DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF WATER RESOURCES FACT SHEET FOR NPDES PERMIT DEVELOPMENT

NPDES No. NC0005088

Facility Information					
Applicant/Facility	Duke Energy Carolinas, LLC / Rogers Energy Complex				
Applicant Address:	526 Church St., Charlotte,		-		
Facility Address:	573 Duke Power Road, Mc	oresboro, NC 2802	4		
Permitted Flow (MGD):	Not limited				
Type of Waste:	Industrial & domestic				
Facility Classification:	Ш				
Permit Status:	Renewal				
County:	Rutherford & Cleveland				
	Miscellaneou	S			
Receiving Stream:	Broad River/UT to Broad River (Outfall 106)	State Grid:	G11NE		
Stream Classification:	WS-IV	USGS Quad:	Chesnee		
Drainage Area (mi²):	849 - Broad River	Basin/Subbasin:	Broad/03-08-02		
Summer 7Q10 (cfs)	287 Broad River	303(d) Listed?	No		
Winter 7Q10 (cfs):	440 Broad River HUC: 03050105				
30Q2 (cfs)	635 Broad River Regional Office: Asheville				
Average Flow (cfs):	1460 Broad River				
IWC (%):	7.7 (002) 3.1 (005)	Date:	4/3/2018		

SUMMARY

Duke Energy Carolinas operates the Rogers Energy Complex (REC); formerly known as Cliffside Steam Station; a two-unit coal fired steam electric generating facility. Units 1-4 have been removed from service. The station now operates only two units; Units 5 and 6. The total combined output is 1500 megawatts. Each unit has a Flue Gas Desulfurization (FGD) system. The site has an industrial landfill for combustion byproducts where fly ash, bottom ash, gypsum and WWTP sludge is deposited.

Water for cooling is withdrawn from the Broad River. Both units use cooling towers for heat dissipation. Blowdown from Unit 5 is discharged to the ash basin. Blowdown from Unit 6 can be used in the unit's make up water or discharged to the ash basin.

The receiving water is the Broad River, class WS-IV waters in the Broad River Basin. Previous permits had this section classified as C. The correct classification is WS-IV and it will be modified in the permit.

REC is subject to EPA effluent guideline limits per 40 CFR 423 - Steam Electric Power Generating Point Source Category. The facility is also subject to the Cooling Water Intake Structures Rules (40

CFR 125) effective October 14, 2014 and to the North Carolina Senate Bill 729 - Coal Ash Management Act.

Outfall Descriptions:

Outfall 002 - Ash basin

The ash basin receives wastewaters collected in the Yard Drainage Basin (effluent from the domestic WWTP, cooling tower blowdown from Unit 5, landfill leachate, floor drains, treated FGD wet scrubber water, limestone unloading and storage area, and stormwater), sluiced ash, cooling tower blowdown from Unit 6, equipment backwashes, boiler blowdown, drainage from recirculating cooling systems, demineralizing resin, cooling water from heat exchangers, rinse water from limestone unloading and storage area, stormwater, low volume waste including flight conveyor quench water overflow), and miscellaneous waste streams. This outfall discharges to the Broad River.

Outfall 002A - Emergency Yard Drainage Overflow

This outfall was closed in 2016. This was an emergency outfall from the yard drainage basin.

Internal Outfall 004 - FGD

If the wastewater from the FGD system is not used in Unit 6 it is treated in the FGD WWTS which consists of equalization tank, reaction tank, flocculating clarifier, and gravity filters. The effluent is discharged to the Yard Drainage Basin. A new treatment system will be installed for the FGD wastewaters. The effluent of the treatment system will be combined with the effluent from proposed outfall 005 before discharging to the Broad River.

Proposed Outfalls:

Outfall 005 - New Wastewater Treatment System

A new treatment system will be installed to treat wastewaters from the holding basin effluent (Outfall 002C – fly ash silo sump, coal, gypsum and limestone piles runoff), Basement Basin effluent (RO reject, stormwater and Unit 6 sanitary system), Unit 6 cooling tower blowdown, landfill leachate, Unit 6 process sump (mechanical drag chain overflow, and low volume waste including flight conveyor quench water overflow) Unit 5 process sump (sanitary system, low volume wastes, mechanical drag chain overflow and cooling tower blowdown), and ash basin dewatering/decanting. The FGD WWTS discharge (Internal Outfall 004) and heat exchanger non-contact cooling water will be combined with the discharge from the WWTS before discharge to the Broad River. The treatment system will be a physical/chemical treatment system with flow equalization, pH neutralization, coagulation and flocculation, and filters. This outfall will discharge to the Broad River.

Outfall 002B - Basement Basin

This will be an emergency outfall from the Basement Basin if a significant rain event overflows the system. An existing structure will be used as a holding cell for process wastewater, treated sanitary wastewater and stormwater that currently go to the P-5 yard basin. The effluent from this holding cell will be pumped to the ash basin during normal operations. When the new WWTS starts operations the holding cell will receive stormwater runoff from Unit 6, RO reject wastewater, Unit 6 treated sanitary wastewater and process and stormwater from Unit 5. Effluent will be pumped to the new WWTS. An auxiliary basin will hold excess water during storm events. The emergency outfall will discharge to the Broad River.

Outfall 002C - Holding Basin

This will be an emergency outfall from a new holding basin if a significant rain event overflows the system. This holding basin will receive stormwater, coal pile runoff, gypsum pile runoff, limestone pile runoff and flows from the holding cell auxiliary basin (stormwater runoff from Unit 6, RO reject wastewater, treated sanitary wastewater and process and stormwater from Unit 5). The effluent from

this holding basin will be pumped to the new WWTS. The emergency overflow will discharge to the Broad River.

Outfalls 104 and 106 Constructed Seeps

Outfalls 104 discharge seepage from the ash basin into the Broad River and Outfall 106 discharges seepage to an UT to the Broad River. A Special Order by Consent ("Special Order"), EMC SOC 17-009, also addresses Outfalls 104 and 106. In this Special Order, these outfalls are called "engineered seeps." Duke Energy shall follow the requirements of the Special Order with regard to these engineered seeps, including but not limited to the requirement that if any of the engineered seeps are not dispositioned (as described in EMC SOC 17-009 § 2(c)(3)) following decanting of the ash basins (as described in EMC SOC 17-009 § 1(a)) at Rogers Energy Complex, Duke Energy shall submit an amendment to its groundwater Corrective Action Plan and/or Closure Plan for the Rogers Energy Complex describing how any of the non-dispositioned engineered seeps will be remediated in a manner sufficient to protect public health, safety, and welfare, the environment, and natural resources (as described in EMC SOC 17-009 § 2(d))

COMPLIANCE REVIEW/PROPOSED ACTIONS

Outfall 002 - Ash Basin - Decanting/Normal Operations

This outfall is subject to the Effluent Limitations Guidelines (ELG) in Table 1. Table 1. ELG Outfall 002

Pollutant	Daily Maximum (DM)	Monthly Average (MA)	ELG
TSS	50 mg/1	30 mg/1	40 CFR 423(b)(4) (monthly average) 423(b) (9) (daily max)
Oil & Grease	20 mg/1	15 mg/l	40 CFR 423.12 (b) (4)
pН	6 to 9 SU	×	40 CFR 423.12 (b) (1)

As per 40 CFR 423.13 (h) (1) (i) and (k) (1) (i) bottom ash and fly ash transport water shall not be discharged, compliance with this section shall be as soon as possible beginning on November 1, 2018 for fly ash and November 1, 2020 for bottom ash, but no later than December 31, 2023. Duke has submitted the following proposed schedule for meeting the rule:

Bottom ash: An underneath the boiler mechanical drag system will be installed and will be operational by November 1, 2020. This technology will not generate bottom ash.

Fly ash: dry fly ash is handled dry at this facility.

DMR review:

DMR data were review for the period of January 2011 to April 2016. There were no violations of permit limits.

Parameter	Average	Maximum	Minimum
Flow (MGD)	6.753	29.8	0.40
TSS (mg/l)	6.8	18	< 5
Temperature °F	66.4	88.3	45.5
O&G (mg/l)	< 5	< 5	< 5
Total Nitrogen (mg/l)	0.93	1.5	0.54

Table 2. DMR Summary Outfall 002

Total Phosphorus (mg/l)	0.09	0.19	0.01
pH (S.U.)	7.4	8.6	6.1

RPA Outfall 002:

The need for toxicant limits is based upon a demonstration of reasonable potential to exceed water quality standards, a statistical evaluation that is conducted during every permit renewal utilizing the most recent effluent data for each outfall. The RPA is conducted in accordance with 40 CFR 122.44 (d) (i). The NC RPA procedure utilizes the following: 1) 95% Confidence Level/95% Probability; 2) assumption of zero background; 3) use of ½ detection limit for "less than" values; and 4) streamflows used for dilution consideration based on 15A NCAC 2B.0206. Effective April 6, 2016, NC began implementation of dissolved metals criteria in the RPA process in accordance with guidance titled *NPDES Implementation of Instream Dissolved Metals Standards*, dated June 10, 2016.

The current permit included monitoring for various metals to evaluate the impact from FGD wastewaters. A reasonable potential analysis was performed for arsenic, cadmium, chlorides, chromium, copper, fluoride, lead, molybdenum, nickel, selenium, silver, zinc, antimony, barium, sulfates and thallium. A reasonable potential analysis was conducted on effluent toxicant data collected between January 2011 and May 2016. Pollutants of concern for the decant wastewater included toxicants with positive detections and associated water quality standards/criteria. None of the parameters presented reasonable potential.

TOXICITY TESTING:

Current Requirement:Outfall 002 - Chronic P/F @ 7.14% using CeriodaphniaRecommended Requirement:Outfall 002 - Chronic P/F @ 7.7% using CeriodaphniaInstream waste concentration is based on the maximum monthly flow during the previous permitcycle.

This facility has passed 21 out of 21 toxicity tests during previous permit cycle.

Mercury Evaluation:

-	2011	2012	2013	2014	2015
# of Samples	18	12	12	13	12
Annual Average, ng/L	3.1	1.8	1.7	1.5	1.1
Maximum Value, ng/L	11.30	3.50	3.10	3.90	2.30
TBEL, ng/L	47				
WQBEL, ng/L	159.1				

Table 3. Mercury Data Evaluation

Annual averages are below the TBEL and WQBEL, no limit is required for mercury.

Parameter	Monitoring requirements	Changes	Basis
Flow	Monitor	No changes	15A NCAC 2B.0505
TSS	30 mg/1 MA	Daily maximum	MA - 40 CFR 423.12(b)(4)
	100 mg/1 DM	for TSS changed	DM - 40 CFR 423 (b) (9) coal pile runoff
	-	to 50 mg/L	is discharged through this outfall
Oil & Grease	15 mg/1 MA	No changes	40 CFR 423.12(b)(4)
	20 mg/1 DM		

 Table 4. Monitoring Requirements/Proposed Changes Outfall 002

Total iron	1 mg/1 MA	No changes	40 CFR 423.12(b)(5)
	1 mg/1 DM		Only monitored during discharge of
	0,		metal cleaning wastes
Total cooper	1 mg/1 MA	101 μg/1 MA	State WQ standards, 15A NCAC 2B .0200.
-	1 mg/l DM	111 µg/1 DM	Only monitored during discharge of
			metal cleaning wastes.
			Water quality limits more stringent than
			ELG.
Total chromium	Monitoring	0.2 mg/L MA	40 CFR 423.13 (d)(1)
		0.2 mg/L DM	
Total zinc	Monitoring	1.0 mg/L MA	40 CFR 423.13 (d)(1)
		1.0 mg/L DM	
Total nickel,	Monitor weekly	Eliminate	Previous permit had monitoring to
total silver		monitoring	evaluate impact from FGD. There is no
			ELG for these parameters and no
			reasonable potential to exceed wqs.
Total cadmium	Monitor weekly	Monitor Monthly	Maximum predicted concentration
Tatal aslauture	λ <i>ι</i> . 11	26 4 26 41	greater than 50% of the allowable
Total selenium,	Monthly	Monitor Monthly	Pollutant of concern for ash.
Total arsenic	monitoring Monthly	Manitan Manthla	
Total arsenic	monitoring	Monitor Monthly	Pollutant of concern for ash.
Total thallium,	No requirement	Monitor Monthly	Possonable motortial to succed EDA
total lead	Rorequitement	Montor Montiny	Reasonable potential to exceed EPA water quality criteria.
Total mercury	Monitor monthly	No changes	Pollutant of concern for ash.
Total Hardness	No requirement	Quarterly	Collect data for RPA
i otari i far affess	norequirement	monitoring	Collect data for KIA
BOD5	No requirement	30 mg/L MA	Outfall discharges treated domestic
		45 mg/L DM	wastes
Fecal Coliform	No requirement	200/100 mL MA	Outfall discharges treated domestic
	1	400/100 mL DM	wastes
Total Nitrogen	Quarterly	No changes	15A NCAC 2B .0500
Total	Monitoring		
Phosphorus	5		
pН	6 to 9 SU	No changes	State WQ standards, 15A NCAC 2B .0200

Outfall 002 - Ash Basin Dewatering

To meet the requirements of the Coal Ash Management Act of 2014, the facility needs to dewater the ash pond by removing the interstitial water and excavate the ash to deposit it in landfills. The facility's highest discharge rate from the dewatering process will be 1 MGD. The facility submitted data for the standing surface water in the ash pond, interstitial water in the ash, and interstitial ash water that was treated by filters of various sizes. To introduce a margin of safety the highest measured concentration of a parameter was used in the RPA. RPA analysis was done for arsenic, cadmium, chlorides, aluminum, TDS, copper, fluoride, lead, molybdenum, nickel, selenium, zinc, barium, sulfates and thallium. None of the parameters showed reasonable potential.

Internal Outfall 004 - FGD

This outfall is subject to the ELG in Table 5. These are new limitations promulgated November 3, 2015. The permittee has to meet the limitations as soon as possible beginning November 1, 2020 but no later than December 31, 2023.

Pollutant	Daily Maximum	Monthly Average	ELG
pH		9 SU	40 CFR 423.12 (b) (1)
TSS	100 mg/1	30 mg/1	40 CFR 423.12 (b) (11)
Oil and grease	20 mg/1	15 mg/l	40 CFR 423.12 (b) (11)
Total Arsenic	11 μg/l	8 μg/1	40 CFR 423.13 (g) (1) (i)
Total Mercury	788 ng/1	356 ng/1	40 CFR 423.13 (g) (1) (i)
Total Selenium	23 µg/1	12 µg/1	40 CFR 423.13 (g) (1) (i)
Nitrate/nitrite	17 mg/l	4.4 mg/1	40 CFR 423.13 (g) (1) (i)

Table 5. ELG Outfall 004

Schedule of Compliance for ELG:

The new rule establishes compliance dates for the new limitations. Permittee must meet limits as soon as possible beginning on November 1, 2020 but no later than December 31, 2023. Duke requested a compliance schedule to evaluate, install and test a new treatment system with a proposed compliance date of December 31, 2023. Duke estimates 22 months for technology evaluation, engineering design, and siting. 27 months are estimated for procurement, 16 for construction and 15 for startup and optimization. The permit will require compliance by December 31, 2023.

