions Control Option 1 Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Emission Unit ID	Source Description	Control Device ID	Control Device Description	CO (tpy)	NO _x (tpy)	PM (tpy)	PM ₁₀ (tpy)	PM _{2.5} (tpy)	SO ₂ (tpy)	VOC (tpy)	CO ₂ e (tpy)
IES-CHIP-1	Log Chipping									1.56	
IES-BARKHOG	Bark Hog					0.23	0.13			0.28	
ES-DRYER	250.4 MM8tu/hr Wood-fired Direct Heat Drying System	CD-WESP	WESP; RTO	219	219	33.3	33.3	33.3	27.4	38.7	243,754
ES-GHM-1 through 3	Three (3) Green Wood Hammermills	CD-RTO-1	WESP, RIU	219	219	33.3	35.5	33.3	27.4	30.7	243,734
ES-FURNACEBYPASS	Furnace Bypass Stack	-		2.81	1.03	2.71	2.42	2.10	0.12	0.080	17,160
ES-HM-1 through 8 ¹	Eight (B) Dry Hammermills	CD-HM-BH1 through 8 CD-RCO-2	Eight (8)-baghouses; RTO/RCO	9.19	10.9	6.07	6.07	3.04	0.064	8.55	12,720
ES-HMC	Hammermill Collection Conveyor	CD-HMC-BH	One (1) baghouse			0.23	0.23	0.23			
ES-PCHP	Pellet Cooler HP Fines Relay System	CD-PCHP-BH	One (1) baghouse			0.075	0.075	0.075			
ES-PCLP	Pellet Cooler LP Fines Relay System	CD-PCLP-BH	One (1) baghouse			0.47	0.47	0.47			
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BH	One (1) baghouse			0.37	0.37	0.37			
ES-CLR-1 through 6 ²	Six (6) Pellet Coolers	CD-WSB CD-RCO-1	One (1) wet scrubber; RCO	12.3	14.6	14.6	4.57	1.48	0.082	24.1	16,412
ES-DCTB	Pellet Dust Collection Transfer Bin	CD-PDCTB-BH	One (1) baghouse			0.45	0.45	0.45			
ES-FPH	Finished Product Handling	CD-FPH-BH	One (1) baghouse			1.28	1.16	0.022			
ES-PB-1 and 2	Two (2) Pellet Loadout Bins	CD-FPH-BH	One (1) bagnouse			1.20	1.10	0.022			
ES-DWH	Dried Wood Handling Operations	CD-DWH-BH1 and 2	Two (2) baghouses			0.30	0.30	0.30		38.8	
ES-ADD	Additive Handling and Storage	CD-ADD-BH	One (1) baghouse			0.15	0.15	0.15			
IES-GWH	Green Wood Handling Operations					0.085	0.040	0.0061			
IES-TK-1	1,000 gallon Diesel Storage Tank									5.8E-04	
IES-TK-2	185 gallon Diesel Storage Tank									1.6E-04	
IES-TK-3	5,000 gallon Diesel Storage Tank									0.0033	
IES-GWSP-1 through 5	Green Wood Storage Piles					13.5	6.73	1.01		7.02	
IES-BFSP-1 and 2	Bark Fuel Storage Piles					0.56	0.28	0.042		0.29	
IES-DRYSHAVE	Dry Shaving Material Handling					0.054	0.025	0.0039			
IES-DEBARK-1	Debarker					1.08	0.59				
IES-BFB ³	Bark Fuel Bin										
IES-GN	500 kW Diesel-fired Emergency Generator			0.14	2.46	0.0078	0.0078	0.0078	6.6E-04	1.68	179
IES-FWP	250 hp Diesel-fired Fire Water Pump			0.070	0.18	0.0092	0.0092	0.0092	4.8E-04	0.0081	50.4
	Paved Roads					16.3	3.26	0.80			
	Unpaved Roads					5.12	1.46	0.15			
			Total Emissions:	243	248	96.8	62.1	44.0	27.7	121	290,275
		Tota	al Excluding Fugitives ⁴ :	243	248	61.3	50.3	42.0	27.7	114	290,275
		PSD M	ajor Source Threshold:	250	250	250	250	250	250	250	

Notes:

1. The dry hammermilis are equipped with eight (8) baghouses for PM control. In addition, the dry hammermilis will be equipped with an RCO for VOC and HAP control that will operate primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there will be no impact on emissions during thermal

The pellet coolers are equipped with a single wet scrubber for PM control. In addition, the pellet coolers are equipped with an RCO for VOC control that will operate primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there will be no impact on emissions during thermal mode usage.
 The pellet coolers are equipped with a single wet scrubber for PM control. In addition, the pellet coolers are equipped with an RCO for VOC control that will operate primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there will be no impact on emissions during thermal mode usage.
 Bark is transferred from the primary Bark Fuel Storage Pile by walking floor to covered conveyors which transfer the bark into the fully enclosed Bark Fuel Bin. There are no emissions

expected from transfer of material into the bin.

4. Fugitive emissions are not included in comparison against the major source threshold because the facility is not on the list of 28 source categories in 40 CFR 52.21.

Abbreviations:

ES - Emission Source

IES - Insignificant Emission Source

CO - carbon monoxide

CO2e - carbon dioxide equivalent

NO_x - nitrogen oxides

PM - particulate matter

 PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns

 $\mathsf{PM}_{2,S}$ - particulate matter with an aerodynamic diameter of 2.5 microns or le RTO - Regenerative Thermal Oxidizer SO2 - sulfur dioxide

tpy - tons per year

VOC - voiatile organic compounds

WESP - Wet Electrostatic Precipitator

Table 2b Summary of Facility-wide Potential Emissions **Control Option 2** Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Emission Unit ID	Source Description	Control Device ID	Control Device Description	CO (tpy)	NO _x (tpy)	PM (tpy)	PM ₁₀ (tpy)	PM _{2.5} (tpy)	SO ₂ (tpy)	VOC (tpy)	CO ₂ e (tpy)
IES-CHIP-1	Log Chipping									1.56	
IES-BARKHOG	Bark Hog					0.23	0.13			0.28	
ES-DRYER	250.4 MMBtu/hr Wood-fired Direct Heat Drying System	CD-WESP	WESP; RTO								
ES-GHM-1 through 3	Three (3) Green Wood Hammermills	CD-RTO-1	wear, kio	219	219	39.3	39.3	35.8	27.4	46.7	243,754
ES-HM-1 through 8 ¹	Eight (8) Dry Hammermills	CD-HM-BH1 through 8 CD-RTO-1	Eight (8) baghouses; RTO								
ES-FURNACEBYPASS	Furnace Bypass Stacks			2.81	1.03	2.71	2.42	2.10	0.12	0.080	17,160
ES-HMC	Hammermill Collection Conveyor	CD-HMC-8H	One (1) baghouse			0.23	0.23	0.23			
ES-PCHP	Pellet Cooler HP Fines Relay System	CD-PCHP-BH	One (1) baghouse			0.075	0.075	0.075			
ES-PCLP	Pellet Cooler LP Fines Relay System	CD-PCLP-BH	One (1) baghouse			0.47	0.47	0.47			
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BH	One (1) baghouse			0.37	0.37	0.37			
ES-CLR-1 through 6 ²	Six (6) Pellet Coolers	CD-WSB CD-RCO-1	One (1) wet scrubber; RCO	12.3	14.6	14.6	4.57	1.48	0.082	24.1	16,412
ES-DCTB	Pellet Dust Collection Transfer Bin	CD-PDCTB-BH	One (1) baghouse			0.45	0.45	0.45			
ES-FPH	Finished Product Handling	CD-FPH-BH	One (1) baghouse			1.28	1.16	0.022			
ES-PB-1 and 2	Two (2) Pellet Loadout Bins	CD-IFII-DIT	One (1) bagnouse			1.20	1.10	0.022			
ES-DWH	Dried Wood Handling Operations	CD-DWH-BH1 and 2	Two (2) baghouses			0.30	0.30	0.30		38.8	
ES-ADD	Additive Handling and Storage	CD-ADD-BH	One (1) baghouse			0.15	0.15	0.15			
IES-GWH	Green Wood Handling Operations					0.085	0.040	0.0061			
IES-TK-1	1,000 gallon Diesel Storage Tank		2-							0.00058	
IES-TK-2	185 gallon Diesel Storage Tank)						0.00016	
IES-TK-3	5,000 gallon Diesel Storage Tank									0.0033	
IES-GWSP-1 through 5	Green Wood Storage Piles					13.5	6.73	1.01		7.02	
IES-BFSP-1 and 2	Bark Fuel Storage Piles					0.56	0.28	0.042		0.29	
IES-DRYSHAVE	Dry Shaving Material Handling					0.054	0.025	0.0039			
IES-DEBARK-1	Debarker					1.08	0.59			••	[
IES-BFB ³	Bark Fuel Bin										
IES-GN	500 kW Diesel-fired Emergency Generator			0.14	2.46	0.0078	0.0078	0.0078	6.6E-04	1.68	179
IES-FWP	250 hp Diesel-fired Fire Water Pump			0.070	0.18	0.0092	0.0092	0.0092	4.8E-04	0.0081	50.4
	Paved Roads					16.3	3.26	0.80			
	Unpaved Roads					5.12	1.46	0.15			
			Total Emissions:	235	238	96.8	62.0	43.5	27.6	121	277,556
			l Excluding Fugitives ⁴ :	235	238	61.2	50.2	41.5	27.6	113	277,556
		PSD M	a jor Source Threshold:	250	250	250	250	250	250	250	

Notes:

^{1.} The dry hammermills are equipped with eight (8) baghouses for PM control. The Dry Hammermill baghouse exhaust will be routed to either the furnace/WESP/RTO, directly to the WESP/RTO, or directly to the RTO. The RTO will provide 95% control of VOC and HAP emissions.
 ^{2.} The pellet coolers are equipped with a single wet scrubber for PM control. In addition, the pellet coolers are equipped with an RCO for VOC control that will operate primarily in catalytic

mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there will be no impact on emissions during thermal mode usage.

⁴ Fugitive emissions are not included in comparison against the major source threshold because the facility is not on the list of 28 source categories in 40 CFR 52.21.