Parameter	Monitoring requirements	Changes	Basis
Flow	Monitor	No changes	15A NCAC 2B.0505
TSS	Monitor	Limits of 30 mg/1 (MA) and 100 mg/1 (DM)	40 CFR 423.13 (b) (11)
Oil and grease	No Monitor	Limits of 15 mg/l (MA) and 20 mg/l (DM)	40 CFR 423.13 (b) (11)
Total Arsenic	Monitor	Add limits of 11 μg/l daily max and 8 μg/l monthly average	40 CFR 423.13 (g) (1) (i)
Total Cadmium	Monitor	Remove monitoring	Internal outfall, not a parameter of concern.
Total Chromium	Monitor	Remove monitoring	Internal outfall, not a parameter of concern.
Chloride	Monitor	Remove monitoring	Internal outfall, not a parameter of concern.
Total Mercury	Monitor	Add limits of 788 ng/l daily max and 356 ng/l monthly average.	40 CFR 423.13 (g) (1) (i)
Total Nickel	Monitor	Remove monitoring	Internal outfall, not a parameter of concern.
Total Selenium	Monitor	Add limits of 23 μg/l daily max and 12 μg/l monthly average	40 CFR 423.13 (g) (1) (i)
Total Silver	Monitor	Remove monitoring	Internal outfall, not a parameter of concern.
Total Zinc	Monitor	Remove monitoring	Internal outfall, not a parameter of concern.

Table 6. Monitoring Requirements/Proposed Changes Outfall 004

Nitrate/Nitrite	No	Add limits of 17 mg/l	
	monitoring	daily max and 4.4 mg/l	40 CFR 423.13 (g) (1) (i)
	monitioning	monthly average	109 W

Proposed Outfalls:

Outfall 005 – New Wastewater Treatment System (WWTS)

This new outfall will discharge treated process wastewaters from the plant including low volume wastes and cooling tower blowdown. This treatment system is expected to be in place by the end of 2018. Proposed limits and monitoring requirements are described in Table 7.

Parameter	Limits/Monitoring requirements	Basis
Flow	Monitor	15A NCAC 2B.0505
TSS	30 mg/L MA	MA - 40 CFR 423.12(b)(4)
	50 mg/L DM	DM - 40 CFR 423 (b) (9) coal pile runoff is
		discharged through this outfall
Oil & Grease	15 mg/L MA	40 CFR 423.12(b)(4)
	20 mg/L DM	
Total Iron	1 mg/L MA	40 CFR 423.13 (b) (5)
	1 mg/L DM	Parameter only monitored during discharge
		of metal cleaning wastes
Total Cooper	251 µg/L MA	State WQ standards, 15A NCAC 2B .0200.
	272 μg/L DM	Parameters only monitored during discharge
		of metal cleaning wastes.
Total Chromium	0.2 mg/L MA	40 CFR 423.13 (d)(1)
	0.2 mg/L DM	
Total Zinc	1.0 mg/L MA	40 CFR 423.13 (d)(1)
	1.0 mg/L DM	
Total Hardness	Quarterly	Collect data for RPA
	Monitoring	
Total Nitrogen	Quarterly	15A NCAC 2B .0500
Total Phosphorus	Monitoring	
pH	6 to 9 SU	State WQ standards, 15A NCAC 2B .0200
BOD5	30 mg/L MA	Outfall discharges treated domestic wastes
	45 mg/L DM	
Fecal Coliform	200/100 mL MA	Outfall discharges treated domestic wastes
	400/100 mL DM	
TRC	28 µg/L DM	State WQ standards, 15A NCAC 2B .0200
Whole Effluent	Chronic toxicity test	State WQ standards, 15A NCAC 2B .0200
Toxicity	at 3.14%	
Total Cadmium,	Monitor Monthly	Only applicable if the decanting and dewatering is
Total Mercury,		discharged through the WWTS
Total Selenium,		
Total Arsenic,		
Total Thallium		

Table 7. Monitoring Requirements/Limits Proposed Outfall 005

Outfall 002B:

This outfall will discharge from the Basement Basin only during excessive rain events (100-yr 24 hr rain). The holding cell will collect stormwater runoff from Unit 6, RO reject wastewater, treated sanitary wastewater and process and stormwater from Unit 5.

Parameter	Limits/Monitoring requirements	Basis
Flow	Monitor	15A NCAC 2B.0505
TSS	30 mg/L MA 100 mg/L DM	40 CFR 423.12(b)(3)
Oil & Grease	15 mg/L MA 20 mg/L DM	40 CFR 423.12(b)(4)
Total iron	1 mg/L MA	40 CFR 423.13 (b) (5)
	1 mg/L DM	Parameter only monitored during discharge of metal cleaning wastes
Total cooper	251 μg/L MA 272 μg/L DM	State WQ standards, 15A NCAC 2B .0200. Parameters only monitored during discharge of metal cleaning wastes.
pН	6 to 9 SU	State WQ standards, 15A NCAC 2B .0200
BOD5	30 mg/L MA 45 mg/L DM	Outfall discharges treated domestic wastes
Fecal Coliform	200/100 mL MA 400/100 mL DM	Outfall discharges treated domestic wastes
Whole Effluent Toxicity	Acute episodic test	State WQ standards, 15A NCAC 2B .0200

Table 8. Monitoring Requirements/Limits Proposed Outfall 002B

Outfall 002C:

This outfall will discharge from the proposed Holding Basin only during excessive rain events (100yr 24 hr rain). The holding cell will collect stormwater, coal pile runoff, gypsum pile runoff and limestone storage area runoff and flows from the Basement Basin auxiliary basin (stormwater runoff from Unit 6, RO reject wastewater, treated sanitary wastewater and process and stormwater from Unit 5).

Table 9. Monitoring Requirements/Limits Proposed Outfall 002C

Parameter	Limits/Monitoring requirements	Basis				
Flow	Monitor	15A NCAC 2B.0505				
TSS	30 mg/L MA	MA - 40 CFR 423.12(b)(4)				
	50 mg/L DM	DM - 40 CFR 423 (b) (9) coal pile runoff is				
		discharged through this outfall				
Oil & Grease	15 mg/L MA	40 CFR 423.12(b)(4)				
	20 mg/L DM					
Total Iron	1 mg/L MA	40 CFR 423.13 (b) (5)				
	1 mg/L DM	Parameter only monitored during discharge				
		of metal cleaning wastes				
Total Cooper	102 μg/L MA	State WQ standards, 15A NCAC 2B .0200.				
_	111 µg/L DM	Parameters only monitored during discharge				
		of metal cleaning wastes.				
pН	6 to 9 SU	State WQ standards, 15A NCAC 2B .0200				
BOD5	30 mg/L MA	Outfall discharges treated domestic wastes				

	45 mg/L DM	
Fecal Coliform	200/100 mL MA	Outfall discharges treated domestic wastes
	400/100 mL DM	Ū.
Whole Effluent	Acute episodic test	State WQ standards, 15A NCAC 2B .0200
Toxicity	-	

Outfalls 104 and 106 – constructed seeps outfalls:

Two constructed seeps, Outfalls 104 and 106, discharge from the ash basin into the Broad River (104) and an UT to the Broad River (106). A Special Order by Consent ("Special Order"), EMC SOC 17-009, also addresses Outfalls 104 and 106. In this Special Order, these outfalls are called "engineered seeps." Duke Energy shall follow the requirements of the Special Order with regard to these engineered seeps, including but not limited to the requirement that if any of the engineered seeps are not dispositioned (as described in EMC SOC 17-009 § 2(c)(3)) following decanting of the ash basins (as described in EMC SOC 17-009 § 1(a)) at Rogers Energy Complex, Duke Energy shall submit an amendment to its groundwater Corrective Action Plan and/or Closure Plan for the Rogers Energy Complex Station describing how any of the non-dispositioned engineered seeps will be remediated in a manner sufficient to protect public health, safety, and welfare, the environment, and natural resources (as described in EMC SOC 17-009 § 2(d))

ID	Latitude	Longitude	Outfall number
S-4	35° 13′ 3.5″	81° 45′ 9.3″	104
S-6	35° 13′ 6.3	81° 44′ 53.7″	106

Table 10. Toe drains Coordinates and Assigned Outfall Numbers

RPA Seeps

A RPA was conducted for the seeps. RPA was conducted for total arsenic, cadmium, chlorides, total chromium, total copper, total lead, total boron, total mercury, total molybdenum, total nickel, selenium, total zinc, antimony, sulfate and total thallium. Maximum flow recorded for toe drain 104 was 0.032 mgd. The maximum flow recorded for toe drain 106 was 0.164 mgd. The flows were multiplied by a factor of safety of 10 for the RPA. Based on the RPA Outfall 106 include limits for total aluminum and total dissolved solids.

These outfalls will have monitoring requirements for fluoride, total mercury, total barium, total iron, total manganese, total zinc, total arsenic, total cadmium, total chromium, total copper, total lead, total nickel, and total selenium, chlorides, nitrate/nitrite, total dissolved solids, hardness, turbidity, conductivity and limits as described in Table 11.

Parameter	Limits/Monitoring requirements	Basis
Flow	Monitor	15A NCAC 2B.0505
pН	6.0 to 9.0 S.U.	State WQ standards, 15A NCAC 2B .0200
TSS	30 mg/1 MA 100 mg/1 DM	40 CFR 423.12(b)(4)
Oil & Grease	15 mg/1 MA 20 mg/1 DM	40 CFR 423.12(b)(4)

Table 11. Monitoring Requirements	Proposed Toe Drain Outfalls Monitoring:
-----------------------------------	---

316(b) REQUIREMENTS

The permittee shall comply with the Cooling Water Intake Structure Rule per 40 CFR 125.95. The Division approved the facility request for an alternative schedule in accordance with 40 CFR 125.95(a)(2). The permittee shall submit all the materials required by the Rule with the next renewal application.

The rule requires the Director to establish interim BTA requirements in the permit on a site-specific basis based on the Director's best professional judgment in accordance with §125.90(b) and 40 CFR 401.14. The existing closed-cycle system at REC is one of the pre-approved compliance alternatives for impingement in accordance with §125.94(c)(1). EPA also considered it as a pre-approved BTA for entrainment, but excluded it from the rule due to the cost concerns. Based on this information the DEQ has determined that the existing closed-cycle cooling system meets the requirements for an interim BTA.

316 (a) CWA

The thermal variance and temperature mixing zone once included in the permit for outfall 002 is no longer applicable. The special conditions referring to the variance and mixing zone were eliminated.

FISH TISSUE STUDIES

The facility performed fish tissue analysis for arsenic, selenium and mercury as required by the permit. The Division reviewed the information and concluded that all the fish tissue levels reported are below the Department of Health screening values.

INSTREAM MONITORING

The current permit did not require instream monitoring. The proposed permit will require monthly upstream and downstream monitoring for total arsenic, total selenium, total mercury, total chromium, dissolved lead, dissolved cadmium, dissolved copper, dissolved zinc, total bromide, total hardness (as CaCO₃), temperature, turbidity, and total dissolved solids (TDS).

SUMMARY OF CHANGES:

- 1. Eliminated outfall 002A since it has been shut down.
- 2. Added effluent pages for outfalls 002B, 002C and 005.
- 3. A separate effluent page for the dewatering of the ash ponds (Outfall 002) was added to the permit. Please see Special Condition A. (2)
- 4. Special Condition A. (24) Section 316(b) of CWA was updated to reflect the new regulations.
- 5. Special Condition A. (8) Section 316(a) Thermal Variance in the old permit was eliminated since the facility no longer requires a thermal variance.
- 6. Special Condition A. (26) Ash Pond Closure was added to the permit to facilitate the decommissioning of the ash ponds.
- 7. Special Condition A. (13) Instream Monitoring was added to the permit to monitor the impact of the discharges on the receiving stream.
- 8. Special Condition A. (25) Applicable State Law was added to the permit to meet the requirements of Senate Bill 729 (Coal Ash Management Act).
- 9. Special Condition A. (23) Domestic Wastewater Treatment Plant was added to the permit to assure compliance with the 40 CFR 133.102.
- 10. Special Condition A. (28) Electronic Reporting was added to the permit describing requirements for electronic reporting of DMRs. Starting December 21, 2016, federal regulations require electronic submittal of all discharge monitoring reports (DMRs) and specify that, if a state does not establish a

system to receive such submittals, then permittees must submit DMRs electronically to the Environmental Protection Agency (EPA).

11. Special Condition A. (29) Notification of Start-up - Outfall 005 was added to the permit.

Changes to the September 21, 2016 draft permit:

- 1. Steam Electric ELG In September 2017, the EPA delayed the implementation date for effluent guidelines for the Steam Electric Power Generating Point Source Category to allow time to revise some of the BAT limitations for FGD wastewaters and bottom ash transport water. The earliest compliance date for the FGD wastewater in §123.13(g)(1)(i) and for the bottom ash transport water in §123.13(k)(1)(i) were delayed from November 1, 2018 to November 1, 2020. A reopener was added to outfall 004 specifying that the Division may reopen the permit to implement limits as revised in the ELGs.
- Seeps Discharges Effluent Limitations and Monitoring Requirements for Outfalls 102, 103, 110, 111, 113,114, 115, 116, 117, 121, 127, 128, 129, 130, 131, and 132 were eliminated from the draft permit transmitted on September 21, 2016. The seeps will be covered under a Special Order by Consent. Constructed seeps 104 and 106 will remain in the permit.
- 3. Added monitoring for lead and TDS for dewatering and decanting in response to EPA comments.
- 4. The footnote under outfall 002 requiring physical/chemical treatment was modified to allow the installation of treatment if it is necessary.
- 5. A statement was added to condition A. (6) Effluent Limitations and Monitoring Requirements for outfall 005 to require submittal of Form 2C Parts V and VI within 180 days of commencement of operations.
- 6. Special conditions for instream sampling and fish tissue monitoring were modified to clarify requirements (See A. (13) and A. (14)).
- 7. The mixing zone for outfall 002 was removed from the permit. Recent data shows that the temperature standard is not exceeded at outfall 002. The Division does not consider that the mixing zone in the current permit is justified since the conditions are different from when the mixing zone was established.
- 8. Added limits for 126 pollutants for outfall 005 since this outfall will discharge the cooling tower blowdown.
- 9. The groundwater monitoring well construction and sampling condition was eliminated from the permit.
- 10. Special condition A. (30) Compliance Boundary was added to the permit.
- 11. The groundwater compliance boundary map was added to the permit.

Outfall 005 Temperature Mixing Zone:

Duke requested a mixing zone for temperature for Outfall 005. Outfall 005 is a proposed outfall that will discharge among other flows, the cooling tower blowdown. A Cormix analysis was developed to evaluate a mixing zone. Both summer and winter conditions were considered in the analysis. The model was run under conservative assumption such as the use of maximum design flow rate of 6 MGD for both summer and winter and a sensitivity analysis resulted in the use of the most conservative river depth.

Summer Analysis - The summer maximum effluent discharge temperature was estimated as 100°F. Maximum ambient temperature was recorded as 86.3°F.

Winter Analysis - The winter maximum effluent discharge temperature was estimated as 93.7°F. The minimum ambient temperature was 35.5°F.

The temperature water quality standard has two components: not to exceed 2.8 °C (5.04 °F) above natural background and not to exceed 32 °C (89.6 °F). The critical condition modeled for the summer was the maximum temperature. The critical condition modeled for the winter was the temperature exceedance over background conditions.

Outfall 005	
Flow	6 MGD
Max summer temperature	100 °F
Max winter temperature	93.7 °F
Outfall structure	36" pipe followed by 10
	feet wide rip rap channel

The model includes the following assumptions/inputs:

Ambient Conditions - Broad River							
Summer 7Q10	287 cfs						
Winter 7Q10	440 cfs						
Summer max temperature	86.3 °F						
Winter min temperature	35.5 °F						
Summer ΔT	3.3 °F						
Winter ΔT	58.2 °F						
River width	200 ft (60.9 m)						
River depth	2.5 ft						

Model results:

	Mixing Z	one	Dilution
	Distance downstream (x)	Plume width (y)	Dilution
Summer	130 m (426.8 ft)	37 m (121.4 ft)	4.1
Winter	145 m (476 ft)	24.5 m (80.4 ft)	10.8

A mixing zone will be implemented comprising a distance of 145 meters downstream of the outfall and 37 meters wide. The mixing zone length is maximized for the winter condition and the width is maximized for the summer condition. For both summer and winter conditions the effluent is buoyant providing for passage of fish through the mixing zone. The mixing zone shall not result in acute toxicity, prevent free passage of aquatic organisms, result in offensive conditions, produce undesirable aquatic life or result in a dominance of nuisance species outside of the assigned mixing zone; or endanger the public health or welfare.

Temperature monitoring will be implemented upstream and downstream at the edge of the mixing zone to evaluate compliance with the temperature criteria outside of the mixing zone and to verify the model predictions. If model predictions are not validated the permit will be reopened to implement more stringent requirements.

The permit includes requirements to submit a mixing zone verification study and an assessment to verify that the mixing zone does not prevent the passage of fish around the mixing zone. The assessment would include a biological component but is not intended to be a full BIP demonstration due to the greatly reduced area of the historic thermal mixing zone. The study is intended to confirm the projected impacts of the discharge that were presented in the CORMIX model.

PROPOSED SCHEDULE FOR PERMIT ISSUANCEDraft Permit to Public Notice:May 2, 2018Permit Scheduled to Issue:June 16, 2018

NPDES DIVISION CONTACT

If you have questions regarding any of the above information or on the attached permit, please contact Teresa Rodriguez at (919) 807-6387.

 NAME:
 ______TERESA RODRIGUEZ
 DATE:
 ____5/2/2018

Modifications included in the final permit:

- 1. The discharge from Outfall 106 was reclassified as discharging to a UT to the Broad River. The RPA was revised which resulted in the implementation of limits for TDS and aluminum.
- 2. Sampling frequency for metals during dewatering was modified to weekly. Total bromide monitoring was added to the monitoring requirements.
- 3. Sampling frequency for total arsenic, total mercury and total selenium during decanting was modified to weekly. Total bromide monitoring was added to the monitoring requirements.
- 4. A footnote was added for the decanting and dewatering effluent pages that requires the facility to discontinue the discharge if pollutant levels reach 85% of the allowable concentrations and to report the event to the Division.
- 5. Footnote 8 for outfall 005 was modified to clarify that monthly monitoring is required during normal operations and during decanting. In addition, the fecal coliform sample type was changed to grab.
- 6. The downstream sample location for the instream monitoring required by special condition A.(13) was modified to approximately 250 meters from the discharge.
- 7. Special condition A.(24) was modified to require the submittal of materials required by the 316(b) rule by 3.5 years from the issuance of the permit and to add language stating that the Division determined that operating and maintaining the existing Closed-cycle recirculating system meets the requirements for an interim BTA.
- 8. The Division evaluated the schedule of compliance for the FGD limits and determined that Duke did not provide sufficient justification to delay the completion of the project until December 31, 2023. The compliance date was modified to December 31, 2021.

Copper	Chromium, Total	Chromium VI	Chromium III	Total Dissolved Solids	Aluminum	Chlorides	Cadmium	Beryllium	Arsenic	Arsenic	PARAMETER	•Rogers €nergy Complex NC0005088 P 1Q10S (cfs) = 7Q10S (cfs) = 7Q10W (cfs) = 30Q2 (cfs) = Avg. Stream Flow, QA (cfs) = Receiving Stream:
NC	R	NC	NC	N	ĸ	NC	NC	NC	0	n	(1) ₽E	Fi Qw (MGD) = 1Q10S (cfs) = 2010W (cfs) = 30Q2 (cfs) = 30Q2 (cfs) = w, QA (cfs) = w, QA (cfs) =
7.8806		=	117.7325	500	6.5	250	0.5899	6.5	10	150	NC STAN Chronic	Freshwater RPA - 1.00 232.54 287.00 287.00 440.00 1460.00 1460.00 1. NO HUC NUMBER
FW(7Q10s)		FW(7Q10s)	FW(7Q10s)	WS(7Q10s)	WS(7Q10s)	WS(7Q10s)	FW(7Q10s)	FW(7Q10s)	HH/WS(Qavg)	FW(7Q10s)	NC STANDARDS OR EPA CRITERIA Dhronic Applied Acute Standard Acute	ATA
10,4720		16	905.0818				3.2396	65		340	ACRITERIA Acute	5% Probab MAXIMU
			-			н				_	PQL	M DA
ug/L	n T/âri	µg/L	J/âni	mg/L	mg/L N	mg/L	ug/L N	ug/L	ug/L N	ug/L	UNITS	5% C. TA F
8 8 Note: n≤9	I I Note: n ≤ 9 Limited data se	0	0	1 I Note: n ≤ 9 Limited data se	l 1 Note: n ≤ 9 Limited data se	29 28	1 0 Note: n ≤ 9 Limited data se	0 0	ı Note: n ≤ 9 Limited data se	-	n #Det.	> 5% Probability/95% Confidence Usin MAXIMUM DATA POINTS = 58 WWTPA IWC% @ IWC% @ IWC% @ IWC% IWC% @ IWC% B IWC%
326.80 Default C.V.	FALSE 372.0 Default C.V.	N/A	N/A	2,728.0 Default C.V.	403.0 Default C.V.	109.4	NO DETECTS	N/A	3,300.0 Default C V	2	REASONABLE POTENTIAL RESULTS L. Max Pred Cw Allowal	≥ 95% Probability/95% Confidence Using Metal Translators MAXIMUM DATA POINTS = 58 WWTP/WTP Class: IWC% @ 1010S = 0.662138494 IWC% @ 7010S = 0.537168602 IWC% @ 7010W = 0.351036123 IWC% @ 3002 = N/A IW%C @ 0A = 0.106051794 Stream Class: WS-IV
Acute:	Max reported value = 60	Acute:	Acute:	Acute: NO WQS Chronic: 93,080.6 No value > Allowable Cw	Acute: 	Acute: NO Wo Chronic: 46,540 No value > Allowable Cw	Acute: 	Acute:	Chronic (FW): 27,924.2 <u>No value > Allowable Cw</u> <u>Chronic (HH): 9,429.4</u> <u>No value > Allowable Cw</u>	Acute (FW):	ENTIAL RESULTS Allowable Cw	Translator: 0.662138494 0.537168602 0.351036123 N/A 0.106051794 WS-IV
1,581.54 	1 value = 60	2,416.4 	136,690.7 21,917.2	NO WQS 93,080.6 wable Cw	NO WQS 1,210.0 wable Cw	NO WQS 46,540.3 wable Cw	489.265 	9,816.68 <u>1,210.05</u>	27,924.2 <u>wable Cw</u> 9,429.4 wable Cw	51,348.8	ble Cw	G G
No RP	No RP			No RP	No RP	No RP	No Rp			No RP	RECOMMENDED ACTION	Outfall 002 - Dewatering Qw = 1 MGD COMBINED HARDNESS (mg/L) Acute = 25 mg/L Chronic = 25 mg/L

Page 1 of 2

5088 RPA outfall 002 dewater 2_2018.xlsm, rpa 4/23/2018

l,

Freshwater RPA - 95% Probability/95% Confidence Using Metal Translators

1

н • •

MAXIMUM DATA POINTS = 58

REQUIRED DATA ENTRY

POL

Units

ug/L

ug/L

ug/L ug/L

CHECK TO APPLY MODEL Flow, Qw (MGD) Data Source(s) **Combined Hardness Acute** 7Q10w (cfs) Apply WS Hardness WQC Stream Class **HUC Number Receiving Stream** WWTP/WTP Class **Facility Name Combined Hardness Chronic** Effluent Hardness 1Q10s (cfs) QA (cfs) 30Q2 (cfs) 7Q10s (cfs) Outfall **NPDES Permit** Upstream Hardness Table 1. Project Information Data collected: 6/17/15, 6/23/16, 9/9/15, 4/13/16, 6/20/16, 12/19/16, 2/13/17, 5/16/17 CHECK IF HOW OR ORW WQS Rogers Energy Complex 002 - Dewatering 25 mg/L (Avg) 25 mg/L (Avg) Broad River NC0005088 25 mg/L 25 mg/L 232.54 1460.00 287.00 WS-IV 440.00 1.000 0 Ð Par05 Par12 Par11 Par10 Par13 Par09 Par04 Par23 Par22 Par21 Par20 Par19 Par18 Par17 Par16 Par15 Par14 Par08 Par07 Par06 Par03 Par02 Par01 Total Dissolved Solids Chromium, Total Chromium VI Chromium III Molybdenum Antimony Mercury Barium Selenium Aluminum Chlorides Cadmium Beryllium Cyanide Fluoride Copper Arsenic Boron Nickel Arsenic Zinc Nickel Lead Name Table 2. Parameters of Concern Human Health Water Supply Aquatic Life Aquatic Life Aquaotic Life Aquatic Life Aqualic Life Aquatic Life WQS NC N NC NC NC NC NC NC NC R NC NC NC NC NO Туре NC NC NC NC NO NC 0 0 117.7325 126.7335 37.2313 0.5899 Chronic 25.0000 2.9416 7.8806 1,800 NIA 500 6.5 250 150 160 5.6 6.5 12 10 ch cn 1 HHMS Modifier F WS FW FW FW FW FW WS FW FW WS SM FW FW FX FW WS SM FW FW WS FW 335.2087 905.0818 125.7052 75.4871 10.4720 3.2396 Acute 340 NIA NIA 56 NIA 22 16 8

0.5

1/Bn

ug/L

10

l/gu

/Bn

ug/L

hg/L

mgilt Ing/l mg/l

ug/L

µg/L

5088 RPA outfall 002 dewater 2_2018.xlsm, input 4/23/2018

Par24

Sulfates

Water Supply

NC

250

Hg/L mg/L hg/L ug/L I/Buu ug/L Hg/L hg/L ब ब्र_ू -

-11					Use "PASTE SPECIAL							Use "PASTE SPECIA	
	Effluent Hardness					Values" then "COPY" .	Upstream Hardness						Values" then "COPY" Maximum data point
1 1 2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 22 24 25 22 22 30 31 32 33 34 5 36 7 38 39 40 41 42 34 44 46 7 8 90 15 25 35 55<	Date	Data	25	BDL=1/2DL 25	ess Results Std Dev. Mean C.V. (default) n 10th Per value Average Value Max. Value	Values" then "COPY". Maximum data points = 58 0.0000 25.0000 0.6000 1 25.00 mg/L		Date	Data	25	BDL=1/2DL 25	Results Std Dev. Mean C.V. (default) n 10th Per value Average Value Max. Value	Values" then "COPY" Maximum data point = 58 0,0000 25,0000 0,6000 1 25.00 mg/I

	Par02 Arsenic							
	_	Maximum data poin = 58						
Date	Data 543	BDL=1/2DL 543	Results Std Dev. Mean C.V. (default) n	0.0000 543.0000 0.6000 1				
			Mult Factor = Max. Value Max. Pred Cw	6.20 543.0 ug/L 3366.6 ug/L				
			i					

-

۰۰. ۲

Par04					Use "PASTE SPECIAL	Par05	Use "PASTE SP					
			Values" then "COPY" . Maximum data points		Values" then "C Maximum data p							
	Dete	Dete		Beeulte	= 58		Data	Data		BDL=1/2DL	Results	58
1	Date	Data <	BDL=1/2DL 1 0.5	Results Std Dev.	0.0000	1	Date	Data	56	56	Std Dev.	18,705
2		-	0.5	Mean	0.5000	2			28.6	28.6	Mean	45.
3				C.V. (default)	0.6000	3		<	20.0	0.5	C.V.	0.409
4				n	1	4		20	27.6	27.6	n	2
5				н	'	5			40	40		-
6				Mult Factor =	6.20	6			51.9	51.9	Mult Factor =	1.:
7				Max. Value	0.500 ug/L	7			57.5	57.5	Max. Value	95.
8					O DETECTS ug/L	8			55.8	55.8	Max. Pred Cw	109.
9				Max. Theo Ow	O DETECTO Ugit	9			47.6	47.6		
10						10			29.9	29.9		
11						11			33.8	33.8		
12						12			36.6	36.6		
13						13			33,9	33.9		
14						14			32.5	32.5		
15						15			30.8	30.8		
16						16			31.1	31.1		
17						17			52.7	52.7		
18						18			67.8	67.8		
19						19			47.1	47.1		
20						20			54.3	54.3		
21						21			58.3	58.3		
22						22			47.7	47.7		
23						23			52.7	52.7		
24						24						
25						25						
26						26			41.1	41.1		
27						27			70	70		
28						28			95,1	95.1		
29						29			80.2	80.2		
30						30			34	34		
31						31			28.8	28,8		
32						32						
33						33						
34						34						
35						35						
36						36						
37						37						
38						38						
39						39						
40						40						
41						41						
42						42						
43						43						
44						44						
45						45						
46						46 47						
47												
48						48						
49						49						
50						51						
51						52						
20						52						
03 54						54						
04						55						
50						56						
50						57						
50						59						
50 51 52 53 54 55 56 57 58						49 50 51 52 53 54 55 56 57 58						

ц.	Par06						Use "PASTE SPECIAL	Par07					Use "PAST
					Aluminum		Values" then "COPY" . Maximum data points			Total	Dissolved	Solids	Values" the Maximum d
	1 2 3 4 5	Date	Data	65	BDL=1/2DL 65	Results Std Dev. Mean C.V. (default) n	= 58 0.0000 65.0000 0.6000 1	1 2 3 4 5	Date	Data 440	BDL=1/2DL 440	Results Std Dev. Mean C.V. (default) n	0.00 440.00 0.60
	6 7 8 9 10 11 12 13 14 15 16 17 18					Mult Factor = Max, Value Max. Pred Cw	6.20 65.0 mg/L 403.0 mg/L	6 7 8 9 10 11 12 13 14 15 16 17 18				Mult Factor = Max. Value Max. Pred Cw	6 44 272
	19 20 21 22 23 24 25 26 27 28 29							19 20 21 22 23 24 25 26 27 28 29					
	30 31 32 33 34 35 36 37 38 39 40							30 31 32 33 34 35 36 37 38 39 40					
	41 42 43 44 45 46 47 48 49							41 42 43 44 45 46 47 48 49		•			
	50 51 52 53 54 55 56 57 58							50 51 52 53 54 55 56 57 58					

. . . .