Abbreviations:

ES - Emission Source

IES - Insignificant Emission Source

CO - carbon monoxide

CO₂e - carbon dioxide equivalent

NO_x - nitrogen oxides

PM - particulate matter

 $\ensuremath{\mathsf{PM}_{10}}\xspace$ - particulate matter with an aerodynamic diameter less than 10 microns

 $\mathsf{PM}_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less RTO - Regenerative Thermal Oxidizer

SO2 - sulfur dioxide

tpy - tons per year

VOC - volatile organic compounds

WESP - Wet Electrostatic Precipitator

Table 3a Summary of Facility-wide HAP Emissions **Control Option 1** Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Pollutant	CD-RTO-11 (tpy)	ES- FURNACEBYPASS (tpy)	CD-RCO-1 ² (tpy)	CD-RCO-2 ³	ES-DWH	IES-GN (tpy)	IES-FWP (tpy)	IES- BARKHOG (tpy)	IES-CHIP-1 (tpy)	Total HAP
Acetaldehyde	1.79	0.0039	0.13	0.14		9.0E-04	1.8E-04			2.07
Acetophenone	1.8E-07	1.5E-08				2.0	1.4			1.9E-07
Acrolein	1.00	0.019	0.79	0.17		1.1E-04	2.1E-05			1.98
Antimony and compounds	6.3E-04	3.7E-05		544		24				6.7E-04
Arsenic and compounds	0.0018	1.0E-04	2.7E-05	2.1E-05			10			0.0019
Benzene	0.23	0.020	2.9E-04	2.2E-04		0.0011	2.1E-04			0.25
Benzo(a)pyrene	1.4E-04	1.2E-05	1.6E-07	1.3E-07		2.2E-07	4.3E-08			1.6E-04
Beryllium metal	8.9E-05	5.2E-06	1.6E-06	1.3E-06		LILL V/	102.00			9.7E-05
Butadiene, 1,3-		5122 00		1.52 00		4.6E-05	9.0E-06			5.5E-05
Cadmium Metal	4.8E-04	1.9E-05	1.5E-04	1.2E-04			3.0E-00			7.6E-04
Carbon tetrachloride	0.0025	2.1E-04	1.52 04	1.22 04						0.0027
Chlorine	0.87	0.0037								0.0027
Chlorobenzene	0.0018	1.5E-04								0.0020
Chloroform	0.0018	1.3E-04	**							
Chromium VI			4.05.04	4.55.04						0.0017
	4.7E-04	1.6E-05	1.9E-04	1.5E-04						8.3E-04
Chromium-Other compounds	0.0014	8.2E-05								0.0015
Cobalt compounds	5.3E-04	3.0E-05	1.2E-05	8.9E-06						5.8E-04
Dichlorobenzene	1.6E-04		1.6E-04	1.3E-04						4.6E-04
Dichloroethane, 1,2-	0.0016	1.4E-04								0.0017
Dichloropropane, 1,2-	0.0018	1.5E-04								0.0020
Dinitrophenol, 2,4-	9.9E-06	8.4E-07								1.1E-05
Di(2-ethylhexyl)phthalate	2.6E-06	2.2E-07	11 11							2.8E-06
Ethyl benzene	0.0017	1.5E-04								0.0018
Formaldehyde	0.94	0.021	0.50	0.13	0.26	0.0014	2.7E-04			1.85
Hexane	0.25		0.25	0.19						0.69
Hydrochloric acid	2.08	0.089					**			2.17
Lead and lead compounds	0.0039	2.3E-04	6.9E-05	5.3E-05						0.0042
Manganese and compounds	0.13	0.0075	5.2E-05	4.0E-05						0.13
Mercury, vapor	3.1E-04	1.6E-05	3.6E-05	2.8E-05						3.9E-04
Methanol	2.06		3.75	0.081	0.61			0.057	0,31	6.86
Methyl bromide	8.2E-04	7.0E-05	±±							8.9E-04
Methyl chloride	0.0013	1.1E-04		••						0.0014
Methylene chloride	0.016		11							0.016
Naphthalene	0.0054	4.5E-04	8.4E-05	6.5E-05		1.0E-04	1.9E-05			0.0061
Nickel metal	0.0029	1.5E-04	2.9E-04	2.2E-04						0.0036
Nitrophenol, 4-	6.0E-06	5.2E-07								6.5E-06
Pentachlorophenol	5.6E-05	2.4E-07								5.6E-05
Perchloroethylene	0.042	1.8E-04								0.042
Phenol	1.28	2.4E-04	0.39	0.064						1.73
Phosphorus metal, yellow or white	0.0021	1.3E-04								0.0023
Polychlorinated biphenyls	4.5E-07	3.8E-08								4.9E-07
Propionaldehyde	0.45	2.9E-04	0.17	0.29						0.92
Selenium compounds	2.3E-04	1.3E-05	3.3E-06	2.6E-06						2.4E-04
Styrene	0.10	0.0089								0.11
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	4.7E-10	4.0E-11	#							5.1E-10
Toluene	0.0509	0.0043	4.7E-04	3.6E-04		4.8E-04	9.4E-05			0.057
Total PAH (POM)	0.14	5.9E-04	9.6E-05	7.4E-05		2.0E-04	3.9E-05			0.14
Trichloroethane, 1,1,1-	0.034	1.5E-04								0.034
Trichloroethylene	0.0016	1.4E-04		**						0.0018
Trichlorophenol, 2,4,6-	1.2E-06	1.0E-07				++				1.3E-06
Vinyl chloride	9.9E-04	8.4E-05								0.0011
Xylene	0.0014	1.2E-04				3.3E-04	6.5E-05			0.0011
Total HAP Emissions (tpy)	11.5	0.18	5.98	1.08	0.87	0.0045	8.9E-04	0.057	0.31	20.0
Maximum Individual HAP (tpy)	Hydrochloric acid	Hydrochloric acid	Methanol	Propionaldehyde	Methanol	Formaldehyde	Formaldehyde	Methanoi	Methanol	Methanol
Maximum Individual HAP Emissions (tpy)	2.08	0.089	3.75	0.29	0.61	0.0014	2.7E-04	0.057	0.31	6.86

Notes: Includes emissions at outlet of RTO-1 stack as well as the HAP combustion emissions resulting from natural gas combustion by the RTO-1 burners. RTO-1 controls emissions from the dryer (ES-DRYER) and green hammermilis (ES-GHM-1 through 3). Includes emissions at outlet of RCO stack as well as the HAP combustion emissions resulting from natural gas combustion by the RCO burners. RCO controls emissions from the pellet coolers and

pellet mill (ES-CLR-1 through 6). The pellet coolers will be equipped with an RCO that will operate primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there will be no impact on emissions during thermal mode usage.

the same control efficiency so there will be no impact on emissions during thermal mode usage.
³ Includes emissions at outlet of RTO/RCO stack as well as the HAP combustion emissions resulting from natural gas combustion by the RTO/RCO burners. RTO/RCO controls emissions from the dry hammermills (ES-DHM-1 through B). The dry hammermills will be equipped with an RTO/RCO that will operate primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCC modes have the same control efficiency so there will be no impact on emissions during thermal mode usage.
⁴. Because benzo(a)pyrene and naphthalene emissions were presented individually and as components of total PAH emissions, the total HAP emissions presented here do not match the sum of all patients.

pollutant emissions to avoid double counting benzo(a)pyrene and naphthalene emissions.

Abbreviations:

HAP - hazardous air pollutant RCO - regenerative catalytic oxidizer RTO - regenerative thermal oxidizer tpy - tons per year

Table 3b Summary of Facility-wide HAP Emissions **Control Option 2** Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Pollutant	CD-RTO-11 (tpy)	ES- FURNACEBYPASS (tpy)	CD-RCO-1 ² (tpy)	ES-DWH (tpy)	IES-GN (tpy)	IES-FWP (tpy)	IES- BARKHOG (tpy)	IES-CHIP-1 (tpy)	Total HAP (tpy)
Acetaldehyde	1.79	0.0039	0.13		9.0E-04	1.8E-04			1.92
Acetophenone	1.8E-07	1.5E-08							1.9E-07
Acrolein	1.00	0.019	0.79		1.1E-04	2.1E-05			1.81
Antimony and compounds	6.3E-04	3.7E-05							6.7E-04
Arsenic and compounds	0.0018	1.0E-04	2.7E-05						0.0019
Benzene	0.23	0.020	2.9E-04		0.0011	2.1E-04			0.25
Benzo(a)pyrene	1.4E-04	1.2E-05	1.6E-07		2.2E-07	4.3E-08			1.6E-04
Beryllium metal	8.9E-05	5.2E-06	1.6E-06		2.207	4.32-00			9.6E-05
Butadiene, 1,3-					4.6E-05	9.0E-06			5.5E-05
Cadmium Metal	4.8E-04	1.9E-05	1.5E-04		4.02-05	3.02-00			6.5E-04
Carbon tetrachloride	0.0025	2,1E-04							0.0027
Chlorine	0.87	0.0037							0.0027
Chlorobenzene	0.0018	1.5E-04							0.0020
Chloroform	0.0015	1.3E-04							
									0.0017
Chromium VI	4.7E-04	1.6E-05	1.9E-04						6.8E-04
Chromium-Other compounds	0.0014	8.2E-05							0.0015
Cobalt compounds	5.3E-04	3.0E-05	1.2E-05						5.7E-04
Dichlorobenzene	1.6E-04		1.6E-04						3.3E-04
Dichloroethane, 1,2-	0.0016	1.4E-04							0.0017
Dichloropropane, 1,2-	0.0018	1.5E-04							0.0020
Dinitrophenol, 2,4-	9.9E-06	8.4E-07							1.1E-05
Di(2-ethylhexyl)phthalate	2.6E-06	2.2E-07							2.8E-06
Ethyl benzene	0.0017	1.5E-04							0.0018
Formaldehyde	0.94	0.021	0.50	0.26	0.0014	2.7E-04			1.72
Hexane	0.25		0.25						0.49
Hydrochloric acid	2.08	0.089							2.17
Lead and lead compounds	0.0039	2.3E-04	6.9E-05)		0.0042
Manganese and compounds	0.13	0.0075	5.2E-05						0.13
Mercury, vapor	3.1E-04	1.6E-05	3.6E-05						3.7E-04
Methanol	2.06		3.75	0.61			0.057	0.31	6.78
Methyl bromide	8.2E-04	7.0E-05							8.9E-04
Methyl chloride	0.0013	1.1E-04							0.0014
Methylene chloride	0.016		**						0.016
Naphthalene	0.0054	4.5E-04	8.4E-05		1.0E-04	1.9E-05			0.0061
Nickel metal	0.0029	1.5E-04	2.9E-04						0.0034
Nitrophenol, 4-	6.0E-06	5.2E-07							6.5E-06
Pentachlorophenol	5.6E-05	2.4E-07							5.6E-05
Perchloroethylene	0.042	1.8E-04							0.042
Phenol	1.28	2.4E-04	0.39						1.67
Phosphorus metal, yellow or									
white	0.0021	1.3E-04							0.0023
Polychlorinated biphenyls	4.5E-07	3.8E-08							4.9E-07
Propionaldehyde	0.45	2.9E-04	0.17						0.62
Selenium compounds	2.3E-04	1.3E-05	3.3E-06				/		2.4E-04
Styrene	0.10	0.0089							0.11
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	4.7E-10	4.0E-11							5.1E-10
Toluene	0.0509	0.0043	4.7E-04		4.8E-04	9.4E-05			0.0563
Total PAH (POM)	0.14	5.9E-04	9.6E-05		2.0E-04	3.9E-05			0.14
Trichloroethane, 1,1,1-	0.034	1.5E-04	5.62-05		2.02-04	5.92-03			0.034
Trichloroethylene	0.0016	1.4E-04							0.0018
Trichlarophenol, 2,4,6-	1.2E-06	1.0E-07							1.3E-06
Vinyl chloride	9.9E-04	8.4E-05				100			0.0011
Xvlene	0.0014	1.2E-04			3.3E-04	6 55 05			
	11.5					6.5E-05		0.21	0.0019
Total HAP Emissions ⁴ (tpy) Maximum Individual HAP	Hydrochloric	0.18 Hydrochloric acid	5.98 Methanol	0.87 Methanol	0.0045 Formaldehyde	8.9E-04 Formaldehyde	0.057 Methanol	0.31 Methanol	18.9 Methanol
(tpy) Maximum Individual HAP Emissions (tpy)	acid 2.08	0.089	3.75	0.61	0.0014	2.7E-04	0.057	0.31	6.78

Notes:

 Includes emissions at outlet of RTO-1 stack as well as the HAP combustion emissions resulting from natural gas combustion by the RTO-1 burners. RTO-1 controls emissions from the dryer (ES-CRYER), dry hammermills (ES-DHM-1 through 8), and green hammermills (ES-GHM-1 through 3).
 Includes emissions at outlet of RCO stack as well as the HAP combustion emissions resulting from natural gas combustion by the RTO-1 burners. RTO-1 controls emissions from the dryer (ES-CRYER), dry hammermills (ES-DHM-1 through 8), and green hammermills (ES-GHM-1 through 3).
 Includes emissions and pellet mill (ES-CLR-1 through 6). The pellet coolers will be equipped with an RCO that will operate primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there will be no impact on emissions during thermal mode usage.
 Because benzo(a)pyrene and naphthalene emissions were presented individually and as components of total PAH emissions, the total HAP emissions presented here do not match a support of total PAH emissions.

match the sum of all pollutant emissions to avoid double counting benzo(a)pyrene and naphthalene emissions.

Abbreviations: HAP - hazardous air pollutant RCO - regenerative catalytic oxidizer

RTO - regenerative thermal oxidizer tpy - tons per year

Table 4a Potential Emissions at Outlet of RTO-1 Stack **Control Option 1** ES-DRYER and ES-GHM-1 through 3 Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Calculation Basis	
Maximum Hourly Throughput	80 ODT/hr
Annual Throughput	625,011 ODT/yr
Hourly Heat Input Capacity	250.4 MMBtu/hr
Annual Heat Input Capacity	2,193,504 MMBtu/yr
Hours of Operation	8,760 hr/yr
Number of RTO Burners	4 burners
RTO Burner Rating	8 MMBtu/hr
RTO Control Efficiency	95%

Potential Criteria Pollutant and Greenhouse Gas Emissions from Furnace/Dryer and Green Hammermills

Pollutant	Controlled Emission	Units	Emissions at RTO-1 Outlet ¹		
	Factor	1	(lb/hr)	(tpy)	
СО	50	lb/hr ²	50	219	
NO _x	50	lb/hr ²	50	219	
SO ₂	0.025	lb/MMBtu ³	6.26	27.4	
voc	0.12	Ib/ODT ⁴	9.91	38.7	
PM/PM ₁₀ /PM _{2.5} (Filterable + Condensable)	7.6	lb/hr ²	7.6	33.3	
CO ₂	780	Ib/ODT5	62,400	243,754	

Notes: 1. Exhaust from the dryer (ES-DRYER) and green hammermills (ES-GHM-1 through 3) is routed to a WESP and then RTO for control of VOC, HAP, ² Emission rate based on data provided by RTO vendor (Lundberg) and include thermal emissions from the use of the RTO.
 ³ Emission rate based on data provided by RTO vendor (Lundberg) and include thermal emissions from the use of the RTO.

^{3.} No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

^{4.} VOC emission factor based on source test results from similar Enviva facilities.

^{5.} Emission factor for CO₂ from AP-42, Section 10.6.1 for rotary dryer with RTO control device. Enviva has conservatively calculated the CO₂ emissions using the hardwood emission factor because the dryer at Hamlet uses a combination of hardwood and softwood and the hardwood emission factor is greater than the softwood emission factor.

Table 4a Potential Emissions at Outlet of RTO-1 Stack Control Option 1 ES-DRYER and ES-GHM-1 through 3 Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Potential HAP and TAP Emissions

)

Pollutant	НАР	NC TAP	voc	Emission Factor	Units	Footnote	Pote Emis	ntial sions
				Factor			(lb/hr)	(tpy)
Furnace Biomass Combustion and Green	Hammermills							
Acetaldehyde	Y	Y	Y	5.7E-03	Ib/ODT	1	0.46	1.79
Acrolein	Y	Y	Y	3.2E-03	lb/ODT	1	0.26	1.00
Formaldehyde	Y	Y	Y	3.0E-03	lb/ODT	1	0.24	0.92
Methanol	Y	N	Y	6.6E-03	lb/ODT	1	0.53	2.06
Phenol	Y	Y	Y	4.1E-03	lb/ODT	1	0.33	1.28
Propionaldehyde	Y	N	Y	1.4E-03	lb/ODT	1	0.12	0.45
Acetophenone	Y	N	Y	3.2E-09	lb/MMBtu	1	4.0E-08	1.8E-0
Antimony and compounds	Y	N	N	7.9E-06	lb/MMBtu	2.4	1.4E-04	6.3E-04
Arsenic	Y	Y	N	2.2E-05	lb/MMBtu	2.4	4.0E-04	0.0017
Benzene	Y	Y	Y	4.2E-03	Ib/MMBtu	2.3	0.053	0.23
Benzo(a)pyrene	Y	Y	Y	2.6E-06	lb/MMBtu	2,3	3.3E-05	1.4E-04
Beryllium	Y	Y	N	1.1E-06	lb/MMBtu	2.4	2.0E-05	8.7E-0
Cadmium	Y	Y	N	4.1E-06	b/MMBtu	2.4	7.4E-05	3.3E-04
Carbon tetrachloride	Ý	Ý	Y	4.5E-05	Ib/MMBtu	2.3	5.6E-04	0.0025
Chlorine	Ý	Ý	N	7.9E-04	Ib/MMBtu	2	0.20	0.87
Chlorobenzene	Ý	Ý	Y	3.3E-05	Ib/MMBtu	2,3	4.1E-04	0.0018
Chloroform	Ý	Y	Y	2.8E-05	Ib/MMBtu	2,3	3.5E-04	0.0015
	_5	Y	N	3.5E-06	Ib/MMBtu	2,3		
	Y						6.4E-05	2.8E-04
Chromium-Other compounds		N	N	1.8E-05	lb/MMBtu	2,4	3.2E-04	0.0014
Cobalt compounds	Y	N	N	6.5E-06	lb/MMBtu	2,4	1.2E-04	5.2E-04
Dichloroethane, 1,2-	Y	Y	Y	2.9E-05	lb/MMBtu	2,3	3.6E-04	0.0016
Dichloropropane, 1,2-	Y	N	Y	3.3E-05	lb/MMBtu	2,3	4.1E-04	0.0018
Dinitrophenol, 2,4-	Y	N	Y	1.8E-07	lb/MMBtu	2,3	2.3E-06	9.9E-06
Di(2-ethylhexyl)phthalate	Y	Y	Y	4.7E-08	lb/MMBtu	2,3	5.9E-07	2.6E-06
Ethyl benzene	Y	N	Y	3.1E-05	lb/MMBtu	2,3	3.9E-04	0.0017
Hexachlorodibenzo-p-dioxin, 1,2,3,6,7,8-	N	Y	Y	1.8E-11	lb/MMBtu	2,3	2.2E-10	9.8E-10
Hydrochloric acid	Y	Y	N	1.9E-02	lb/MMBtu	2,6	0.48	2.1
ead and lead compounds	Y	N	N	4.8E-05	lb/MMBtu	2,4	8.7E-04	0.0038
Manganese and compounds	Y	Y	N	1.6E-03	lb/MMBtu	2,4	0.029	0.13
Mercury, vapor	Y	Y	N	3.5E-06	lb/MMBtu	2.4	6.4E-05	2.8E-04
Methyl bromide	Y	N	Y	1.5E-05	lb/MMBtu	2.3	1.9E-04	8.2E-04
1ethyl chloride	Y	N	Y	2.3E-05	lb/MMBtu	2,3	2.9E-04	0.0013
Methyl ethyl ketone	N	Y	Y	5.4E-06	lb/MMBtu	2.3	6.8E-05	3.0E-04
Methylene chloride	Y	Y	Ý	2.9E-04	lb/MMBtu	2.3	0.0036	0.016
Vaphthalene	Y	N	Y	9.7E-05	lb/MMBtu	2.3	0.0012	0.0053
Nickel metal	Y	Y	N	3.3E-05	Ib/MMBtu	2,4	6.0E-04	0.0026
Vitrophenol, 4-	Ý	N	Y	1.1E-07	lb/MMBtu	2,3	1.4E-06	6.0E-06
Pentachlorophenol	Y	Y	Ň	5.1E-08	lb/MMBtu	2	1.3E-05	5.6E-05
Perchloroethylene	Ý	Y	N	3.8E-05	Ib/MMBtu	2	0.0095	0.042
Phosphorus metal, yellow or white	Y	N	N	2.7E-05	Ib/MMBtu	2,4	4.9E-04	0.0042
Polychlorinated biphenyls	Y	Y	Y	8.2E-09	Ib/MMBtu	2,3	1.0E-07	4.5E-0
Polycyclic Organic Matter	Y	N	N	1.3E-04	Ib/MMBtu	2 2	0.031	4.36-0
Selenium compounds	Y	N						
			N	2.8E-06	Ib/MMBtu	2,4	5.1E-05	2.2E-04
Styrene	Y Y	Y	Y	1.9E-03	lb/MMBtu	2,3	0.024	0.10
etrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	Y	8.6E-12	lb/MMBtu	2,3	1.1E-10	4.7E-1
oluene	Y	Y	Y	9.2E-04	Ib/MMBtu	2,3	0.012	0.050
richloroethane, 1,1,1-	Y	Y	N	3.1E-05	lb/MMBtu	2	0.0078	0.034
richloroethylene	Y	Y	Y	3.0E-05	lb/MMBtu	2,3	3.8E-04	0.0016
richlorofluoromethane	N	Y	Y	4.1E-05	1b/MMBtu	2.3	5.1E-04	0.0022
richlorophenol, 2,4,6-	Y	N	Y	2.2E-08	lb/MMBtu	2,3	2.8E-07	1.2E-0
/inyl chloride	Y	Y	Y	1.8E-05	Ib/MMBtu	2,3	2.3E-04	9.9E-04
(vlene	Y	Y	Y	2.5E-05	lb/MMBtu	2.3	3.1E-04	0.0014
					Total HAP	Emissions	2.77	11.2

Table 4a Potential Emissions at Outlet of RTO-1 Stack Control Option 1 ES-DRYER and ES-GHM-1 through 3 Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Potential Emission Pollutant HAP NC TAP VOC Units Footnote Emissions Factor (lb/hr) (tpy) **RTO Burners - Natural Gas Combustion**
 7.5E-07
 3.3E-06