Parto	J				Use "PASTE SPECIAL	Pa11					Use "PAST
		Ch	romium, To	otal	Values" then "COPY". Maximum data points				Copper		Values" the Maximum
	Date	Data	BDL=1/2DL	Results	= 58		Date	Data	BDL=1/2DL	Results	
1 1	Date	60		Std Dev.	0.0000	1		172	172	Std Dev.	60.2
2				Mean	60.0000	2		1	1	Mean	22.8
3				C.V. (default)	0.6000	3				C.V. (default)	0.6
4				n	1	4		1.3	1.3	n	
5						5		1.4			
6				Mult Factor =	6.20	6				Mult Factor =	
7				Max, Value	60.0 µg/L	7				Max. Value	173
8				Max. Pred Cw	372.0 µg/L	8		0.55	0.55	Max. Pred Cw	
9						9		1.1			
10						10		0.83			
11						11		4.4			
12						12					
13						13					
14						14					
15						15					
						16					
16						17					
18						18					
19						19					
20						20					
20						21					
						22					
22						23					
23						23					
24						24					
25						20					
26											
27						27 28					
28						29					
29						30					
30						31					
31											
32						32					
33						33					
34						34					
35						35					
36						36					
37						37					
38						38					
39						39					
40						40					
41						41					
42						42					
43						43					
44						44					
45						45					
46						46					
47						47					
48						48					
49						49					
50						50					
51						51 52					
52						52					
51 52 53 54						53					
54						53 54 55 56 57 58					
55 56 57 58						55					
56						56					
57						67					

Par13					Use "PASTE SPECIAL	Par14						Use "PAST
			Fluoride		Values" then "COPY" Maximum data points	1				Lead		Values" the Maximum
	Date	Data	BDL=1/2DL	Results	= 58		Date			BDL=1/2DL	Desults	=
1 1	Putt	0.38	0.38	Std Dev.	0.0000	1	Date		80	BDL=1/2DL 80	Results Std Dev.	16.2
2				Mean	0.3800	2			0.46	0.46	Mean	3.66
3				C.V. (default)	0.6000	3			0.2	0.2	C.V.	4.43
4				n	1	4			0.3	0.3	n	
5						5			0.37	0.37		
6				Mult Factor =	6.20	6			0.14	0.14	Mult Factor =	2
7				Max. Value	0.4 ug/L	7			0.13	0,13	Max. Value	80.
8				Max, Pred Cw	2.4 ug/L	8			0.23	0.23	Max. Pred Cw	176.
9						9			0.55	0.55		
10						10			0.27	0.27		
11						11			1.9	1.9		
12 13						12			0.23	0.23		
14						13		<	1	0.5		
15						14		<	1	0.5		
16						15			0.12	0.12		
17						16			0.18	0.18		
18						17 18		<	0.1	0.05		
19						19			0.41	0.41		
20						20			0.1	0.1		
21						21		<	1	0.5		
22						22		<	1	0.5		
23						23			0.16	0.16		
24						24			0.11	0.11		
25						25		<	0.1	0.05		
26						26			0.1	0.00		
27						27						
28						28						
29						29						
30					1	30						
31						31						
32						32						
33						33						
34						34						
35 36						35						
37						36						
38						37						
39						38 39						
40						39 40						
41						40						
42					1	42						
43						43						
44						44						
45						45						
46						46						
47						47						
48						48						
49						49						
50						50						
51					1	51						
52						52						
53						53						
54						54						
55 56						55						
56						56						
57 58						57 58						

- .

)e:

- ··

Par15	_				Use "PASTE SPECIAL	Par16					Use "PAST
			Mercury		Values" then "COPY" Maximum data points			N	lolybdenur	n	Values" the Maximum
	Date	Data	BDL=1/2DL	Results	= 58		Date	Data	BDL=1/2DL	Results	=
1	Date		39 39	Std Dev.	0,0000	1	Date	2750	2750	Std Dev.	568.7
2			00 00	Mean	39.0000	2		53,9	53.9	Mean	469.3
3				C.V. (default)	0.6000	3		98,8	98.8	C.V.	1.2
4					1	4		25.1	25.1	n	1,4
				n	1				63.4	11	
5						5		63.4			
6				Mult Factor =	6.20	6		69.7	69.7	Mult Factor =	
7				Max. Value	39.0 ng/L	7		79.1	79.1	Max. Value	27
8				Max. Pred Cw	241,8 ng/L	8		95.2	95.2	Max. Pred Cw	370
9						9		39.7	39.7		
10						10		166	166		
11						11		180	180		
12						12		161	161		
13						13		160	160		
14						14		167	167		
15						15		181	181		
16						16		168	168		
17						17		948	948		
18						18		1250	1250		
19						19		745	745		
20						20		936	936		
21						21		813	813		
22						22		902	902		
23						23		773	773		
24						24		876	876		
25						25					
26						26		1020	1020		
27						27		172	172		
28						28		164	164		
29						29		389	389		
30						30		269	269		
31						31		366	366		
32						32					
33						33					
34						34					
35						35					
36						36					
37						37					
3/						37					
38						38					
39						39					
40						40					
41						41					
42						42					
43						43					
44						44					
45						45					
46						46					
47						47					
48						48					
49											
50						4 9 50					
50						50					
51						51					
52						52					
53						53 54 55					
54						54					
55						55					
56						56					
57 58						57 58					
					14	50					

AL P		& Par18					Use "PASTE SPECIAL Values" then "COPY".	Par19				
nts					Nickel		Maximum data points				Selenium	
	1 2	Date	Da	ta 72 2.3	BDL=1/2DL 72 2.3	Results Std Dev. Mean	= 58 13.2869 5.2500	1	Date	Data 21.5	BDL=1/2DL 21,5	Results Std Dev. Mean
	3 4			1.9 6.2	1.9 6.2	C.V. n	2.5308 28	3				C.V.
	5			6,8	6.8		20	5		6.6 4.4		n
L	6 7			3 1.7	3 1.7	Mult Factor = Max. Value	1.69 72.0 µg/L	67		2.7 2.3	2.7 2.3	Mult Factor
	8			10.3	10.3	Max. Pred Cw	121.7 µg/L	8		1.4	1.4	Max. Pred C
	9 10			3	3			9 10		1.6 1.5	1.6 1.5	
	11			1.2	1.2			11		0.76	0.76	
	12 13			0.74 8.2	0.74 8.2			12 13		0.56	0.56	
	14			0.96	0.96			14		10	10	
	15 16			1.3	1.3			15 16		11.6 0.56	11. 6 0.56	
	17			3.5	3.5			17		0.69	0.69	
	18 19		<	1.9 5	1.9 2.5			18 19		0.76	0,76	
	20		<	5	2.5			20				
	21 22			1.8 2.8	1.8 2.8			21 22				
	23			2	2			23				
	24 25			1.4	1.4			24 25				
	26			0.83	0.83			26				
	27 28		< <	5 5	2.5 2.5			27 28				
	29			0.97	0,97			29				
	30 31			1.1 1.1	1.1 1.1			30 31				
	32				1.1			32				
	33 34							33 34				
	35							35				
	36 37							36				
	38							37 38				
	39 40							39				
	40 41							40 41				
	42							42				
	43 44							43 44				
4	45							45				
	46 47							46 47				
4	48							48				
	49 50							49 50				
1 5	51							51				
	52 53							52				
1.6	54							53 54				
1.5	55							55				
	56 57							56 57				
1 5	58						1	58				

× _

• •

. ..

"PASTE SPECIAL- es" then "COPY".	Par20	_	_			Use "PASTE SPECIAL Values" then "COPY"	Par21				
imum data points				Boron		Maximum data points	1			Zinc	
= 58 5.8718 4.4620 1.3160	1 2 2	Date	Data	BDL=1/2DL	Results Std Dev. Mean	= 58 2.6957 3.3556 0.9929	1 2	Date	Data 0.158	BDL=1/2DL 0,158	Results Std Dev. Mean
15	3 4 5		< 0.0 3.5		C.V. n	0.8033 28	3 4 5				C.V. (default) n
2.09 21.5 ug/L 44.9 ug/L	6 7 8 9		3.1 2.9 2.4 2.4	8 3.18 9 2.99 5 2.46	Mult Factor = Max. Value Max. Pred Cw	1.30 11.300 mg/l 14.690 mg/l	6 7 8 9				Mult Factor Max. Value Max. Pred C
	10 11 12 13		3.0 0.9 0.9 0.89	2 0.92 7 0.97			10 11 12 13				
	14 15 16 17		0.94 0.98 1.0 0.97	0.948 4 0.984 1 1.01			14 15 16 17				
	18 19 20		3. 4. 2.9	3 3.3 5 4.6 1 2.94			18 19 20				
	21 22 23 24		3.3 3.8 4.0 3.4	5 3,85 5 4.05			21 22 23 24				
	25 26 27 28		11.3 1,9				25 26 27 28				
	29 30 31		2.14 3.35 7.56	2.14 3.35 7.56			29 30 31				
	32 33 34 35		9.2	3 9.23			32 33 34 35				
	36 37 38 39						36 37 38 39				
	40 41 42						40 41 42				
	43 44 45 46						43 44 45 46				
	40 47 48 49						47 48 49				
	50 51 52						50 51 52				
	53 54 55 56						53 54 55 56				
	57 58					-	56 57 58				

. "PASTE SPECIAL	Par22						Use "PASTE SPECIAL	Par23			
ues" then "COPY" . minum data points					Antimony		Values" then "COPY" . Maximum data points				Barium
= 58		Date	Data		BDL=1/2DL	Results	= 58				
0.0000	1	Date	Data	4,9	4.9	Std Dev.	1.4087	1	Date	Data	BDL=1/2DL
0.1580	2		<	0.39	0.195	Mean	1.8353	2			29 1.29
0.6000	3			0.63	0.63	C.V.	0.7675	3			07 0.07
1	4		<	5	2.5	n	30	4			
	5		<	5	2.5		30	5		0.07	
6.20	6			0.52	0.52	Mult Factor =	1.26	6		0.07	
0.2 ug/L	7			0.55	0.55	Max. Value	4.900000 µg/L	6 7		0.05	
1.0 ug/L	8			0.68	0.68	Max. Pred Cw	6.174000 µg/L	8		0.05	
-	9		<	0.39	0.195	inder i fou off	0.114000 рус	9		0.07	
	10			3.3	3.3			10		0.07	
	11			4.2	4.2			11		0.	
	12			3.1	3.1			12		0.1	
	13			3.4	3.4			13		0.1	
	14			3.6	3.6			14		0.1	
	15			4.4	4.4			15		0.1	
	16			3.5	3.5			16			
	17			1	1			17		0.1	
	18			0.64	0.64			18		0.2	
	19		<	5	2.5			19		0.19	
	20		<	5	2.5			20		0.23	
	21			0.83	0.83			21		0.23	
	22			1	1			22		0.25	
	23			0.81	0.81			23		0.2	
	24			0.72	0.72			24		0.2	
	25				0.72			24		0.1	0.15
	26			0.61	0.61			26		0.2	4 0.24
	27		<	2.6	1.3			27		0.14	
	28		<	3.8	1.9			28		0.14	
	29			1.7	1.7			29			
	30			0.58	0.58			30		0.27	
	31			0.8	0.8			31		0.2	
	32						1	32		0.2	.5 0.23
	33							33			
	34							34			
	35							34 35			
	36							36			
	37							30			
	38							38			
	39							39			
	40							40			
	41							41			
	42							42			
	43						1	43			
	44							44			
	45							45			
	46							46			
1	47							47			
	48							48			
1	49							49			
1	50							50			
	51							51			
	52							52			
	53							53			
	54							54			
	55							55			
	56							56			
	57							57			
	58										

۰ ۲.

. .

• 3

	Use "PASTE SPECIAL	Par24						Use "PASTE SPECIAL	Par25				
	Values" then "COPY", Maximum data points					Sulfates		Values" then "COPY". Maximum data points					Thallum
Results	= 58		Dete	Dete			D	= 58	1				
Std Dev.	0.2185	1	Date	Data	712	BDL=1/2DL 712	Results Std Dev.	025 5040	1.1	Date	Data		BDL=1/2DL
Mean	0.2131	2		<				235.5910	1			7.08	
C.V.	1.0250	3		-	1060	0.5	Mean	201.0724	2			0,56	0.56
					1060		C.V.	1.1717	3			0.6	0.6
1	30	4			487	487	n	29	4			0.77	0.77
4 - H F 4		5			532				5			0.75	0.75
Ault Factor =	1.33	6			234	234	Mult Factor =	1.39	6			0.69	0.69
lax. Value	1.290000 mg/L	7			231	231	Max. Value	######################################	7			0.5	0,5
lax. Pred Cw	1.715700 mg/L	8			439	439	Max. Pred Cw	######################################	8			0.47	0.47
		9			76.3	76.3			9			0.76	0.76
		10			79,8	79.8			10			0.24	0.24
		11			76	76			11			0.12	0.12
		12			72	72			12			0.093	0.093
		13			67.8	67.8			13			0.11	0.11
		14			70,6	70.6			14			0.11	0.11
		15			68.3	68.3			15			0.1	0.1
		16			105	105			16			0.085	0.085
		17			118	118			17			0.18	0.18
		18			111	111			18			0.11	0.11
		19			98.2	98.2			19		<	1	0.5
		20			74.6	74,6			20		<	1	0.5
		21			72.2	72.2			21			0.095	0.095
		22			70.9	70.9			22			0.13	0.13
		23			172	172			23			0.069	0.069
		24							24			0.04	0.04
		25			307	307			25			0.04	0.04
		26			95.1	95.1			26			0.023	0.023
	1	27			99.3	99.3			27		<	0.020	0.025
		28			127	127			28		-	0,54	
		29			107	107			29				0.54
		30		<	135	67,5		,				0.25	0.25
		31		-	135	67,5			30		1.1	0.063	0,063
									31		100		
		32							32				
		33							33				
		34							34				
		35							35				
		36							36				
		37							37				
	1	38							38				
		39							39				
		40							40				
		41							41				
		42							42				
		43							43				
		44							44				
		45							45				
		46							46				
		47							40				
		48											
		40 49							48				
		49 50							49				
								1	50				
		51							51				
		52							52				
		53							53				
		54							54				
		55							55				
		56							56				
		57							57				
		58											

. * . .

.

....

Results	Use "PASTE SPECIAl Values" then "COPY" Maximum data point = 58
Std Dev. Mean C.V. n	1.2806 0.5530 2.3156 29
Muit Factor = Max. Value Max. Pred Cw	1.62 7.080000 μg/L 11.469600 μg/L

сж. •

.

۶.