 5.6E-08
 2.5E-07

 5.0E-07
 2.2E-06

 5.6E-08
 2.5E-07

 5.6E-08
 2.5E-07

 4.8E-07
 2.1E-06

 5.6E-08
 2.5E-07
 2-Methylnaphthalene 3-Methylchloranthrene 7,12-Dimethylbenz(a)anthracene Ib/MMscf Ib/MMscf 2.4E-0 1.8E-06 Ν N 1.6E-05 lb/MMscf Acenaphthene 1.8E-06 lb/MMscf N Acenaphthylene Acetaldehyde N 1.8E-06 1.5E-05 lb/MMscf lb/MMscf Acrolein Ammonia Anthracene 1.8E-05 lb/MMscf N N 3.2 lb/MMscf
 0.10
 0.44

 7.5E-08
 3.3E-07

 6.3E-06
 2.7E-05

 5.6E-08
 2.5E-07

 6.6E-05
 2.9E-04

 3.8E-08
 1.6E-07

 5.6E-08
 2.5E-07

 3.8E-08
 1.6E-07

 3.8E-08
 1.6E-07

 3.8E-08
 1.6E-07

 3.8E-07
 1.6E-06

 3.5E-05
 1.5E-04

 4.4E-05
 1.9E-04

 5.6E-08
 2.5E-07
 0.10 0.44 2.4E-06 2.0E-04 Ν lb/MMscf Arsenic N lb/MMscf Benz(a)anthracene 1.8E-06 lb/MMscf N N 2.1E-03 Benzene lb/MMscf Benzo(a)pyrene 1.2E-06 lb/MMscf 1.8E-06 1.2E-06 Benzo(b)fluoranthene N lb/MMscf Ib/MMscf Benzo(g,h,i)pervlene Benzo(k)fluoranthene N 1.8E-06 1.2E-05 lb/MMscf Ν Beryllium Ν lb/MMscf Cadmium N 1.1E-03 lb/MMscf N 1.4E-03 lb/MMscf lb/MMscf Chromium VI N 1.8E-06 8.4E-05 Chrysene N lb/MMscf 2.6E-06 1.2E-05 Cobalt N N 2.6E-06 1.2E-05 3.8E-08 1.6E-07 3.8E-05 1.6E-04 9.4E-08 4.1E-07 8.8E-08 3.8E-07 0.0024 0.010 0.056 0.25 5.6E.08 3.5E-07 Dibenzo (a,h) anthracene 1.2E-06 lb/MMscf Ν Dichlorobenzene 1.2E-03 lb/MMscf 3.0E-06 2.8E-06 lb/MMscf Fluoranthene N Fluorene lb/MMscf N Formaldehyde 7.5E-02 lb/MMscf
 0.0024
 0.010

 0.056
 0.25

 5.6E-08
 2.5E-07

 1.6E-05
 6.9E-05

 1.2E-05
 5.2E-05

 8.2E-06
 3.6E-05

 1.9E-05
 8.4E-05

 6.6E-05
 2.9E-04

 5.3E-07
 2.3E-06

 1.6E-07
 6.9E-07

 7.5E-07
 3.3E-06

 1.1E-04
 4.7E-04
 lb/MMscf Hexane 1.8 Indeno(1,2,3-cd)pyrene 1.8E-06 N lb/MMscf 5.0E-04 3.8E-04 N lb/MMscf Lead N lb/MMscf Manganese Ν Mercury 2.6E-04 lb/MMscf Ν Naphthalene N 6.1E-04 lb/MMscf lb/MMscf Nickel Ν 2.1E-03 1.7E-05 Phenanthrene N lb/MMscf Pyrene N 5.0E-06 lb/MMscf lb/MMscf lb/MMscf Selenium N 2.4E-05 N Toluene γ 3.4F-03 1.1E-04 4.7E-04 Total HAP Emissions (natural gas) 0.059 0.26 Total TAP Emissions (natural gas) 0.16 0.70

Notes:

^{1.} Emission factor derived based on stack testing data from comparable Enviva facilities.

- ^{2.} Emission factors (criteria and HAP/TAP) for wood combustion in a stoker boiler from NCDAQ Wood Waste Combustion Spreadsheet/AP-42, Fifth Edition, Volume 1, Chapter 1.6 - Wood Residue Combustion in Boilers, 09/03.
- ³. The control efficiency of 95% for the RTO is applied to all VOC hazardous and toxic pollutants for those emission factors that are not derived from Enviva stack test data.
- ^{4.} The control efficiency of the wet electrostatic precipitator (WESP) for filterable particulate matter is applied to all metal hazardous and toxic pollutants. Actual design filterable efficiency is estimated to 96.4%, but 92.75% is assumed for toxics permitting.
- ^{5.} Chromium VI is a subset of chrome compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.
 ^{6.} The WESP employs a caustic solution in its operation in which hydrochloric acid will have high water solubility. This caustic solution will neutralize the acid and effectively control it by 90%, per conversation on October 18, 2011 with Steven A. Jaasund, P.E. of Lundberg Associates, a manufacturer of WESPs.
- ^{7.} Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 Natural Gas Combustion, 07/98 for small boilers. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

Abbreviations:

CAS - chemical abstract service	N ₂ O - nitrous oxide
CH ₄ - methane	ODT - oven dried tons
CO - carbon monoxide	PM - particulate matter
CO2 - carbon dioxide	PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns
CO2e - carbon dioxide equivalent	$PM_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less
HAP - hazardous air pollutant	RTO - regenerative thermal oxidizer
hr - hour	SO ₂ - sulfur dioxide
kg - kilogram	TAP - toxic air pollutant
lb - pound	tpy - tons per year
MMBtu - Million British thermal units	VOC - volatile organic compound
NC - North Carolina	WESP - wet electrostatic precipitator
NO _x - nitrogen oxides	yr - year

Table 4b Potential Emissions at Outlet of RTO-1 Stack **Control Option 2** ES-DRYER, ES-GHM-1 through 3, ES-DHM-1 through 8 **Enviva Pellets Hamlet, LLC** Hamlet, Richmond County, North Carolina

Calculation Basis

Maximum Hourly Throughput	80 ODT/hr
Annual Throughput	625,011 ODT/yr
Hourly Heat Input Capacity	250.4 MMBtu/hr
Annual Heat Input Capacity	2,193,504 MMBtu/yr
Hours of Operation	8,760 hr/yr
Number of RTO Burners	4 burners
RTO Burner Rating	8 MMBtu/hr
RTO Control Efficiency	95%

Total Potential Emissions at RTO/RCO Stack

Pollutant	Potential E	missions ¹
Fondtant	(lb/hr)	(tpy)
CO	50.1	219
NOx	50.1	219
SO ₂ VOC	6.26	27.4
voc	12.0	46.7
PM	8.97	39.3
PM ₁₀	8.97	39.3
PM _{2.5}	8.18	35.8
CO ₂	62,400	243,754

Notes: ^{1.} Total emissions from the furnace/dryer, green hammermills, dry hammermills, and natural gas combustion by the RTO burners. Detailed calculations are provided below.

Potential Criteria Pollutant and Greenhouse Gas Emissions from Dryer/Furnace and Green Hammermills

Pollutant	Controlled Emission	Units	Potential Emissions ¹		
	Factor		(lb/hr)	(tpy)	
СО	50	lb/hr ²	50	219	
NO _X	50	lb/hr ²	50	219	
SO ₂	0.025	lb/MMBtu ³	6.26	27.4	
VOC	0.12	Ib/ODT ⁴	9.91	38.7	
PM/PM ₁₀ /PM _{2.5} (Filterable + Condensable)	7.6	lb/hr ²	7.6	33.3	
CO ₂	780	Ib/ODT ⁵	62,400	243,754	

Notes: 1. Exhaust from the dryer (ES-DRYER) and green hammermills (ES-GHM-1 through 3) are routed to a WESP and then RTO for control of VOC, HAP, and particulates. Additional emissions routed to the RTO from the Dry Hammermills are shown in the tables below.

^{2.} Emission rate based on data provided by RTO vendor (Lundberg).

^{3.} No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

^{4.} VOC emission factor based on source test results from similar Enviva facilities.

^{5.} Emission factor for CO₂ from AP-42, Section 10.6.1 for rotary dryer with RTO control device. Enviva has conservatively calculated the CO₂ emissions using the hardwood emission factor because the dryer at Hamlet uses a combination of hardwood and softwood and the hardwood emission factor is greater than the softwood emission factor.

Potential Criteria Pollutant Emissions from Dry Hammermills

Dell'steet	Controlled		Potential Emissions ¹		
Pollutant	Emission Factor	Units	(lb/hr)	(tpy)	
TSP		2	1.37	6.01	
PM10		²	1.37	6.01	
PM _{2.5}		2	0.58	2.55	
VOC	0.026	Ib/ODT ³	2.04	7.97	

Notes:

^{1.} Exhaust from the dry hammermill baghouses (ES-DHM-1 through 8) will be controlled by the RTO.

². Refer to Table 7 for detailed calculations of particulate emissions from the dry hammermill baghouses.

^{3.} The VOC emission factor is based on stack testing data from comparable Enviva facilities.

Table 4b Potential Emissions at Outlet of RTO-1 Stack **Control Option 2** ES-DRYER, ES-GHM-1 through 3, ES-DHM-1 through 8 Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Thermal Generated Potential Criteria Pollutant Emissions from Dry Hammermills

Maximum high heating value of VOC constituents	0.018	MMBtu/lb	
Uncontrolled VOC emissions	159	tons/yr	
Heat input of uncontrolled VOC emissions	5,896	MMBtu/yr	

Pollutant	Emission	Units	Potential Emissions		
i oliatant	Factor	Onits	(lb/hr)	(tpy)	
CO	0.082	lb/MMBtu ¹	0.055	0.24	
NOx	0.10	lb/MMBtu ¹	0.066	0.29	

Notes: ^{1.} Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from lb/MMscf to lb/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Potential HAP and TAP Emissions

Pollutant	НАР	NC TAP	voc	Emission Factor	Units	Footnote	Pote Emis	ntial sions
							(lb/hr)	(tpy)
Furnace Biomass Combustion, Green Han	nmermills, and	d Dry Hamme	rmills					
Acetaldehyde	Y	Y	Y	0.0062	Ib/ODT	1	0.49	1.93
Acrolein	Y	Y	Y	0.0038	Ib/ODT	1	0.30	1.17
formaldehyde	Y	Y	Y	0.0034	Ib/ODT	1	0.27	1.05
fethanol	Y	N	Y	0.0068	Ib/ODT	1	0.55	2.14
Phenol	Y	Y	Y	0.0043	Ib/ODT	1	0.34	1.34
Propionaldehyde	Y	N	Y	0.0024	Ib/ODT	1	0.19	0.75
cetophenone	Y	N	Y	3.2E-09	lb/MMBtu	1	4.0E-08	1.8E-0
Antimony and compounds	Y	N	N	7.9E-06	lb/MMBtu	2.4	1.4E-04	6.3E-0
Arsenic	Y	Y	N	2.2E-05	Ib/MMBtu	2.4	4.0E-04	0.0017
Benzene	Ý	Ý	Y	0.0042	Ib/MMBtu	2,3	0.053	0.23
Benzo(a)pyrene	Ý	Y	Ý	2.6E-06	Ib/MMBtu	2,3	3.3E-05	1.4E-04
Beryllium	Ý	Y	Ň	1.1E-06	Ib/MMBtu	2,4	2.0E-05	8.7E-0
Cadmium	Y	Y	N	4.1E-06	Ib/MMBtu	2,4	7.4E-05	3.3E-0
Carbon tetrachloride	Y	Y	Y	4.5E-05	lb/MMBtu	2,3	5.6E-04	0.0025
Chlorine	Y	Y	N	7.9E-04	Ib/MMBtu	2,5	0.20	0.002
Chlorobenzene	Ý	Y	Y	3.3E-05	Ib/MMBtu	2,3	4.1E-04	0.0018
Chloroform	Y	Ý	Ý	2.8E-05	Ib/MMBtu	2,3	3.5E-04	0.0015
Chromium VI	_5	Y	N	3.5E-06	Ib/MMBtu	2,3	6.4E-05	2.8E-04
Chromium-Other compounds	Y	N	N					
	Y			1.8E-05	lb/MMBtu	2,4	3.2E-04	0.0014
Cobalt compounds Dichloroethane, 1,2-	Ý	N	N	6.5E-06	Ib/MMBtu	2,4	1.2E-04	5.2E-04
	Y	Y	Y	2.9E-05	lb/MMBtu	2,3	3.6E-04	0.0016
Dichloropropane, 1,2-		N	Y	3.3E-05	lb/MMBtu	2,3	4.1E-04	0.0018
Dinitrophenol, 2,4-	Y	N	Y	1.8E-07	lb/MMBtu	2,3	2.3E-06	9.9E-06
Di(2-ethylhexyl)phthalate	Y	Y	Y	4.7E-08	lb/MMBtu	2,3	5.9E-07	2.6E-0
thyl benzene	Y	N	Y	3.1E-05	lb/MMBtu	2,3	3.9E-04	0.0017
Hexachlorodibenzo-p-dioxin, 1,2,3,6,7,8-	N	Y	Y	1.8E-11	lb/MMBtu	2,3	2.2E-10	9.8E-10
lydrochloric acid	Y	Y	N	0.019	lb/MMBtu	2,6	0.48	2.08
Lead and lead compounds	Y	N	N	4.8E-05	Ib/MMBtu	2,4	8.7E-04	0.0038
Manganese and compounds	Y	Y	N	0.0016	lb/MMBtu	2,4	0.029	0.13
Mercury, vapor	Y	Y	N	3.5E-06	lb/MMBtu	2,4	6.4E-05	2.8E-04
Methyl bromide	Y	N	Y	1.5E-05	lb/MMBtu	2,3	1.9E-04	8.2E-04
Methyl chloride	Y	N	Y	2.3E-05	lb/MMBtu	2,3	2.9E-04	0.0013
Methyl ethyl ketone	N	Y	Y	5.4E-06	lb/MMBtu	2,3	6.8E-05	3.0E-04
Methylene chloride	<u> </u>	Y	Y	2.9E-04	lb/MMBtu	2,3	0.0036	0.016
Naphthalene	Y	N	Y	9.7E-05	lb/MMBtu	2,3	0.0012	0.0053
Nickel metal	Y	Y	N	3.3E-05	lb/MMBtu	2,4	6.0E-04	0.0026
Nitrophenol, 4-	Y	N	Y	1.1E-07	lb/MMBtu	2,3	1.4E-06	6.0E-06
Pentachlorophenol	Y	Y	N	5.1E-08	lb/MMBtu	2	1.3E-05	5.6E-0
Perchloroethylene	L Y	Y	N	3.8E-05	lb/MMBtu	2	0.0095	0.042
Phosphorus metal, yellow or white	Y	N	N	2.7E-05	lb/MMBtu	2,4	4.9E-04	0.0021
Polychlorinated biphenyls	Y	Y	Y	8.2E-09	lb/MMBtu	2,3	1.0E-07	4.5E-0
Polycyclic Organic Matter	Y	N	N	1.3E-04	lb/MMBtu	2	0.031	0.14
Selenium compounds	Y	N	N	2.8E-06	lb/MMBtu	2,4	5.1E-05	2.2E-0
Styrene	Y	Y	Y	0.0019	lb/MMBtu	2,3	0.024	0.10
etrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	Y	8.6E-12	lb/MMBtu	2.3	1.1E-10	4.7E-1
oluene	Y	Y	Ý	9.2E-04	lb/MMBtu	2,3	0.012	0.050
richloroethane, 1,1,1-	Ý	Y	Ň	3.1E-05	Ib/MMBtu	2	0.0078	0.034
richloroethylene	Ŷ	Y	Y	3.0E-05	Ib/MMBtu	2,3	3.8E-04	0.0016
richlorofluoromethane	N	Y	Ý	4.1E-05	Ib/MMBtu	2,3	5.1E-04	0.0022
richlorophenol, 2,4,6-	Y	N	Ý	2.2E-08	Ib/MMBtu	2,3	2.8E-07	1.2E-0
/inyl chloride	Y	Y	Ý	1.8E-05	Ib/MMBtu	2,3	2.3E-04	9.9E-0
(ylene	Y	Y	Ý	2.5E-05	Ib/MMBtu	2,3	3.1E-04	0.0014
	'	-		2,00.00		Emissions	2.99	12.1
						Emissions	2.22	9.06

Table 4b Potential Emissions at Outlet of RTO-1 Stack Control Option 2 ES-DRYER, ES-GHM-1 through 3, ES-DHM-1 through 8 Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Pollutant	НАР	NC TAP	voc	Emission	Units	Footnote	S	ntial sions
				Factor	Units	Toothote	(lb/hr)	(tpy)
Natural Gas Source								
2-Methylnaphthalene	Y	N	Y	2.4E-05	Ib/MMscf	7	7.5E-07	3.3E-06
3-Methylchloranthrene	Y	N	Ý	1.8E-06	Ib/MMscf	7	5.6E-08	2.5E-07
7,12-Dimethylbenz(a)anthracene	Y	N	Ŷ	1.6E-05	Ib/MMscf	7	5.0E-07	2.2E-06
Acenaphthene	Y	N	Ý	1.8E-06	lb/MMscf	7	5.6E-08	2.5E-07
Acenaphthylene	Y	N	Ŷ	1.8E-06	lb/MMscf	7	5.6E-08	2.5E-07
Acetaldehyde	Y	Y	Ŷ	1.5E-05	lb/MMscf	7	4.8E-07	2.1E-06
Acrolein	Y	Y	Ŷ	1.8E-05	Ib/MMscf	7	5.6E-07	2.5E-06
Ammonia	N	Y	N	3.2	lb/MMscf	7	0.10	0.44
Anthracene	Y	N	Y	2.4E-06	lb/MMscf	7	7.5E-08	3.3E-07
Arsenic	Y	Y	N	2.0E-04	lb/MMscf	7	6.3E-06	2.7E-05
Benz(a)anthracene	Y	N	Y	1.8E-06	lb/MMscf	7	5.6E-08	2.5E-07
Benzene	Y	N	Y	0.0021	lb/MMscf	7	6.6E-05	2.9E-04
Benzo(a)pyrene	Y	Y	Y	1.2E-06	lb/MMscf	7	3.8E-08	1.6E-07
Benzo(b)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	7	5.6E-08	2.5E-07
Benzo(g,h,i)pervlene	Y	N	Y	1.2E-06	lb/MMscf	7	3.8E-08	1.6E-07
Benzo(k)fluoranthene	Y	N	Y	1.8E-06	Ib/MMscf	7	5.6E-08	2.5E-07
Beryllium	Y	Y	N	1.2E-05	lb/MMscf	7	3.8E-07	1.6E-06
Cadmium	Y	Y	N	0.0011	lb/MMscf	7	3.5E-05	1.5E-04
Chromium VI	Y	N	N	0.0014	lb/MMscf	7	4.4E-05	1.9E-04
Chrysene	Y	N	Y	1.8E-06	lb/MMscf	7	5.6E-08	2.5E-07
Cobalt	Y	N	N	8.4E-05	lb/MMscf	7	2.6E-06	1.2E-05
Dibenzo(a,h)anthracene	Y	N	Y	1.2E-06	Ib/MMscf	7	3.8E-08	1.6E-07
Dichlorobenzene	Y	Y	Y	0.0012	lb/MMscf	7	3.8E-05	1.6E-04
Fluoranthene	Y	N	Y	3.0E-06	Ib/MMscf	7	9.4E-08	4.1E-07
Fluorene	Y	N	Y	2.8E-06	Ib/MMscf	7	8.8E-08	3.8E-07
Formaldehyde	Y	Y	Y	0.0750	lb/MMscf	7	0.0024	0.010
Hexane	Y	Y	Y	1.8	lb/MMscf	7	0.056	0.25
Indeno(1,2,3-cd)pyrene	Y	N	Y	1.8E-06	lb/MMscf	7	5.6E-08	2.5E-07
Lead	Y	N	N	5.0E-04	lb/MMscf	7	1.6E-05	6.9E-05
Manganese	Y	Y	N	3.8E-04	lb/MMscf	7	1.2E-05	5.2E-05
Mercury	Y	Y	N	2.6E-04	lb/MMscf	7	8.2E-06	3.6E-05
Naphthalene	Y	N	Y	6.1E-04	lb/MMscf	7	1.9E-05	8.4E-05
Nickel	Y	Y	N	0.0021	lb/MMscf	7	6.6E-05	2.9E-04
Phenanthrene	Y	N	Y	1.7E-05	lb/MMscf	7	5.3E-07	2.3E-06
Pyrene	Y	N	Y	5.0E-06	lb/MMscf	7	1.6E-07	6.9E-07
Selenium	Y	N	N	2.4E-05	lb/MMscf	7	7.5E-07	3.3E-06
Toluene	Y	Y	Y	0.0034	lb/MMscf	7	1.1E-04	4.7E-04
				Total HAP En		atural gas)	0.059	0.26
				Total TAP En			0.16	0.70

Notes:

^{1.} Emission factor derived based on stack testing data from comparable Enviva facilities.

^{2.} Emission factors (criteria and HAP/TAP) for wood combustion in a stoker boiler from NCDAQ Wood Waste Combustion Spreadsheet/AP-42, Fifth Edition, Volume 1, Chapter 1.6 - Wood Residue Combustion in Boilers, 09/03.

³ The control efficiency of 95% for the RTO is applied to all VOC hazardous and toxic pollutants for those emission factors that are not derived from Enviva stack test data.

The control efficiency of the wet electrostatic precipitator (WESP) for filterable particulate matter is applied to all metal hazardous and toxic pollutants. Actual design filterable efficiency is estimated to 96.4%, but 92.75% is assumed for toxics permitting.