Copper	Chromium, Total	Chromium VI	Chromium III	Total Dissolved Solids	Aluminum	Chlorides	Cadmium	Beryllium	Arsenic		PARAMETER	Qw (MGD) = 15.15 1Q10S (cfs) = 232.54 7Q10S (cfs) = 287.00 7Q10W (cfs) = 440.00 30Q2 (cfs) = NO 30Q2 DATA 30Q2 (cfs) = 1460.00 Receiving Stream: NO HUC NUMBER
×C	NC	NC	ĸ	NC NC	ĸ	NC	NC	ĸ	ი ი	3	Ť.	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
7.8806		=	117.7325	500	6.5	250	0.5899	6.5	150 10	Chronic	NC STAN	15.15 232.54 287.00 440.00 NO 30Q2 DATA 1460.00 NO HUC NUMB
FW(7Q10s)		FW(7Q10s)	FW(7Q10s)	WS(7Q10s)	WS(7Q10s)	WS(7Q10s)	FW(7Q10s)	FW(7Q10s)	FW(7Q10s) HH/WS(Qavg)	Applied Standard	NC STANDARDS OR EPA CRITERIA	ATA JMBER
10.4720		16	905.0818				3.2396	65	340	Acute	CRITERIA	
	-									PQL	-	
ug/L	Дgң	μgμ	μgμ	mg/L No	mg/L No	mg/L No Li	ug/L	ug/L	ug/L ug/L		rs	
16 11	Tot Cr value(s) 58 26	0 0	0 0	1 1 Note: n ≤ 9 Limited data set	1 1 Note: n ≤ 9 Limited data set	1 1 Note: n ≤ 9 Limited data set	58 15	0 0	58 58	n #Det.	짇	I W
18.48	< 50 and < Cr V 15.4	N/A	N/A	1,178.0 Default C.V.	0.8 Default C.V.	239.9 Default C.V.	4.830	N/A	139.0	Max Pred Cw	REASONABLE POTENTIAL RESULTS	WWTP/WTP Class: IWC% @ 1Q10S = 9.1720 IWC% @ 7Q10S = 7.5632 IWC% @ 7Q10W = 5.0665 IWC% @ 30Q2 = NIA IW%C @ QA = 1.5829 Stream Class: WS-IV
Acute:	Allowable Cw Max reported value = 15.4	Acute: 	Acute:	Acute: NO W(Acute: NO W(Acute: NO W(Acute: 35.320 Chronic: 7.799 No value > Allowable Cw	Acute:	Chronic (FW): 1,983.3 Chronic (FW): 1,983.3 No value > Allowable Cw 631.7 Chronic (HH): 631.7 No value > Allowable Cw 831.7	Allowable Cw	ENTIAL RESULTS	9.172045426 7.563228201 5.066534335 N/A 1.582930705 WS-IV
114.17	value = 15.4	174.4 <u>145.4</u>	9,867.8 	NO WQS 6,610.9 wable Cw	NO WQS 	NO WQS 3,305.5 wable Cw	35.320 7.799	708.68 	1,983.3 1,983.3 Wable Cw Wable Cw	l 🕺		
No RP	No RP			No RP	No RP	No RP	No RP, > 50% monitor		No RP		RECOMMENDED ACTION	COMBINED HARDNESS (mg/L) Acute = 25 mg/L Chronic = 25 mg/L YOU HAVE DESIGNATED THIS RECEIVING STREAM AS WATER SUPPLY Effluent Hard: 0 value > 100 mg/L Effluent Hard Avg = 25 mg/L

Page 1 of 2

5088 RPA outfall 002 decanting.xlsm, rpa 4/23/2018

٣

۵

Rogers Energy Complex NC0005088

Freshwater RPA - 95% Probability/95% Confidence Using Metal Translators MAXIMUM DATA POINTS = 58 N Outfall 002 (decanting/normal operations)al TranslatorsQw = 15.15 MGD

	5088
	RPA
	outfall
	002
4/23/2018	decanting.xlsm, rpa

Page 2 of 2

	Thallum		Suffates		Barium		Antimony		Zinc		Silver		Selenium	NICKE	N2 - 1 - 1	Nickel		Molybdenum		Mercury		Lead		Fluoride		Rogers Energy Complex NC0005088
	NC		NC		NC		NC		NC		NC		NC	NC		NC		NC		NC		NC		NC		_ 77
	2		250		1		5.6		126.7335		0.06		S	25.0000		37.2313		160		12		2.9416		1800		reshwate
	WS(7Q10s)		WS(7Q10s)		WS(7Q10s)		WS(7Q10s)		FW(7Q10s)		FW(7Q10s)		FW(7Q10s)	WS(7Q10s)		FW(7Q10s)		WS(7Q10s)		FW(7010s)		FW(7Q10s)		FW(7Q10s)		r RPA - 9
									125.7052		0.29639789		56			335.2087						75.4871				5% Probab
	_						_											_		0.5						≥ ility/9
-	ገ/ân		mg/L	ΓZ	mg/L	H 7	Д/ди		ug/L		ug/L		ug/L	J/βri		μg/L	11 7	ug/L	0	ng/L		ug/L		ug/L		5% Co
	15 14		15 15	Note: n≤9 Limited data set	1 1	Note: n≤9 Limited data set	1 1		58 40		58 0		58 58		58 58		Note: n ≤ 9 Limited data set	1		0 0		13 10	Note: n ≤ 9 Limited data set	1 1		onfidence
	5.23260		128.87100	Default C.V.	0.39680	Default C.V.	7.25400		42.2		NO DETECTS		42.3		11.1		Default C.V	93.0		N/A		6.390	Default C.V.	0,8		► Outfall 00 Freshwater RPA - 95% Probability/95% Confidence Using Metal Translators
Chronic: 26.443 No value > Allowable Cw	Acute:	Chronic: 3305.46 No value > Allowable Cw	Acute:	Chronic: 13.2218 No value > Allowable Cw	Acute:	Chronic: 74.042 No value > Allowable Cw	Acute:	Chronic: 1,675. No value > Allowable Cw	Acute:	Chronic: Max MDL = 1	Acute: 3.2	Chronic: No value > All	Acute:	Chronic (WS): 330.5 No value > Allowable Cw	Chronic (FW): No value > Allo	Acute (FW):	Chronic: 2,115. No value > Allowable Cw	Acute:	Chronic:	Acute:	Chronic: 38.89 No value > Allowable Cw	Acute:	Chronic: No value > Allowal	Acute:	Chronic: No value > All	Outfall 0 Translator
26.44373 owable Cw	NO WQS	3305.46684 owable Cw	NO WQS	13.22187 owable Cw	NO WQS	74.04246 owable Cw	NO WQS	1,675.7 owable Cw	1,370.5	0.8	3.2	66.1 owable Cw		330.5 owable Cw	492.3 owable Cw		2,115.5 owable Cw	NO WQS	158.7	NO WQS	38.894 owable Cw		23,799.4 owable Cw	NO WQS	104.20 owable Cw	02 (deca s
	No RP		No RP		No RP		No RP		No RP		No RP		No RP, > 50% monitor			No RP		No RP				No RP		No RP		Outfall 002 (decanting/normal operations)

Follow dire comment i dropdown				LICHECK TO APPLY MODEL	Data Source(s)	Combined Hardness Acute	Combined Hardness Chronic	Upstream Hardness	Effluent Hardness	1Q10s (cfs)	QA (cfs)	30Q2 (cfs)	7Q10w (cfs)	7Q10s (cfs)	Apply WS Hardness WQC	Stream Class	HUC Number	Receiving Stream	Flow, Qw (MGD)	Outfall 00	NPDES Permit	WWTP/WTP Class	Facility Name		Table 1. Project Information			Fres	
Follow directions for data entry. In some cases a comment menu list the available choices or a dropdown menu will provide a list you may select from. Error message occur if data entry does not						25 mg/L	25 mg/L	25 mg/L (Avg)	25 mg/L (Avg)	232.54	1460.00		440.00	287.00		WS-IV		Broad River	15.150	002 (decanting/normal operations)	NC0005088		Rogers Energy Complex	CHECK IF HOW OR ORW WQS	t Information		MAXIMUM DATA POINTS = 58	Freshwater RPA - 95% Probabil	
Par24 Par25	Par23	Par22	Par21	Par20	Par19	Par18	Par17	Par16	Par15	Par14	C Part3	C Par12	Par11	Par10	Par09	Par08	Par07	Par06	C Par05	Par04	Par03	Par02	Par01			REQUIRED DATA ENTRY	A POINTS =	lity/95% Co	
Sulfates Thallum	Barium	Antimony	Zinc	Silver	Selenium	Nickel	Nickel	Molybdenum	Mercury	Lead	Fluoride	Cyanide	Copper	Chromium, Total	Chromium VI	Chromium III	Total Dissolved Solids	Aluminum	Chlorides	Cadmium	Beryllium	Arsenic	Arsenic	Name	Table 2.	DATA ENTRY		95% Probability/95% Confidence Using Metal T	
Water Supply Water Supply	Water Supply	Water Supply	Aquatic Life	Aquatic Life	Aquatic Life	Water Supply	Aquatic Life	Water Supply	Aquatic Life	Aquatic Life	Aquatic Life	Aquatic Life	Aquatic Life	Aquatic Life	Aquatic Life	Aquatic Life	Water Supply	Water Supply	Water Supply	Aquatic Life	Aquatic Life	Human Health Water Supply	Aquadic Life	WQS	. Parameters of Concern		and the second	Metal Translators	
NC	NC	R	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	С	0	Туре	ers of				
250 2	-	5.6	126.7335	0.06	57	25.0000	37.2313	160	12	2.9416	1,800	5	7.8806	N/A	11	117.7325	500	6.5	250	0.5899	6.5	10	150	Chronic	. Concer				
SM	SM	WS	FW	FW	FW	WS	FW	SM	FW	FW	FW	N.H.	FW	FW	FW	FW	SM	SM	SM	FW	FW	HHIVWS	FW	Modifier	n				
			125.7052	0.2964	56	N/A	335.2087			75.4871		22	10.4720	N/A	16	905.0818				3.2396	65	NIA	340	Acute					
									0.5			10												PQL					
hg/L	mg/L	Hg/L	ug/L	ug/L	ug/L	Hg/L	µg/L	ug/L	ng/L	ug/L	ug/L	LI/Gh	ug/L	µg/L	hg/L	ug/L	mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	Units					

5088 RPA outfall 002 decanting.xlsm, input 4/23/2018

, 1 , -

w

			Date Data BDL=1/2DL 25 25	Effluent Hardness	
Max. Value	n 10th Per value Average Value		Results Std Dev.		
	1 25.00 mg/L 25.00 mg/L	25.0000	0.0000	Maximum data points	100
Ÿ\$		- ωN -			
			Date		
			Data		
			25 B	Upstre	
			BDL=1/2DL 25	am Ha	:
Max. Value	n 10th Per value Averace Value		L Results	Upstream Hardness	
	1 25.00 mg/L 25.00 mg/L	25.0000 0.6000	0.0000	Maximum data points	Values" then "CODV"
٥ ٥ ٥					
116/2012 116/2012 116/2012 116/2012 117/2012 117/2012 117/2012 117/2013 117/2013 117/2013 117/2013 117/2013 117/2014 117/20	7/3/2012 7/3/2012 3/4/2012	6/12/2011 3/1/2012	Date		
, , , , , , , , , , , , , , , , , , ,			Data		
13.1 14.2 15.3 15.4 15.5 <t< td=""><td>43.1 16.8</td><td></td><td>87.5</td><td></td><td></td></t<>	43.1 16.8		87.5		
			BDL=1/2DL	Arsenic	
	16.8 N			ō	
Max, Value Max, Pred Cw	1 Viult Factor =	Mean C.V.	Results Std Dev		
139.0 ug/L ug/L		40.7552 0.6042	= 58 24 6229	Maximum data points	Use "PASTE SPECIAL

28 9/29/2015 29 10/6/2015 31 10/2012015 32 10/2012015 33 11/3/2015 34 11/10/2015 35 11/12/2015 36 11/12/2015 37 12/1/2015 38 12/1/2015 39 12/1/2015 39 12/1/2016 39 12/1/2016 39 12/1/2016 39 12/1/2016 39 12/1/2016 41 12/29/2016 42 1/1/2/2016 43 1/1/2/2016 44 1/1/2/2016 45 1/2/2/2016 44 1/1/2/2016 45 1/2/2/2016 44 1/1/2/2016 45 1/2/2/2016 46 2/2/2/2016 51 3/2/2/2016 52 3/1/2/2016 54 3/2/2/2016 55 4/5/2016 56 4/12/2		11/ 7/21/2015 118 7/28/2015 19 8/4/2015 20 8/11/2015 21 8/18/2015 22 8/25/2015	11 6/9/2015 12 6/16/2015 13 6/23/2015 14 6/30/2015 15 7/7/2015 16 7/14/2015	7 5/12/2015 8 5/19/2015 9 5/26/2015 10 6/2/2015		1 3/31/2015 2 4/7/2015		
, , , , , , , , , , , , , , , , , , ,								
	0.09 - 1 - 1 - 1					A A Data		
						BDL=1/2DL 0.5 0.5	Cadmium	?
11111228 2228 2228 2228 2228 2228 2228		- O O O O O O O O O O O O O O O O O O O	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 5 5 5 5 5	000 0555	1/2DL 0.5 0.5	nium	
				Mar. Value Max. Pred Cw	□ C.V.	Results Std Dev. Mean		
				1.00 4.830 ug/L 4.830 ug/L	1.1049 57	1.1732	Maximum data points = 58	Values" then "CODV"
			5 5 5 5 5 5 5 5 5	5 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	01401	<u>د</u> د		T
9/22/2015 9/29/2015 10/3/2015 10/20/2015 11/27/2015 11/12/2015 11/12/2015 12/1/2015 12/1/2015 12/1/2015 12/2/2016 11/2/2016 11/2/2016 11/2/2016 2/2/2016 2/2/2016 2/2/2016 2/2/2016 2/2/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016 3/1/2016	8/25/2015 9/1/2015 9/8/2015 9/15/2015 9/16/2015	7/21/2015 7/28/2015 8/4/2015 8/11/2015 8/18/2015	6/9/2015 6/9/2015 6/16/2015 6/23/2015 6/30/2015 7/7/2015 7/14/2015	5/12/2015 5/12/2015 5/19/2015 5/26/2015	4/14/2015 4/21/2015 4/21/2015 4/28/2015	Date 3/31/2015		
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	ថ្ងៃចាចដ	: , , , , , , , , , , , , , , , , , , ,		**************************************				
	7,51 5,06 2,29 1,8	11.7 11.4 11.4	1.01 1.01 4.76 5		ä	Data	Q	
						BDL=1/2DL	Iromiu	
0.000000000000000000000000000000000000	7.51 3.41 1.8	1011510 1015470	4.76 4.77 4.92	0.5 Mult Factor = 0.5 Max, Value 0.5 Max. Pred Cw 0.5		1/2DL Results 2.1 Std Dev.	Chromium, Total	
				1.00 15.4 µg/L 15.4 µg/L	2.3898 1.4372 58	= 58 3,4348		
5855555555555666676665466546666755668666866666665555555555	2652232	2233375	525546	000√ 00				Fall
					12/6/2011 3/13/2014 7/8/2014 9/16/2015	Date 10/28/2011		
					^ ^ ^			
	2.2	8.1 0.5 3.4	11.9 2.2 4	2.62 3.7 10	-ათთთ	Ch		
		0	-	N	2555	3DL=1/2	Copper	
	2.2	8.1 0.25 3.4	11.9 22 4	2.62 3.7 N			8	
				Mult Factor = Max. Value Max. Pred Cw	Mean C.V.	Results Std Dev		
				1.65 11.20 ug/L 18.48 ug/L	3.7856 0.8332 16	3 15.14	Values" then "COPY" Maximum data points	THE MOA OWN ONE

•

e. ,
*

• •

				Date		
			S	Data		
			0.12	BDL=1/2DL	Fluoride	
		Mult Factor = Max, Value Max, Pred Cw	Mean C.V. (default) n			
		6.20 0.1 ug/L 0.8 ug/L	0.1270 0.6000 1	#58	Values" then "COPY" Maximum data points	-
Ÿ\$\$\$\$\$\$\$\$\$\$\$ 2 \$ 	*****	อื่อตาดเ	- οι ω 4 π			Par14
				Date		
	× 0.18 0.12	0.99 1.9	× 0.19			
				BDL=1/	Lead	
	0.05 0.18 0.21				đ	
		Mult Factor = Max. Value Max. Pred Cw	Mean C.V.	esults		
		2.13 3.000 ug/L % 6.390 ug/L	0.7323 1.1519 13	- 58	Values" then "COPY" Maximum data points	Use "PASTE SPECIAL
		ug/L			points	
20 8/11/2015 21 8/18/2015 22 8/12/2015 23 9/12/2015 24 9/8/2015 25 9/12/2015 26 9/12/2015 27 9/8/2015 28 9/22/2015 29 10/13/2015 30 10/20/2015 31 10/20/2015 32 10/21/2015 33 11/1/202015 34 11/10/2015 35 11/12/2015 36 11/23/2015 37 12/1/2015 38 12/12/2015 39 12/12/2015 39 12/12/2015 39 12/12/2016 41 12/29/2015 39 12/2/2016 42 1/2/2/2016 43 1/2/2/2016 44 1/19/2016 45 12/2/2016 41 2/19/2016 52 3/12/2016 53 3/22/2016			2 4/7/2015 3 4/14/2015 4 4/21/2015 5 4/28/2015	Date		
3.98 3.98 3.98 3.94	2.84 3.06 1.99 1.82	8.94 9.14 5.71 3.31	2.87 5.99 5.32 7 15	Data		
2. 1.1.1.1.2 2. 2. 1.1.32 2. 2. 1.1.32 2. 2. 1.1.32 2. 2. 1.1.32 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	¥ 8 8 8 8 8 8 8 8	22828	58638	BDL=1/2DL	Nickel	
$\begin{array}{rrrrr} \textbf{11.1.32}\\ 11.1.$	2.84 3.23 4.42 1,99 1,62			~·	(el	
		Mult Factor ≃ Max, Value Max, Pred Cw	Mean C.V.	Results		
		1.00 11.1 µg/L 11.1 µg/L	0.5646 58	= 58	Values" then "COPY" Maximum data points	Use "PASTE SPECIAL

4/19/2016 4/26/2016 4/26/2016	4/5/2016	3/22/2016	3/15/2016	3/8/2016	2/23/2016	2/16/2016	2/9/2016	2/2/2016	1/26/2016	1/19/2016	1/12/2016	1/5/2016	2/20/2015	10/04/0045	2/15/2015	12/8/2015	12/1/2015	1/23/2015	1/17/2015	11/10/2015	CL07/5/11/2	CI 02//2/01	10/27/2015	10/20/2015	10/13/2015	10/6/2015	9/29/2015	9/22/2015	9/16/2015	9/15/2015	9/8/2015	9/1/2015	8/25/2015	8/18/2015	8/11/2015	8/4/2015	CL07/871/	CI02/12/1	704/2015	11/12015	6/30/2015	6/23/2015	6/16/2015	6/9/2015	6/2/2015	5/26/2015	5/10/2015	5/5/2015	4/28/2015	4/21/2015	4/14/2015	4/7/2015	3/31/2015			
5.9 2.4	л 4.0 3 8 0	7.2	12.9	12.4	15.7	14.7	17	41	7.0	11.5	22.0	110	10	10.0	10.0	20.0	260	24.1	30.7	28	2.3	3.1	2.4	8.4	9.7	7.7	6.2	5.7	9.8	3.5	4	4.6	7.6	16.9	7.4	16.8	18.3	19.1	11.7	12.2	14.1	10.2	14.6	11.2	15.7	- ac	6.6	8.6	14.9	15.4	21.6	31.8	Data	2		
5.2 2.4	1 4 U		12 0	12	15	14	17	<u>م</u> ب	л <u>-</u>	1	3 -	110	20	15.3	10.	20.0	24.1	24	30										9.8				7.6							12.2					15.4							3	BDL=1/2DL		Selenium	•
400				. 4	7	7	~ -	<u> </u>	<u> </u>	n c	3 (00			3 ()	1 (2	o	<u>ч</u> -	1	00	ω	7	11	4	~	7	N	.7	00	Ċī	4	G	.6	9.	. 4	čos	ü	-	-4	N		Ñ	60	: د	4			I.6 Mult Factor =	14.9		21.6 C.V.		OL Results		m	
																																															42.3 ug/L	1.00	ę	5.0007	0.0002	13 3552/		maximum data points	Values" then "COPY".	
56 4/					49 21			45 1/			42 1				38 12		36 11		24				31 10																							00 (h	7		h nu	U.		د د در				I
4/12/2016 4/19/2016	3/29/2016 4/5/2016	3/22/2016	3/8/2016	3/1/2016	2/23/2016	219/2016	2/2/2016	1/26/2016	1/19/2016	1/12/2016	1/5/2016	2/29/2015	12/21/2015	12/15/2015	12/8/2015	12/1/2015	11/23/2015	11/17/2015	C1/02/01/11	11/0/2010	1/3/2015	10/27/2015	10/20/2015	0/10/2010	143/304/	10/8/2015	100/00/10	9/22/2015	9/16/2015	115/0015	0/R/2015	9/1/2015	05/0015	R/18/2015	8/11/2015	R/4/2015	7/28/2015	7/21/2015	7/14/2015	7/7/2015	6/30/2015	R/02/0015	0/9/2010	6/2/2015	5/26/2015	5/19/2015	5/12/2015	5/5/2015	4/28/2015	4/14/2010	4///2015	3/31/2015	Date			
^ ^	^ ^	^ ^	٨	٨	~ /	• •		٨	٨	٨	٨				٨	٨																														-										
		<u> </u>	<u> </u>	. د	<u> </u>	. ـ	<u> </u>		-	_	-	4	-			_	_	-	-		۰.	-	_	-		× _		<u>ـ</u> ــ		۰.		<u>.</u>	<u>ـ</u> ــ	. .	<u>ـ</u> ـ		. د	<u>.</u>	<u> </u>						_		<u>۔</u> د	۰.								
0.0	00	00	0	0 0		, o	0	0	0	0		0	0	-	_	~	~	~	0			~ .	_	_																_												0.5	BDL=1/2	antic l	Silvo	
0.5	UI UI	0101	Ċn -	ίπ č	ט וט	n Un	5	Ċ1	Ċn.	Ċn.	ζη.	ζη	Ċ'n	Ċn -	Ċ n	5	0.5	Ü	Ū	Ū	πč	ות	.5			'nü	10	'nċ	0.0		10	n u					5 6	л (л	7 0	10	10	0.5	0.5			0.5 Max Value		0,5 n							
																																															Max: Value 0 500 inco		58	0.0000	0.5000	0.000	150	Maximum data points	Values" then "COPY"	LISE "PASTE SPECIAL
S 8	328	3 2	<u>त</u> ह	3 4	\$ &	47	46	£	4	£3 i	43 :	4	3 6	88	2	23	3	8	34	33	32	3 4	<u>ب</u>	g	29	28	27	26	3	24	23	12	Ņ	20	3	8	: <	đ	5 0	4	τ ω	12	=	5	ω	20 ~	10	0	4	ω	N	-				
																																																				Date	Date			
^ ^	• •																									٨	٨			٨			٨	٨	^	٨	٨	^	^	^	^	^	٨									< Lafa	1			
6.25 5 5 5	5.0	π 2011	18.1	27.9	31.6	40.3	37.1	38 1	43 3	7 80	22.0	20.1	30.0	20.4	30.4	24.U	240	216	20.7	16.3	15.4	72.2	10.0	7.6	10.5	σı	5	12	6.9	сл	8.07	8.43	C1	G	сл	cn	C	5	U.	G	G	сл	(n	5.43	8 94	10.0	28.9	26	26.2	21.2	6.61	cn				
0 		n			ω	4	ω	<u>ب</u> در		21	2 1	2 N	2 -	N	2 1	2 1) N	31	2	-	-	_			_						8	00												-	n -						-	2.5		Zinc		
2.5 2.5	2.5	3 = 3	18.1	.9	6	3	1		3 -	4 0		20.7	10	3.4	4	- 4 - 4	2 0		07	6.3	5,4	2.2	2 2	7 R	0.5	2.5	2.5	12	6.9	2,5	.07	.43	2.5	2,5	2.5	2.5	2.5	2.5	2.5	2,5	2.5	2.5	25	43			28.9			21.2						
																																													wax, Pred Cw	Max. Value	Mult Factor =		2	C.V.	Mean	Std Dev				
,																																													42.2	42.2 ug/L			58	0 R118	14 2224	11 8357	=58	Values" then "COPY" Maximum data points	Use "PASTE SPECIAL	

۲

.

,

			Date		
			Data		
			1.17 BDL=1/2DL 1.17	Antimony	
		Mult Factor = Max. Value Max. Pred Cw	Results Std Dev. Mean C.V. (default) n		
		6.20 1.170000 µg/L 7.254000 µg/L	0.0000 1.1700 0.6000 1	Maximum data points = 58	
57 55 55 55 55 55 55 55 55 55 55 55 55 5	2235555555555255	യ പ യ വ			
			Date		
			Data 0.		
			0.064 BDL=1/2DL 0.064 0.064	Barium	
		Mult Factor = Max. Value Max. Pred Cw	. Results 4 Std Dev. Mean C.V. (default) n		
		6. 0.0640 0.3968	0.0000 0.0640 0.6000	Maximum data points	Value" then "COPV"
57 55 55 55 55 55 55 55 55 55 55 55 55 5	222367652322		4 ω ω 4		
			Date		
			Data		
	70.1 76.6 76.7	41.8 83.1 25.4 99.9	52.6 68.1 36 72.8	Su	
	70.1 63.1 62.6 76.6	41.8 83.1 99.9	BDL=1/2DL 52.6 68.1 36 72.8	Sulfates	
		Mult Factor = Max, Value Max, Pred Cw	Results Std Dev. Mean C.V. n		
		1.29 99.900000 mg/L 7 128.871000 mg/L	20,6523 58,3200 0.3541 15	Maximum data points = 58	Valves" then "COPY"

Thallum the "PASTE SPECIAL Transmission" the "Construction" the "Paste Stat Dev." Use "Paste Special time" the "Construction" the state points" state points" state points" state points Data 3.06 BDL=1/2DL 3.06 Results Stat Dev. 0.71 0.949 0.949 0.949 0.121 0.949 1.121 0.9497 0.3470 0.9497 0.3470 0.9497 0.3470 0.9497 0.3470 0.9497 0.3470 0.9497 0.3470 0.9497 0.3470 0.9497 0.33 0.9470 0.13 0.9497 1.3 0.9497 1.5 0.9497 1.5
Thallum 3.06 BDL=1/2DL 3.06 Results 3.06 0.71 Magna 0.71 Magna 0.71 Magna 0.71 C.V. 0.71 0.43 0.71 Magna 2.2 0.24 Mult 2.2 Mult 2.6 Nult 2.6 0.24 0.24 2.2 Max. Value 2.6 Value 2.6 Start 0.53 0.58 0.53 0.53 0.53 0.53 Nax. Pred Cw 1.2 Pred Cw 1.5 0.53 0.53 0.53 1.5 Nax Pred Cw 0.53 0.53 0.53 1.5 Nax Pred Cw 0.53 0.53 1.5 1.5 Nax Pred Cw
Thallum BDL=1/2DL Results 3.06 Std Dev. 0.71 Mean 1.9 C.V. 1.9 Mult Factor = 0.24 Max. Value 0.13 2.2 0.58 0.58 0.58 0.58 0.53 1.2 1.2 1.2 1.3 1.5
Results Std Dev. Mean C.V. n Mult Factor = Max. Value Max. Pred Cw

۲

-

5088 RPA seep 104, rpa 6/25/2018

Page 1 of 2

	Copper	Chromium, Total	Chromium VI	Chromium II	Total Dissolved Solids	Aluminum	Chlorides	Cadmium	Beryllium	Arsenic Arsenic		PARAMETER	Qw (MGD) = 1Q10S (cfs) = 7Q10S (cfs) = 7Q10W (cfs) = 30Q2 (cfs) = 30Q2 (cfs) = Avg. Stream Flow, QA (cfs) = Receiving Stream:
_	NC	NC	NC	NC	N	NC	NC	NC	NC	ი ი	Э	TYPE	
	8.0194		11	119.7187	500	6.5	250	0.5991	6.5	150 10	Chronic	NC STAN	1.30 232.54 287.00 440.00 365.00 1460.00 NO HUC NUMBER
	FW(7Q10s)		FW(7Q10s)	FW(7Q10s)	WS(7Q10s)	WS(7Q10s)	WS(7Q10s)	FW(7Q10s)	FW(7Q10s)	FW(7Q10s) HH/WS(Qavg)	Applied Standard	NC STANDARDS OR EPA CRITERIA	MBER
	10.7227		16	923.8881				3,3114	65	340	Acute	RITERIA	
_	u	Ŧ	π,	म	в	8	В		Ę	E E	+	QL	
-	ug/L 10	μg/L 10	μg/L 0	μg/L 0	mg/L 10	mg/L 10	mg/L 10	ug/L 10	ug/L 0	ug/L 10 ug/L			
	0 2	0 5	0	0	0 10	0 5	0 10	0 4	0	0 10	1 # Det.		WWTPA IWC% @ IWC% @ IWC% IWC% IWC%
	6.05	#REF! #REF! #REF!	N/A	N/A	570.6	1.1	50.2	0.960	N/A	72.1	Max Pred Cw	REASONABLE POTENTIAL RESULTS	WWTP/WTP Class: IWC% @ 1Q10S = 0.8590 IWC% @ 7Q10S = 0.6971 IWC% @ 7Q10W = 0.4558 IWC% @ 30Q2 = 0.5490 IW%C @ QA = 0.1378 Stream Class: WS-IV
Acute:	Acute: 1,249 Chronic: 1,150 No value > Allowable Cw	#R	Acute: Chronic:	Acute: Chronic:	Acute: NO W Chronic: 71,71	Acute: NO V Chronic: 932 No value > Allowable Cw	Acute: NO V Chronic: 35,8: No value > Allowable Cw	Acute: 385.4 Chronic: 85.9 No value > Allowable Cw	Acute: Chronic:	Chronic (FW): 21,514.8 No value > Allowable Cw Chronic (HH): 7,255.7 No value > Allowable Cw	Allowa	TENTIAL RESULT	0.859073565 0.697195647 0.455866882 0.549023882 0.549023882 0.137823483 WS-IV
NO WQS	1,248.17 1,150.24	#REF!	1,862.5 	107,544.7	NO WQS 71,715.9	NO WQS 932.3	NO WQS 35,857.9 vable Cw	385.466 	7,566.29	21,514.8 vable Cw 7,255.7 vable Cw	Allowable Cw W): 39.577.5	<i>w</i>	
	No RP	No RP	All values < detection		No RP	No RP	No RP	No RP		No rep		RECOMMENDED ACTION	COMBINED HARDNESS (mg/L) Acute = 25.64 mg/L Chronic = 25.52 mg/L YOU HAVE DESIGNATER SUPPLY STREAM AS WATER SUPPLY Effluent Hard: 1 value > 100 mg/L Effluent Hard: 1 value > 100 mg/L

4 NC0005088 **Rogers Energy Complex**

Freshwater RPA - 95% Probability/95% Confidence Using Metal Translators **MAXIMUM DATA POINTS = 58**