^{5.} Chromium VI is a subset of chrome compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.
 ^{6.} The WESP employs a caustic solution in its operation in which hydrochloric acid will have high water solubility. This caustic solution will neutralize the acid and effectively control it by 90%, per conversation on October 18, 2011 with Steven A. Jaasund, P.E. of Lundberg Associates, a manufacturer of WESPs.

^{7.} Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98 for small boilers. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

Abbreviations:

CAS - chemical abstract service	N ₂ O - nitrous oxide
CH₄ - methane	ODT - oven dried tons
CO - carbon monoxide	PM ~ particulate matter
CO2 - carbon dioxide	PM ₁₀ - particulate matter with an aerodynamic diameter less than 10 microns
CO ₂ e - carbon dioxide equivalent	PM _{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less
HAP - hazardous air pollutant	RTO - regenerative thermal oxidizer
hr - hour	SO ₂ - sulfur dioxide
kg - kilogram	TAP - toxic air pollutant
lb - pound	tpy - tons per year
MMBtu - Million British thermal units	VOC – volatile organic compound
NC - North Carolina	WESP - wet electrostatic precipitator
NO _x - nitrogen oxides	yr - year

Table 5 Potential Emissions for Furnace Bypass (Cold Start-up)¹ Control Options 1 and 2 ES-FURNACEBYPASS Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Calculation Basis

Hourly Heat Input Capacity (HHV)	37.6 MMBtu/hr
Annual Heat Input Capacity	1,878 MMBtu/yr
Maximum Hourly Throughput	80 ODT/hr
Hours of Operation ¹	50 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions from Dryer Line Cold Start-up

Pollutant	Emission Factor	Units	Potential Emissions			
	T actor		Maximum (lb/hr)	Annual (toy)		
CO	0.60	lb/MMBtu ²	22.5	0.56		
NO _x	0.22	lb/MMBtu ²	8.26	0.21		
SO2	0.025	lb/MMBtu ²	0.94	0.023		
VOC	0.017	lb/MMBtu ²	0.64	0.016		
Total PM	0.58	lb/MMBtu ²	21.7	0.54		
Total PM ₁₀	0.52	lb/MMBtu ²	19.4	0.49		
Total PM _{2.5}	0.45	lb/MMBtu ²	16.8	0.42		
CO2	780	Ib/ODT ³	62,400	1,560		

Notes:
 ¹ During cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). The furnace bypass stack is then closed, and the furnace is slowly brought up to a normal operating rate.
 ² CO, NO_{xx} SO₂, PM, and VOC emission rates based on AP-42, Chapter 1.6 - Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fired

3. Emission factor for CO₂ from AP-42, Section 10.6.1 for rotary dryer with RTO control device. Enviva has conservatively calculated the CO₂ emissions using the hardwood emission factor because the dryer at Hamlet uses a combination of hardwood and softwood and the hardwood emission factor is greater than the softwood emission factor.

Table 5 Potential Emissions for Furnace Bypass (Cold Start-up)¹ **Control Options 1 and 2** ES-FURNACEBYPASS Enviva Pellets Hamlet, LLC

Potential HAP and TAP Emissions from Dryer Line Cold Start-up

Dellutent			Emission			Potential Emissions		
Pollutant	ПАР	NC TAP	Factor	Units	Footnote	Maximum	Annual	
Acetaldehyde	Y		0.205.04			(lb/hr)	(tpy)	
Acrolein		Y	8.30E-04	lb/MMBtu	1	0.031	7.8E-04	
	<u>Y</u>	Y	0.0040	lb/MMBtu	1	0.15	0.0038	
Formaldehyde	Y	Y	0.0044	lb/MMBtu	1	0.17	0.0041	
Phenol	Y	Y	5.10E-05	lb/MMBtu	1	0.0019	4.8E-05	
Propionaldehyde	Y	N	6.10E-05	lb/MMBtu	1	0.0023	5.7E-05	
Acetophenone	Y	N	3.2E-09	lb/MMBtu	1	1.2E-07	3.0E-09	
Antimony and compounds	Y	N	7.9E-06	lb/MMBtu	1	3.0E-04	7.4E-06	
Arsenic	Y	Y	2.2E-05	lb/MMBtu	1	8.3E-04	2.1E-05	
Benzene	Y	Y	0.0042	lb/MMBtu	1	0.16	0.0039	
Benzo(a)pyrene	Y	Y	2.6E-06	lb/MMBtu	1	9.8E-05	2.4E-06	
Beryllium	Y	Y	1.1E-06	lb/MMBtu	1	4.1E-05	1.0E-06	
Cadmium	Y	Y	4.1E-06	lb/MMBtu	1	1.5E-04	3.8E-06	
Carbon tetrachloride	Y	Y	4.5E-05	lb/MMBtu	1	0.0017	4.2E-05	
Chlorine	Y	Y	7.9E-04	lb/MMBtu	1	0.030	7.4E-04	
Chlorobenzene	Y	Y	3.3E-05	lb/MMBtu	1	0.0012	3.1E-05	
Chloroform	Y	Y	2.8E-05	lb/MMBtu	1	0.0011	2.6E-05	
Chromium VI	Y	Y	3.5E-06	lb/MMBtu	1	1.3E-04	3.3E-06	
Chromium-Other compounds	Ý	N	1.8E-05	Ib/MMBtu	1	6.6E-04	1.6E-05	
Cobalt compounds	Ý	N	6.5E-06	Ib/MMBtu	1	2.4E-04	6.1E-06	
Dinitrophenol, 2,4-	Ý	N	1.8E-07	Ib/MMBtu	1	6.8E-06	1.7E-00	
Di(2-ethylhexyl)phthalate	Y	Y	4.7E-08	Ib/MMBtu	1			
Ethyl benzene	Ý	N				1.8E-06	4.4E-08	
Dichloroethane, 1,2-		Y	3.1E-05	Ib/MMBtu	1	0.0012	2.9E-05	
Hydrochloric acid	Y	Y	2.9E-05	lb/MMBtu	1	0.0011	2.7E-05	
Lead	Y	N N	0.019	lb/MMBtu	1	0.71	0.018	
Manganese	Y		4.8E-05	lb/MMBtu	1	0.0018	4.5E-05	
		Y	0.0016	lb/MMBtu	1	0.060	0.0015	
Mercury	Y	Y	3.5E-06	lb/MMBtu	1	1.3E-04	3.3E-06	
Methyl bromide	Y	N	1.5E-05	lb/MMBtu	1	5.6E-04	1.4E-05	
Methyl chloride	Y	N	2.3E-05	ib/MMBtu	1	8.6E-04	2.2E-05	
Trichloroethane, 1,1,1-	Y	Y	3.1E-05	lb/MMBtu	1	0.0012	2.9E-05	
Naphthalene	Y	N	9.7E-05	lb/MMBtu	1	0.0036	9.1E-05	
Nickel	Y	Y	3.3E-05	lb/MMBtu	1	0.0012	3.1E-05	
Nitrophenol, 4-	Y	N	1.1E-07	lb/MMBtu	1	4.1E-06	1.0E-07	
Pentachlorophenol	Y	Y	5.1E-08	lb/MMBtu	1	1.9E-06	4.8E-08	
Perchloroethylene	Y	Y	3.8E-05	lb/MMBtu	1	0.0014	3.6E-05	
Phosphorus metal, yellow or white	Y	N	2.7E-05	lb/MMBtu	1	0.0010	2.5E-05	
Polychlorinated biphenyls	Y	Y	8.1E-09	lb/MMBtu	1	3.1E-07	7.6E-09	
Polycyclic Organic Matter	Y	N	1.2E-04	lb/MMBtu	1	0.0047	1.2E-04	
Dichloropropane, 1,2-	Y	N	3.3E-05	lb/MMBtu	1	0.0012	3.1E-05	
Selenium compounds	Ý	N	2.8E-06	lb/MMBtu	1	1.1E-04	2.6E-06	
Styrene	Y	Y	0.0019	lb/MMBtu	1	0.071	0.0018	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Ý	Y	8.6E-12	lb/MMBtu	1	3.2E-10	8.1E-12	
Toluene	Ý	Y	9.2E-04	lb/MMBtu		0.035	8.6E-04	
Trichloroethylene	Ý	Y	3.0E-05	lb/MMBtu		0.0011	2.8E-05	
Trichlorophenol, 2,4,6-	Y	N	2.2E-08	lb/MMBtu	1	8.3E-07	2.1E-05	
Vinyl chloride	Y	Y	1.8E-05	Ib/MMBtu	1	6.8E-04	1.7E-06	
Xylene	Y	Y	2.5E-05	Ib/MMBtu				
Ariene	1					9.4E-04	2.3E-05	
		I OTAL HAL	r Emissions	(Biomass Co	mpustion)	1.41	0.035	

Notes: ^{1.} Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Abbreviations: CH₄ - methane CO - carbon monoxide CO2 - carbon dioxide CO2e - carbon dioxide equivalent HAP - hazardous air pollutant hr - hour lb - pound MMBtu - Million British thermal units NO_x - nitrogen oxides N₂O - nitrous oxide

Reference:

AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

ODT - oven dried tons

SO₂ - sulfur dioxide

tpy - tons per year

yr - year

TAP - toxic air pollutant

VOC - volatile organic compound

PM - particulate matter PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns $PM_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

Table 6 Potential Emissions for Furnace Bypass (Idle Mode)¹ Control Options 1 and 2 ES-FURNACEBYPASS Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Calculation Basis

Hourly Heat Input Capacity (HHV)	15.0 MMBtu/hr
Annual Heat Input Capacity	7,500 MMBtu/yr
Maximum Hourly Throughput	80 ODT/hr
Hours of Operation ¹	500 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions from Furnace Idle Mode

Pollutant	Emission Factor	Units	Potential Emissions			
	- Hetor		Maximum (lb/hr)	Annual (tpy)		
со	0.60	lb/MMBtu ²	9.00	2.25		
NO _x	0.22	lb/MMBtu ²	3.30	0.83		
SO ₂	0.025	lb/MMBtu ²	0.38	0.094		
VOC	0.017	lb/MM8tu ²	0.26	0.064		
Total PM	0.58	lb/MMBtu ²	8.66	2.16		
Total PM ₁₀	0.52	lb/MMBtu ²	7.76	1.94		
Total PM _{2.5}	0.45	lb/MMBtu ² 6.71		1.68		
CO ₂	780	lb/ODT ³ 62,400		15,600		

Notes:

^{1.} As part of this submittal, Enviva is requesting a limit of 500 hours per year of "idle mode" for the furnace. Idle mode is defined as operation up to 15 MMBtu/hr.

2. CO, NO_x, SO₂, PM, and VOC emission rates based on AP-42, Chapter 1.6 - Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fired boilers. VOC emission factor excludes formaldehyde.

^{3.} Emission factor for CO₂ from AP-42, Section 10.6.1 for rotary dryer with RTO control device. Enviva has conservatively calculated the CO₂ emissions using the hardwood emission factor because the dryer at Hamlet uses a combination of hardwood and softwood and the hardwood emission factor is greater than the softwood emission factor.