N

Outfall Seep 104 Qw = 1.3 MGD

٩

Qw = 1.3 M	Outfall Seep 1
MGD	104

	THE PARTY OF THE	A 10 A MANUAL ALL			ŀ					Contraction of the Contraction o
	286.86352	Chronic: 286.8								
No RP	NO WQS	Acute:	1.14000	11 5	Ţ/ŝń		WS(7Q10s)	2	NC	Thallum
	35857.9 wable Cw	Chronic: 3585 No value > Allowable Cw								
No RP	NO WQS	Acute:	224,94000	10 10	mg/L		WS(7Q10s)	250	NC	Sulfates
	143.43176 wable Cw	Chronic: 143.4. No value > Allowable Cw								
No RP	NO WQS	Acute:	0.14224	10 10	mg/L		WS(7Q10s)	1	N	Barlum
	803.21787	Chronic: Max MDL = 5								
No RP	NO WQS	Acute: NO W	NO DETECTS	11 0	μg/L		WS(7Q10s)	5.6	NC	Antimony
	18,495.0 wable Cw	Chronic: No value > Allo								
	14,947.3	Acute:	148.1	10 4	ug/L	128.4084	FW(7Q10s)	128.9460	NC	Zinc
No RP	1,004.0	Chronic:								
	0.0	Acute: 0.0	N/A	0 0	mg/l	0	FW(7Q10s)	7	NC	Boron
	717.2 wable Cw	Chronic: No value > Allo								
	6,518.7	Acute:	5.8	10 4	ug/L	56	FW(7Q10s)	5	NC	Selenium
	3,585.8)wable Cw	Chronic (WS): 3,58: No value > Allowable Cw			ηĝή		ws(/Qius)	20000	ŧ	INVAG
	5,433.2 owable Cw	Chronic (FW): 5,433.2 No value > Allowable Cw	4.7	10 5	r				5	
No RP	39,857.6	Acute (FW): 39,85			μg/L	342.4059	FW(7Q10s)	37.8803	NC	Nickel
	22,949.1 owable Cw	Chronic: No value > Allo								
No RP	NO WQS	Acute:	4.4	10 9	ug/L		WS(7Q10s)	160	NC	Molybdenum
	1,721.2 owable Cw	Chronic: 1,72 No value > Allownble Cw	Default C.V.	:n≤9 ted da						
	NO WQS	Acute: NO WQS	10.7	7 7	0.5 ng/L	0	FW(7Q10s)	12	NC	Mercury
	431,740	Chronic: No value > Allo								
No RP	9,039.029	Acute:	2.640	10	ug/L	77.6519	FW(7Q10s)	3.0101	NC	Lead
	258,177.2	Chronic:	N/A	0 0	ug/L		FW(7Q10s)	1800	No	Fluoride
Qw = 1.3 MGD	S	Translator:	Freshwater RPA - 95% Probability/95% Confidence Using Metal Translators	onfidence	ty/95% Co	6 Probabilit	- RPA - 95%	eshwater		NC0005088
Outfall Seen 104						īv				Rogers Energy Complex

•

4

10 10 10 10 10 10 10 10	<u> </u>											Г	Ξ
<u>A</u> & 4 D & ~	~ 0									BDL=1/	I	Effluent Hardness	
				100.00 mg/L					0.000		= 58	Maximum data points	Use "PASTE SPECIAL
878848	5 2	600											H2
			Max. Value	Average Value	10th Per value	D	C.V. (default	Mean	25 25 Std Dev.	BDL=1/2		Upstream Hardness	
			25.00 mg/L								= 58	Values" men "COPY" Maximum data point	Use "PASTE SPECIA
* 7 6 6 7 2 2 -	t t ,					4	ω	N	_				Part
										Date			Par01 & Par02
										Data			
	ន	2 W	37	41	45	щ	20	29	48.4				
									4	BDL=1/2DL		Arsenic	
	33					-1 n						ic	
		lax. Pred Ci	Max. Value	ult Factor =			<	Mean	td Dev.	esults			
		Ŵ					~	ų	_		ALCONO.	Values	Use "P
		72	48.4 ug/L	1.4		_).417	33.0400	3.776		= 50	then	ASTE

5 5 5 5 5 5 5 5 5 5 6 7 5	± 10	ωc	, a	4 0		л.,	× 0	0 1	. -	ļ	,		Parus
										Date Data			
										BDL=1/2DL		Beryllium	
		Max. Pred Ci	Max. Value	Mult Factor =		n	C.V.	Mean	Sta Dev.	Results			
		N/A		N/A		C	NO DATA	NUDATA	NUDATA		= 58	Values" then "COPY" Maximum data point	Use "PASTE SPECIA
8 7 8 3 7 3 7	55	<u>ہ</u> م	~ 7	6	J	4	.ω	2	,				Par04
										Date			
			٨	٨	٨		٨	٨	٨	Data			
	0.1	2.0	<u> </u>	0.8	-	0.1	0.1	-	-	BDL		Cao	
	0.1	01	0.5	0.4	0.5	0.1	0.05	0.5	0.5	BDL=1/2DL		Cadmium	
		Max. Pred Cw	Max. Value	Mult Factor =		Ð	C.V.	Mean	Std Dev.	Results			
		0.960 ug/L	0.500 ug/L	1.92		10	0.7306	0.2850	0.2082		= 58	Values" then "COPY", Maximum data points	the PASTE SPECIAL
******	13.	000	7	6	сл	4	ω	N	-				Par05
										Date			
										Data			
	37	3 88	36	34	35	34	13	27		BDL=1/2DL		Chlorides	
	37			_	с С					-		ides	
		Max. Pred Cw	fax. Value	Mult Factor =			C.V.	lean	td Dev.	esults	-		
		50.2 mg/L	38.0 mg/l	1.3		10	0.2831	30.9	8.7490		faximum data points = 5	Values" than "COPY"	
2165432	1 1 %	_	_	_		_	ω				-		Parc

4

.

	011	2	0.12	< 0.1	0.02	< 0.1	0.4	0.05	0.03		AL	=
	0.05		0.12 Max. Value			0.05 n			0.03 Std Dev.		Auminum	
			0.4 mg/L			10	1.2994	0.0870	0.1130	2	Maximum data points = 58	Use "PASTE SPECIAL
5 7 8 8 8 8 7 8	10	0 00	7	6	σ	4	З	2		Date Data		Par07
	429 429	362	280	340		350	344	92	300 300	BDL=1/2DL	Total Dissolved Solids	
		Max. Pred Cw	Max. Value	Mult Factor =					Std Dev.	Results	olids	Use
		570.6 mg/L	429.0 mg/L	1.33		10	0.2895	325.4000	94.1880		dimum data points	PASTE SPECIAL
5 7 8 8 8 8 7 8 5 7 8	5.	0.00	7	Ø	UI .	4	ω	2		Date Data		Par08
		Max.	Max. 1	Mult F		-	C.V.	Mean	Std Dev.	BDL=1/2DL Resul	Chromium III	
		×	N/A	Factor = N/A			NO DATA				Maximum data poin	Use "PASTE SPECI
\$ 7 5 5 4 5 7 1	10 9	-		o 1	<i>с</i> л.	4 (ωı	2		Data	1	Par09

5088 RPA seep 104, data 6/25/2018

										Data		
										BDL=1/2DL		
		Max. Pred C	Max. Value	Mult Factor =		5	C.V.	Mean	Std Dev.	Results		
				N/A		0	NO DATA	NO DATA	NO DATA		Maximum data point = 55	Use "PASTE SPECIAL
8765425	11.	0	7	6	сл	4	ω	N	_	1		all
										Date		
	0.14 0.25	0,3	٨	^	^	0.2:	0.4	^	^	Data	0	
	#REF!								0.5	BDL=1/2DL	Chromium, Total	
			4 Max. Value				5 C.V. (default)		5 Std Dev.		otal	
		#REF! µg/L				8	0.6000	#REF!	#REF!	art	Maximum data points	Use "PASTE SPECIAL
18 17 16 15 14 13 12 13	0 G S	00	7	6	сл	4	ω	N	-			Patt
									4	Date		
	^ ^		٨	^	^	٨		^	^	Data		
	0.5 5	0.15	μ	u	щ	μ	0.55	щ		8		
	0.2	0.1	0.1	2	0	0.1	0.5	0	0)L=1/201	Copper	
	5 0.25 0.25	5 Max. Pred Cw	5 Max. Value	5 Mult Factor =	01	3	C.V.	Mean	Std Dev.	Results		
		w 6.05 ug/L				10	1.0894	0.6200	0.6754	=58	Values" then "COPY" Maximum data points	Use "PASTE SPECIAL
	t 0 0	~	7	o 1	с п.	4	ωı	. .	-			Par12
********										_	1	1
± 5 5 4 5 6 F 8									-	Date		

÷

										806=1/206		Cyanide	
		Max. Fied CW	Max Drod C:	Mox Volue		=	- C.V.	Mean	Sin Dev.	Results			
				N/A		-	AINDON	NODATA	NOUNTA	NODATA	- 50	Maximum data points	Use "PASTE SPECIAL
8785423	55.	00	,	10	0	n .e	. u		, _				Part3
										Date			
										Data			
										BDL=1/2DL		Fluoride	
		Max. Pred Cw	Max. Value	Mult Factor =		٦	C.V.			Results			
				N/A		0	NO DATA	NO DATA	NO DATA		= 58	Values" then "COPY"	Usa "PASTE SPECIAL
5 5 5 5 5 5 5 5	5 E	00	7	6	сл	4	ω	2	_				Par14
										Date			
	~ ^	•	٨	^	^	^	^	^					
	0.1	2.2	щ	H	4	щ	0.1	-	1.2	BDL		-	
	0.05	0.05	0.5	0.5	0.5	0.5	0.05	0.5	1.2	BDL=1/2DL		Lead	
		Max. Pred Cw	Max, Value	Mult Factor =		Þ	C.V.	Mean	Std Dev.	Results			
		2.640 ug/L	1.200 ug/L	2.20		10	0.9280	0.3900	0.3619		=58	Values" then "COPY"	Use "PASTE SPECIAL
	± 3 @	000	7	6	сл	4	ω	N	_		T		Par15
0 4 10 10 V 00										Date			
α√ω4π0ον												- 1	
Ø ₩ 4 ₽ 0 0 - ∞										Data			
5 € 4 ∂ 6 ¢ ∞	4.4 4.2	4.9	2.8	2.6	5.3			4		Data BDL=1/2DL		Mercur	

5088 RPA seep 104, data 6/25/2018

/

			Max Pred Cw	Max Value	Mult Easter -	2			Moore	Results		Va	ç
			10.7 ng/L	Z.UI	2	-	70000	4.0200	1.0070	1 0070	a 50 10 a 10	ives" then "COPY"	# "PASTE SPECIAL
8763433	5 5	ωc	ю~	10	ь <i>с</i>	ب ۱	<i>د</i> د) _				Par16
										Date			
							^			Data			
	3.2	2.9	0.0	2.4	3.2	3.L	0.5	2.9	2.4			Ň	
							0	,		BDL=1/2DL		Molvbdenum	
	3.2				3.2	3.1 n				•			
		ax. Pred Cw	Max. Value	ult Factor =			<u>`</u> <	Mean	td Dev.	Results			
		4.4 UG/L	3.2 ug/L	1.39		10	0.3372	2.5750	0.8683		Maximum data point = 58	falues" then "COPY"	Jae "PASTE SPECIA
8 7 6 5 4 3 2 7	10.0					4	ω	2	-		G		Par17
										Date			Par17 & Par18
			٨	^	۸	^	^			Data			
	- 4	. 1	щ	н	(J	<u>щ</u>	<u>مر</u>	0.6	0.7				
			~	~	•	~	~	~	_	BDL=1/21	NICABI	Nicko	
		. 1 M	0.5 M		2.5	0.5 n			0.7 St				
		ax. Pred Cw	Max. Value	ult Factor =			C.V.	ean	d Dev.	esults			
									1		Maxi	Value	Una "
		4.7 µg/L	2.5 µg/L	1.86		10	0.6895	0.8900	0.6136	199	num data points = 58	" then "COPY"	PASTE SPECIAL
*****	: † e	00	7	0	ы	4	ω	2	_				Par19
										Date			
			٨	^	٨		٨	^	^	Data			
	0.42 0.73	0.41	щ	S	4	0.22	5.0	4					
	2 0.42 3 0.73									BDL=	Seleninu	2	
	0 -					0	0			12	비율	•	

-

.

				Max. Pred CW	wax, value	Mult Factor -	Mark England	=	, c, e,		Mean	Results			
					T/6n c.z			2	1.0170	4 04 70	0.0040	DERAF	= 58	Maximum data points	Use PASTE SPECIAL
8 7 8 3 7 3 1	3 =	10	b (4	α	~	10	, c	n þ			s -				Par20
												Date			
												Data			
												BDL=1/2DL		Boron	
				Max. Pred Cw	Max. Value	Mult Factor =		7	C.V.	Mean	Std Dev.	Results			
					N/A mg/i			0	NO DATA	NO DATA	NODATA		No	Values" then "COPY	Use "PASTE SPECI
12 12 12 12 12 12 12 12 12 12 12 12 12 1	1 1	10	9	_	7		_	4	ω	2	_		6		Par21
												Date			
			۸		٨	۸	۸	۸	٨			Data			
		3.3	10	3.2	U	(J	10	G	G	đ	46	BDL=1/2D1		Zinc	
		3.3 3		3.2				2.5			46	'		0	
				Max, Pred Cw	Max. Value	Mult Factor =		2	C.V.	Mean	Std Dev.	Results			
				148.1 ug/L				10	1.7154	7.8500	13.4656		Maximum data points	Values" then "COPY".	Use "PASTE SPECIAL
8785423	=	10	9	00	7	б	G	4	ω	N	_				Par22
												Date			
	٨	^	^	٨	٨	٨	٨	٨	٨	^	^				
							0	0	0.5	0	0	Data			
	1 0.5	1 0.5	1 0.	1 0,	1 0.	5 2						BDL=1/2DL		Antimony	
	01	J	J	U	J	J	η	J	л	J	J	r-	1	<	

		Max. Pred Co	Max. Value	Mult Easter	=	C.V.	Mean	SIG Dev.	Results		
		Max. Pred Cw O DETECTS µg/L	2.500000 µg/L	5 35		1.1489	0.5682	0.5228		Maximum data points = 58	Use TPASTE SPECIAL
8 7 8 8 4 8 8	5 = 5	000	70	ь U	4 1	. c.	N				Par23
									Date		
									Data		
	0.1	0.112			0,1	0.03	10	0.1			
		0.				0			BDL=1/2DL	Barium	
	0.1	0.112 M			0.1 n				·	3	
		Max. Pred Cw	ult Factor =			<	Mean	d Dev.	esults		
		0.142240 mg/L	1.27 0 112000 mg/l		10	0.2428	0.0942	0.0229		alues" then "COPY" , Aaximum data points = 58	W "PASTE SPECIAL
8 7 6 5 7 8	; = = ;	> co ~	o ہ	J	4	ω	N	_			Par24
									Date		
									Data		
	163	148	115	120	119	31	104	99			
	<u> </u>	·	<u>د د</u>	-			-		BDL=1/2DL	Sulfates	
	63 0	148 Ma			19 n	31 C.V.		-		ű	
		ix. value ix. Pred (ult Factor			~	an	Std Dev.	sults		
		103. Cw 224.	1				<u>-</u>			Value	Use
		Max. Pred Cw 224.940000 mg/L	1.38		10	0.3270	18.0000	38.5804		num data	PASTE SP
										points	ECIAL
8763432	± 5 c	00~	10	σ	4	ω	N				Par25
									Date		
	^	^	۸	۸			^	- 1	Data		
	0.07 0.2	0.1	ц	0.2	0.08	0.04	0.2		BD	=	
	0.07 0.02 0.1	0.1	0.5	0.1	0.08	0.04	0.1	0.1	BDL=1/2DL	Thallum	