Table 6 Potential Emissions for Furnace Bypass (Idle Mode)¹ **Control Options 1 and 2** ES-FURNACEBYPASS Enviva Pellets Hamlet, LLC

Potential HAP and TAP Emissions from Furnace Idle Mode

Ball tast			Emission			Potential Emissions		
Pollutant	HAP	NC TAP	Factor	Units	Footnote	Maximum	Annual	
Acetaldehvde	Y	Y	8.30E-04	lb/MMBtu	1 1	(lb/hr) 0.012	(tpy) 0.0031	
Acrolein	Y	Y	0.0040	b/MMBtu	1	0.060	0.015	
Formaldehyde	Ŷ	Y	0.0044	Ib/MMBtu	1	0.066	0.013	
Phenol	Y	Ý	5.10E-05	lb/MMBtu	1	7.7E-04	1.9E-04	
Propionaldehyde	Ý	N	6.10E-05	Ib/MMBtu	1	9.2E-04	2.3E-04	
Acetophenone	Ý	N	3.2E-09	ib/MMBtu	1	4.8E-08	1.2E-08	
Antimony and compounds	Ŷ	N	7.9E-06	lb/MMBtu	1	1.2E-04	3.0E-05	
Arsenic	Ý	Y	2.2E-05	b/MMBtu	1	3.3E-04	8.3E-05	
Benzene	Ý	Ý	0.0042	Ib/MMBtu	1	0.063	0.016	
Benzo(a)pyrene	Ý	Y	2.6E-06	lb/MMBtu	1	3.9E-05	9.8E-06	
Beryllium	Y	Y	1.1E-06	lb/MMBtu	$\frac{1}{1}$	1.7E-05	4.1E-06	
Cadmium	Y	Y	4.1E-06	lb/MMBtu	1 1	6.2E-05	1.5E-05	
Carbon tetrachloride	Ý	+ Y	4.1E-00	lb/MMBtu	1 1	6.8E-04	1.7E-03	
Chlorine	Y	Y	7.9E-04	lb/MMBtu	1 1	0.012	0.0030	
Chlorobenzene	Y	Y	3.3E-05	b/MMBtu	1	5.0E-04	1.2E-04	
Chloroform	Y	Y	2.8E-05	Ib/MMBtu	1	4.2E-04	1.1E-04	
Chromium VI	Y	Y	3.5E-05	Ib/MMBtu	1	4.2E-04 5.3E-05		
Chromium-Other compounds	Y	N	1.8E-05	lb/MMBtu	1		1.3E-05	
Cobalt compounds	Y	N				2.6E-04	6.6E-05	
Dinitrophenol, 2,4-	Y	N	6.5E-06	lb/MMBtu	1	9.8E-05	2.4E-05	
Di(2-ethylhexyl)phthalate	Y	Y	1.8E-07	lb/MMBtu	1	2.7E-06	6.8E-07	
	Y		4.7E-08	lb/MMBtu	1	7.1E-07	1.8E-07	
Ethyl benzene	Y	N	3.1E-05	lb/MMBtu	1	4.7E-04	1.2E-04	
Dichloroethane, 1,2- Hydrochloric acid	Y	Y	2.9E-05	Ib/MMBtu	1	4.4E-04	1.1E-04	
Lead	Y	Y N	0.019	Ib/MMBtu	1	0.29	0.071	
	Y		4.8E-05	lb/MMBtu	1	7.2E-04	1.8E-04	
Manganese	Y	Y	0.0016	lb/MMBtu	1	0.024	0.0060	
Mercury		Y	3.5E-06	lb/MMBtu	1	5.3E-05	1.3E-05	
Methyl bromide Methyl chloride	Y	N	1.5E-05	lb/MMBtu	1	2.3E-04	5.6E-05	
Trichloroethane, 1,1,1-			2.3E-05	lb/MMBtu	1	3.5E-04	8.6E-05	
	Y	Y	3.1E-05	lb/MMBtu	1	4.7E-04	1.2E-04	
Naphthalene Nickel	Y	N	9.7E-05	lb/MMBtu	1	0.0015	3.6E-04	
		Y	3.3E-05	lb/MMBtu	1	5.0E-04	1.2E-04	
Nitrophenol, 4-	Y	N	1.1E-07	lb/MMBtu	1	1.7E-06	4.1E-07	
Pentachlorophenol	Y	Y	5.1E-08	lb/MMBtu	1	7.7E-07	1.9E-07	
Perchloroethylene	Y	Y	3.8E-05	lb/MMBtu	1	5.7E-04	1.4E-04	
Phosphorus metal, yellow or white	Y	N	2.7E-05	lb/MMBtu	1	4.1E-04	1.0E-04	
Polychlorinated biphenyls	Y	Y	8.1E-09	lb/MMBtu	1	1.2E-07	3.1E-08	
Polycyclic Organic Matter	Y	N	1.2E-04	lb/MMBtu	1	0.0019	4.7E-04	
Dichloropropane, 1,2-	Y	N	3.3E-05	lb/MMBtu	1	5.0E-04	1.2E-04	
Selenium compounds	Y	N	2.8E-06	lb/MMBtu	1	4.2E-05	1.1E-05	
Styrene	Y	Y	0.0019	lb/MMBtu	1	0.029	0.0071	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	8.6E-12	lb/MMBtu	1	1.3E-10	3.2E-11	
Toluene	Y	Y	9.2E-04	lb/MMBtu	1	0.014	0.0035	
Trichloroethylene	Y	Y	3.0E-05	lb/MMBtu	1	4.5E-04	1.1E-04	
Trichlorophenol, 2,4,6-	Y	N	2.2E-08	lb/MMBtu	1	3.3E-07	8.3E-08	
Vinyl chloride	Y	Y	1.8E-05	lb/MMBtu	1	2.7E-04	6.8E-05	
Xylene	Y	Y	2.5E-05	lb/MMBtu	1	3.8E-04	9.4E-05	
				(Biomass Co		0.58	0.14	
		Total TA	P Emissions	(Biomass Co.	mbustion)	0.57	0.14	

Notes:

^{1.} Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

Abbreviations: CH₄ - methane CO - carbon monoxide CO2 - carbon dioxide CO₂e - carbon dioxide equivalent HAP - hazardous air pollutant hr - hour lb - pound MMBtu - Million British thermal units NO_x - nitrogen oxides N₂O - nitrous oxide

Reference:

AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03

SO2 - sulfur dioxide TAP - toxic air pollutant tpy - tons per year VOC - volatile organic compound yr - year

PM10 - particulate matter with an aerodynamic diameter less than 10 microns

PM2.5 - particulate matter with an aerodynamic diameter of 2.5 microns or less

ODT - oven dried tons PM - particulate matter

Table 7 Summary of Potential Emissions from Baghouses and Scrubber Control Options 1 and 2 Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

			· · · · · · · · · · · · · · · · · · ·	Exhaust	Exit Grain	Exit Grain Loading		Potential Emissions					
Emission Unit	Source Description	Control	Control Device	Flow Rate ¹	Loading			PM		PM10		PN	M _{2.5}
ID	· · · · · · · · · · · · · · · · · · ·	Device ID	Description	(cfm)	(gr/cf)	PM ₁₀ (% of PM)	PM _{2.5} (% of PM)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
ES-HM-1	One (1) Dry Hammermill	CD-HM-BH1	One (1) baghouse ^{2, 1}	5,000	0.004	100%	42.5%	0.17	0.75	0.17	0.75	0.073	0.32
ES-HM-2	One (1) Dry Hammermill	CD-HM-BH2	One (1) baghouse ^{2, 1}	5,000	0.004	100%	42.5%	0.17	0.75	0.17	0.75	0.073	0.32
ES-HM-3	One (1) Dry Hammermill	CD-HM-BH3	One (1) baghouse ^{2, 3}	5,000	0.004	100%	42.5%	0.17	0.75	0.17	0.75	0.073	0.32
ES-HM-4	One (1) Dry Hammermill	CD-HM-BH4	One (1) baghouse ^{2, 3}	5.000	0.004	100%	42.5%	0.17	0.75	0.17	0.75	0.073	0.32
ES-HM-5	One (1) Dry Hammermill	CD-HM-BH5	One (1) baghouse	5.000	0.004	100%	42.5%	0.17	0.75	0.17	0.75	0.073	0.32
ES-HM-6	One (1) Dry Hammermill	CD-HM-BH6	One (1) baghouse2, 3	5,000	0.004	100%	42.5%	0.17	0.75	0.17	0.75	0.073	0.32
ES-HM-7	One (1) Dry Hammermill	CD-HM-BH7	One (1) bachouse	5.000	0.004	100%	42.5%	0.17	0.75	0.17	0.75	0.073	0.32
ES-HM-8	One (1) Dry Hammermill	CD-HM-BH8	One (1) baghouse ^{2, 3}	5.000	0.004	100%	42.5%	0.17	0.75	0.17	0.75	0.073	0.32
ES-HMC	Hammermill Collection Conveyor	CD-HMC-BH	One (1) bachouse ^{2, 4}	1.500	0.004	100%	100%	0.051	0.23	0.051	0.23	0.051	0.23
ES-PCHP	Pellet Cooler HP Fines Relay System	CD-PCHP-BH	One (1) baghouse ^{2,4}	500	0.004	100%	100%	0.017	0.075	0.017	0.075	0.017	0.075
ES-PCLP	Pellet Cooler LP Fines Relay System	CD-PCLP-BH	One 1 baghouse 4	3,102	0.004	100%	100%	0.11	0.47	0.11	0.47	0.11	0.47
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BH	One (1) bachouse ^{2, 4}	2,444	0.004	100%	100%	0.084	0.37	0.084	0.37	0.084	0.37
ES-CLR-1 through ES-CLR-6	Pellet Coolers	CD-CLR-WSB	One (1) scrubber ⁵	90,000	0.004	26.1%	3.2%	3.09	13.5	0.81	3.53	0.099	0.43
ES-DCTB	Pellet Dust Collection Transfer Bin	CD-PDCTB-BH	One (1) baghouse ^{2, 4}	3,000	0.004	100%	100%	0.10	0.45	0.10	0.45	0.10	0.45
ES-FPH ES-PB-1 and 2	Finished Product Handling Two (2) Pellet Loadout Bins	CD-FPH-BH	One (1) baghouse 3,6	8,500	0.004	91%	1.7%	0.29	1.3	0.27	1.2	0.0050	0.022
ES-DWH	Dried Wood Handling-Operations (conveyors)	CD-DWH-BH1 CD-DWH-BH2	One (1) baghouse ⁴ One (1) baghouse ^{2,4}	1.000	0.004	100% 100%	100%	0.034	0.15	0.034	0.15	0.034	0.15
ES-ADD	Additive Handling and Storage	CD-ADD-BH	One (1) baghouse ^{2,4}	1.000	0.004	100%	100%	0.034	0.15	0.034	0.15	0.034	0.15

Notes:
 Control device flow rate (cfm) based on data provided by Enviva. Under both Control Options 1 and 2 for the Dry Hammermills, 10,000 cfm of the total 15,000 cfm from each Dry Hammermill will be recirculated back into the Dry Hammermills will be control device flow rate (cfm) based on data provided by Enviva. Under both Control Options 1 and 2 for the Dry Hammermills, 10,000 cfm of the total 15,000 cfm from each Dry Hammermill will be recirculated back into the Dry Hammermills will be controlled by a bachouse. This table reflects total filterable and condesable emissions at the bachouse.
 ¹ No speciation data is available for PM₁₀. Therefore, it is conservatively assumed to be equal to total PM.
 ³ Dry Hammermills and finished product handing PM₂₅ speciation is based on engineering estimate.
 ⁴ No speciation data is available for PM₂₅. Therefore, it is conservatively assumed to be equal to total PM.
 ⁵ Exaust flow rate and exit grain loading rate provided by Enviva. The scrubber will exhaust through CO-RCO-1.
 ⁶ Elisibed produits PM_25 speciation on parise factors for we wood combustion controlled by a mechanical senarator from AP-42. Section 1.6 - Wood Residue Combustion in Bailers. 09/03.

⁶ Finished product handling PM₁₃ speciation based on emission factors for wet wood combustion controlled by a mechanical separator from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.
 Because the particle size of particulate matter from finished product handling is anticipated to be larger than flyash, this factor is believed to be a conservative indicator of speciation.

Abbreviations: cf - cubic feet cfm - cubic feet per minute ES - Emission Sources

IES - Insignificant Emission Source gr - grain hr - hour

lb - pound PM - particulate matter PM_10 - particulate matter with an aerodynamic diameter less than 10 microns PM_25 - particulate matter with an aerodynamic diameter of 2.5 microns or less tpy - tons per year

Page 16 of 18

RAMBOLL

Table 8 Dry Hammermill Potential Emissions at Outlet of Dry Hammermill RTO/RCO Stack **Control Option 1** ES-HM-1 through 8 Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Calculation Basis

Maximum Hourly Throughput	80 ODT/hr
Annual Throughput	625,011 ODT/yr
Hours of Operation	8,760 hr/yr
Number of Burners	4 burners
RTO/RCO Burner Rating	6.2 MMBtu/hr
RTO/RCO Control Efficiency	95%

Total Potential Emissions at RTO/RCO Stack

Pollutant	Potential Emissions ¹				
Politicalit	(lb/hr)	(tpy)			
со	2.10	9.19			
NO _x	2.50	10.9			
SO ₂	0.015	0.064			
voc	2.17	8.55			
РМ	1.38	6.07			
PM ₁₀	1.38	6.07			
PM _{2.5}	0.69	3.04			

Notes:

Total emissions from the dry hammermills and natural gas combustion by the RTO/RCO burners. Detailed calculations are provided below and in Table 7a (particulate emissions from dry hammermill baghouses).

Potential VOC and HAP Emissions from Dry Hammermills

Pollutant	CAS No.	NC TAP	voc	Uncontrolled Emission Factor ¹	Dry Hamermill Emissions at RTO/RCO Outlet ²		
				(Ib/ODT)	(lb/hr)	(tpy)	
Acetaldehyde	75-07-0	Y	Y	0.0091	0.036	0.14	
Acrolein	107-02-8	Y	Y	0.011	0.043	0.17	
Formaldehyde	50-00-0	Y	Y	0.0080	0.032	0.13	
Methanol	67-56-1	N	Y	0.0052	0.021	0.081	
Phenol	108-95-2	Y	Y	0.0041	0.016	0.064	
Propionaldehyde	123-38-6	N	Y	0.019	0.075	0.29	
			Total	HAP Emissions	0.22	0.88	
			Total	TAP Emissions	0.13	0.50	
Total VOC			Y	0.51	2.04	7.97	

Notes:

 Emission factors are based on stack testing data from comparable Enviva facilities.
 A 95% control efficiency is applied to the potential VOC and HAP emissions for the RTO/RCO. The Dry Hammermills will be equipped with an RCO that will operate primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there will be readed as a backup. be no impact on emissions during thermal mode usage.

Thermal Generated Potential Criteria Pollutant Emissions

Maximum high heating value of VOC constituents	1.8E-02 MMBtu/lb
Uncontrolled VOC emissions	159 tons/yr
Heat input of uncontrolled VOC emissions	5,896 MMBtu/yr

Pollutant	Emission Factor	Units	Potential Emissions		
	Emission Factor	Units	(lb/hr)	(tpy)	
со	0.082	lb/MMBtu ¹	0.055	0.24	
NOx	0.098	lb/MMBtu ¹	0.066	0.29	

Natural Gas Combustion Potential Criteria Pollutant and Greenhouse Gas Emissions

Pollutant	Emission Factor	Units	Potential Emissions		
Fondtant	Emission Factor	Onits	(lb/hr)	(tpy)	
со	0.082	Ib/MMBtu ¹	2.04	8.95	
NOx	0.098	lb/MMBtu ¹ 2.43		10.6	
SO2	5.9E-04	Ib/MMBtu ¹	/MMBtu ¹ 0.015		
voc	0.0054	lb/MMBtu ¹ 0.13		0.59	
РМ	0.0075	lb/MMBtu ¹ 0.18		0.81	
PM10	0.0075	lb/MMBtu ¹ 0.18		0.81	
PM _{2.5}	0.0075	lb/MMBtu ¹	0.18	0.81	
CO ₂	53.06	kg/MMBtu ²	2,901	12,707	
CH4	0.0010	kg/MMBtu ²	0.055	0.24	
N ₂ O	1.0E-04	kg/MMBtu ²	0.0055	0.024	
CO2e	2,904	12,720			

Table 8 Dry Hammermill Potential Emissions at Outlet of Dry Hammermill RTO/RCO Stack **Control Option 1** ES-HM-1 through 8 Enviva Pellets Hamlet, LLC Hamlet, Richmond County, North Carolina

Natural Gas Combustion Potential HAP and TAP Emissions

Pollutant	НАР	NC TAP	voc	Emission Factor	Units	Footnote	Potential Emissions	
							(lb/hr)	(tpy)
RTO/RCO Burners								
2-Methylnaphthalene	Y	N	Y	2.4E-05	lb/MMscf	3	5.8E-07	2.6E-06
3-Methylchloranthrene	Y	N	Y	1.8E-06	lb/MMscf	3	4.4E-08	1.9E-07
7,12-Dimethylbenz (a) anthracene	Y	N	Y	1.6E-05	lb/MMscf	3	3.9E-07	1.7E-06
Acenaphthene	Y	N	Y	1.8E-06	b/MMscf	3	4.4E-08	1.9E-07
Acenaphthylene	Y	N	Y	1.8E-06	b/MMscf	3	4.4E-08	1.9E-07
Acetaldehyde	Y	Y	Y	1.5E-05	lb/MMscf	3	3.7E-07	1.6E-06
Acrolein	Y	Y	Y	1.8E-05	Ib/MMscf	3	4.4E-07	1.9E-06
Ammonia	N	Y	N	3.2	lb/MMscf	3	0.078	0.34
Anthracene	Y	N	Y	2.4E-06	lb/MMscf	3	5.8E-08	2.6E-07
Arsenic	Y	Y	N	2.0E-04	lb/MMscf	3	4.9E-06	2.1E-05
Benz(a)anthracene	Y	N	Y	1.8E-06	lb/MMscf	3	4.4E-08	1.9E-07
Benzene	Y	N	Y	0.0021	lb/MMscf	3	5.1E-05	2.2E-04
Benzo(a)pyrene	Y	Y	Y	1.2E-06	lb/MMscf	3	2.9E-08	1.3E-07
Benzo(b)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	3	4.4E-08	1.9E-07
Benzo(g,h,i)pervlene	Y	N	Y	1.2E-06	lb/MMscf	3	2.9E-08	1.3E-07
Benzo(k)fluoranthene	Y	N	Y	1.8E-06	lb/MMscf	3	4.4E-08	1.9E-07
Beryllium	Y	Y	N	1,2E-05	lb/MMscf	3	2.9E-07	1.3E-06
Cadmium	Y	Y	N	0.0011	lb/MMscf	3	2.7E-05	1.2E-04
Chromium VI	Y	N	N	0.0014	lb/MMscf	3	3.4E-05	1.5E-04
Chrysene	Y	N	Y	1.8E-06	lb/MMscf	3	4.4E-08	1.9E-07
Cobalt	Y	N	N	8.4E-05	lb/MMscf	3	2.0E-06	8.9E-06
Dibenzo a h anthracene	Y	N	Y	1.2E-06	Jb/MMscf	3	2.9E-08	1.3E-07
Dichlorobenzene	Y	Y	Y	0.0012	lb/MMscf	3	2.9E-05	1.3E-04
Fluoranthene	Y	N	Y	3.0E-06	Ib/MMscf	3	7.3E-08	3.2E-07
Fluorene	Y	N	Ŷ	2.8E-06	Ib/MMscf	3	6.8E-08	3.0E-07
Formaldehyde	Y	Y	Y	0.075	lb/MMscf	3	0.0018	0.0080
Hexane	Y	Y	Y	1.8	lb/MMscf	3	0.044	0.19
Indeno(1,2,3-cd)pyrene	Y	N	Y	1.8E-06	lb/MMscf	3	4.4E-08	1.9E-07
Lead	Y	N	N	5.0E-04	lb/MMscf	3	1.2E-05	5.3E-05
Manganese	Y	Y	N	3.8E-04	lb/MMscf	3	9.2E-06	4.0E-05
Mercury	Ý	Y	N	2.6E-04	lb/MMscf	3	6.3E-06	2.8E-05
Naphthalene	Ý	N	Y	6.1E-04	lb/MMscf	3	1.5E-05	6.5E-05
Nickel	Ý	Y	N	0.0021	lb/MMscf	3	5.1E-05	2.2E-04
Phenanathrene	Ý	N	Y	1.7E-05	lb/MMscf	3	4.1E-07	1.8E-06
Pyrene	Ý	N	Y	5.0E-06	lb/MMscf	3	1.2E-07	5.3E-07
Selenium	Ý	N	N	2.4E-05	lb/MMscf	3	5.8E-07	2.6E-06
oluene	Ŷ	Y	Y	0.0034	lb/MMscf	3	8.3E-05	3.6E-04
	· · · ·	· · ·						0.20
Total HAP Emissions (natural gas combustion Total TAP Emissions (natural gas combustion							0.54	

Notes: ¹ Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from lb/MMscf to lb/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4. 2. Emission factors for natural gas combustion by the burners obtained from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from

¹ Table A-1.
 ³ Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98 for small boilers. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

Abbreviations: CAS - chemical abstract service HAP - hazardous air pollutant hr - hour

lb - pound NC - North Carolina

ODT - oven dried tons

RCO - regenerative catalytic oxidizer RTO - regenerative thermal oxidizer TAP - toxic air pollutant tpy - tons per year VOC - volatile organic compound yr - year

Figure 2. Process Flow Diagram – Control Option 2 Enviva Pellets Hamlet, LLC – Richmond County, NC