8-

5088 RPA seep 104, data 6/25/2018

5088 RPA seep 104, data 6/25/2018 **REASONABLE POTENTIAL ANALYSIS**

4

•

Mult Factor = Max. Value Max. Pred Cw	⊐ C.V.	Mean	Results	
2.28 0.500000 µg/L 1.140000 µg/L	1.0861 11	0.1191	= 58	Use "PASTE SPECIAL Values" then "COPY" Maximum data points

5088 RPA seep 104, input 6/25/2018 meet input criteria.

	1 T I
	6
	9
	0
	-
	Freshwater R
	1
	- 21
	0
	IΦ.
	L
	D
	40
	D
	1031
1	
1	10.
p	
1	
1	
ţ.	0
	-
	2
1	0
н	0
1	
	G
	61
ч	
	1
4	0
	-
	O
	Q
	S
	Cor
	Con
	Conf
	Confi
	Confid
	Confide
	Confide
	Confiden
	Confidenc
	Confidenc
	Confidence
	Confidence
	Confidence L
	Confidence U
	Confidence Us
	Confidence Usi
	Confidence Usi
	Confidence Usin
	Confidence Using
	Confidence Using
	Confidence Using I
	Confidence Using N
	Confidence Using M
	Confidence Using Me
	Confidence Using Met
	Confidence Using Meta
	Confidence Using Metal
	Confidence Using Metal
	Confidence Using Metal T
	Confidence Using Metal Tr
	Confidence Using Metal Tr
	Confidence Using Metal Tra
	Confidence Using Metal Trar
	Confidence Using Metal Tran
	Confidence Using Metal Trans
	Confidence Using Metal Transl
	Confidence Using Metal Transla
	Confidence Using Metal Translat
	Confidence Using Metal Translat
	Confidence Using Metal Translato
	Confidence Using Metal Translator
	Confidence Using Metal Translators
	water RPA - 95% Probability/95% Confidence Using Metal Translators

.

MAXIMUM DATA POINTS = 58

C REQUIRED DATA ENTRY

Table 1. Proiect Information

Table 2. Parameters of Conce

Facility Name	Rogers Energy Complex	Par01	Arsenic	Aquactic Life	0	150	FW	340	
MANTO ANTO CIAN		3		Human Health					
WW I P/W I P Class		Par02	Arsenic	Water Supply	0	10	HHMS	NIA	
NPDES Permit	NC0005088	Par03	Beryllium	Aquatic Life	NC	6.5	FW	65	and the second se
Outfall	Seep 104	Par04	Cadmium	Aquatic Life	R	0.5991	FW	3.3114	
Flow, Qw (MGD)	1.300	C Par05	Chlorides	Water Supply	NC	250	SM		
Receiving Stream	Broad River	Par06	Aluminum	Water Supply	NC	6.5	SM		_
HUC Number		Par07	Total Dissolved Solids	Water Supply	NC	500	SM		
Stream Class		Par08	Chromium III	Aquatic Life	NC	119.7187	FW	923.8881	-
Apply WS Hardness WQC	AI-CAA	Par09	Chromium VI	Aquatic Life	NC	11	FV	16	-
7Q10s (cfs)	287.00	C Par10	Chromium, Total	Aquatic Life	NC	N/A	FW	N/A	
7Q10w (cfs)	440.00	C Par11	Copper	Aquatic Life	NC	8.0194	FW	10.7227	
30Q2 (cfs)	365.00	C Par12	Cyanide	Aquatic Life	NC	5	FW	22	-
QA (cfs)	1460.00	C Par13	Fluoride	Aquatic Life	NC	1,800	FW		
1Q10s (cfs)	232.54	Par14	Lead	Aquatic Life	NC	3.0101	FW	77.6519	-
Effluent Hardness	default 99 mg/L -Ws (Eff Hard Avg = 100 mg/L)	Par15	Mercury	Aquatic Life	NC	12	FW		
Upstream Hardness	25 mg/L (Avg)	Par16	Molybdenum	Water Supply	NC	160	SM		
Combined Hardness Chronic	25.52 mg/L	Par17	Nickel	Aquatic Life	NC	37.8803	FW	342.4059	
Combined Hardness Acute	25.64 mg/L	Par18	Nickel	Water Supply	NC	25.0000	SM	N/A	-
Data Source(s)		Par19	Selenium	Aquatic Life	NC	5	FW	96	-
CHECK TO APPLY MODEL		Par20	Boron	Aquatic Life	NC	7	FW		
		Par21	Zinc	Aquatic Life	NC	128.9460	FW	128.4084	-
		Par22	Antimony	Water Supply	NC	5.6	SM		-
		Par23	Barium	Water Supply	NC	-	SM		
		Par24	Sulfates	Water Supply	NC	250	SM		-
T	comment ment list the socialities choice at a	Par25	Thallum	Water Supply	NC	2	SM		-

5088 RPA seep 106, rpa 6/25/2018

Page 1 of 2

Avg Stre	PARAMETER		Arsenic		Arsenic		Beryllium				Chlorides		Aluminum		Total Dissolved Solids		Chromium III		Chromium VI		Chromium, Totał	Copper	
1Q10S (cfs) = 0.00 7Q10S (cfs) = 0.00 7Q10W (cfs) = 0.00 30Q2 (cfs) = 0.00 Avg. Stream Flow, QA (cfs) = 0.00 Receiving Stream: NO HUC NUMBER	TYPE	(1)	<u>с</u>		c		NC		-		NC		NC		NC		NC		NC		NC	NC	
0.00 0.00 0.00 0.00 0.00 HUC N	NC STAN	Chronic	150	ŝ	10		6.5		1.0076		250		6.5		500		363.4201		11			25.5442	
UMBER	NC STANDARDS OR EPA CRITERIA	Applied Standard	FW	:	HH/WS		FW		ΓW		WS		WS		WS		FW		FW	:		FW	
	CRITERIA	Acute	340				65		10.7362								2793.8313		16	;		38.2981	
	-	PC	110/1	ę.	ug/L	+	ug/L	\downarrow	тßn		mg/L		mg/L		mg/L		Ţ/ãn	į	119/1	2	J/βti	ug/L	
IWC IWC IWC		n #Det.	Π.	9 5	L Note: n ≤ 9		/L 6 1 Note: n≤9		10 1		9 9	Note: n ≤ 9 Limited data set	9 4	Note: n ≤ 9 Limited data set	6 6 J/	Note: n ≤ 9 Limited data set	/L 0 0		/T0 0		Tot Cr value(s) /L 9 4 Note: n ≤ 9 Limited data set		Note: $n \leq 9$
IWC% @ 1Q10S = 100 IWC% @ 7Q10S = 100 IWC% @ 7Q10W = 100 IWC% @ 30Q2 = 100 IW%C @ QA = 100 Stream Class: WS-IV	REASONABLE POT	Max Pred Cw		2.9	Default C. V.		1.07 Default C.V.		1,130		126.7	Default C.V.	11.1	Default C.V.	894.1	Default C.V.	N/A		N/A) < 50 and < Cr V 11.1 Default C.V.	7.38	Default C.V.
100 100 100 100 100 VS-IV	TENTIAL RESULTS	Allowable Cw	Acute (FW):	Chronic (FW): 150.0	Chronic (HH):	Acute: 65.00	Chronic:	Acute: 10.75	Chronic:	No value > Allowable Cw	Acute:	Chronic: No value > Allo	Acute: NO WC	Chronic: 6.5 No value > Allowable Cw	Acute:	Chronic: No value > Allo	Acute: 2,793.8	Chronic:	Acute:	Chronic:	1 Allowable Cw Max reported value = 6.14	Acute:	Chronic: 25.54
		ble Cw	340.0	150.0	10.0	65.00	6.50	10.758		wable Cw	NO WQS	250.0 wable Cw	NO WQS	6.5 wable Cw	NO WQS	500.0 wable Cw	2,793.8	363.4	16.0	11.0	value = 6.14	38.30	wahle Cw
Acute = 99 mg/L Chronic = 99 mg/L YOU HAVE DESIGNATED THIS RECEIVING STREAM AS WATER SUPPLY Effluent Hard: 1 value > 100 mg/L Effluent Hard: 1 value > 100 mg/L default 99 mg/L -Ws (Eff Hard Avg = 100 mg/L)	RECOMMENDED ACTION		No RP					No BB			No RP		RP		R9				Max reported value < 11			No RP	

3

Freshwater RPA - 95% Probability/95% Confidence Using Metal Translators īv

MAXIMUM DATA POINTS = 58

Outfall Seep 106 Qw = 1.9 MGD

Rogers Energy Complex NC0005088	л	ء Freshwater RPA - 95% Probability/95% Confidence Ilsing Metal Translators	PA - 9	5% Probabi	≥ Note:	\$?	unfidence [loinn Motal	Tranelatore		Outfall Seep 106
Fluoride	NC	1800	FW		u	ug/L	0	N/A	Chronic:	1,800.0	
Lead	N	13.5358	FW	347.3518		ug/L	9 2	6,950	Acute:	347.352	No RP
						H Y	:n≤9 ted da	Default C.V.	Chronic: 13.530 No value > Allowable Cw	13.536 vable Cw	
Mercury	NC	12	FW		0.5 m	nø/L	7 7	0.0	Acute:	ž	No RP
						H 12	Note: n ≤ 9 Limited data set	Default C.V.	Chronic: 12.0 No value > Allowable Cw	12.0 vable Cw	
Molybdenum	NC	160	WS	2	ų	ug/L	9 4	4.5	Acute:	NO WQS	No RP
						ΓZ	Note: n ≤ 9 Limited data set	Default C.V.	Chronic: No value > Alloy	160.0	
Nickel	NC	119.2776	FW	1073.9039	jų,	J/8u			Acute (FW): 1,073.	1,073.9	No RP
Nickel	NC	25.0000	WS		Ŀ.		9 8 Note: n ≤ 9 Limited data set	5.5 Default C.V.	Chronic (FW): 119.3 No value > Allowable Cw Chronic (WS): 25.0 No value > Allowable Cw	119,3 vable Cw 25.0 vable Cw	
Selenium	NC	S	FW	56	ų	ug/L No	9 0 Note: n ≤ 9 Limited data set	NO DETECTS	Acute:		No RP
Silver	NC	0.06	FW	3.1616284	ų	ug/L	0	N/A	Acute:	3.2 0.1	
Zinc	NC	406.7415	FW	403.4414	Æ	ug/L No	9 2 Note: n ≤ 9 Limited data set	30.8 Default C.V.	Acute: 403.4 Chronic: 406.7 No value > Allowable Cw		No RP
Antimony	NC	5.6	WS		je.	r) N T/Bri	9 0 Note: n ≤ 9 Limited data set	NO DETECTS	Acute: Chronic: Max MDL = 5	0 28	No RP
Barium	NC	-	WS		B	mg/L Ng	9 9 Note: n ≤ 9 Limited data set	0.12670 Default C.V.	Acute: 		No RP
Sulfates	N	250	WS		m	mg/L No	9 9 Note: n ≤ 9 Limited data set	119.46000 Default C.V.	Acute: NO WQS Chronic: 250.00000 No value > Allowable Cw		No RP
Thallum	N	2	WS		Æ	μg/L No	9 4 Note: n≤9 Limited data set	0.90500 Default C.V.	Acute: NO WC 	o lys	No RP
						8					

-

4

16543210	۵۵	, -	10	0	1 4			- د				H
									Date			
									Data		m	
								001	BDL=1/2DL		Effluent Hardness	
		2	. >			C		001			lardnes	
		Max. Value	Average Value	10th Per value		C.V. (detault)	Mean	Std Dev.	Results		S	
		100.00 mg	99.00 mg/L	100.00 mg	-	0.6000	100.0000	0.0000		points = 58	Maximum data	ise "PASTE SPECI
16512010 «	0.00	_		5	4	ω.	N	_			Y	H2
									Data		ų	
								25			Upstream Hardness	
								25	BDL=1/2DL		1 Hardr	
		Max. Value	Average Value	10th Per value	D	C.V. (default)	Mean	Std Dev.	Results		less	
			25.00 mg/L		-	0.6000	25.0000	0.0000		points = 50	Values" then "COPY . Maximum data	Use "PASTE SPECIAL
16542210c		7	0	J	4	ω	2	_				Par01 & Par02
									Date			Par02
Ş	0.49	0.6	^	^	1.6	0	۸	۸	Data			
Ň	5	99		→	Ň	ن	-		BDL=1/2DL		Arsenic	
0.32	0.49			0.5							enic	
	Max. Pred Cw	Max. Value	Mult Factor =		5	C.V. (default)	Mean	Std Dev.	Results			
	2.9 ug/L	1.6 (1.81		9	0.6000	0.6022	0.3983		points = 58	Values" then "CO	Use "PASTE SP

Core τ α α α α α α α α α α α α α α α α α α
Date
Beryllium 0.2 0.1 0.1 0.1 0.1 0.5 0.1 0.05 0.1 0.05 0.1 0.05
Results Std Dev. Mean C.V. (default) n Mult Factor = Max. Value Max. Pred Cw
Use "PASTE SPECIAL Values" then "COPV" Maximum data points = 58 0.1417 0.6000 6 2.14 0.50 ug/L 1.07 ug/L
9 8 √ 6 5 4 3 2 [→] 704
Date
9999999 B D
BDL=1/2DL 0.05 0.05 0.05 0.05 0.05 0.05 0.5
Results Std Dev. Mean C.V. n Mult Factor = Max. Value Max. Pred Cw
Lee "PASTE SPECIAL Values" then "COPP" . Maximum data points = 59 0.2350 0.9727 10 2.26 0.500 ug/L 1.130 ug/L
Paro 05 γ 6 0 7 6 0 7 8 0 0 7 6 0 7
Date
49 61.58 63.9
•
EDL=1/2DL 55 62 61.3 66.5 66.5 66.5 66.5 66.5 66.5 66.5 66
Results Std Dev. Mean C.V. (default) n Mult Factor = Max. Value Max. Value

Ň

•

		126.7 mg/L	70.0 mg/L	1.8		9	0.6000	61.2	6.3706		50	Values" then "COPY", Maximum data points =	Use "PASTE SPECIAL-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	8	7	6	J	4	ω	2	_				Par06
										Date			
	^	٨	٨			٨		٨		Data			
	0.1	0.1	0.1	0.8	6.15	0.1	6.1	0.009	0.121			*	
	0.05	0.05	0.05	0.8	6.15	0.05	6.1	0.0045	0.121	BDL=1/2DL		Aluminum	
		Max. Pred Cw	Max. Value	Mult Factor =		Þ	C.V. (default)	Mean	Std Dev.	Results			
			6.2 mg/L			6	0.6000	1.4862	2.6415	Contraction of the local division of the loc	points = 58	Values" then "COPY" Maximum data	Use "PASTE SPECIAL
8 7 6 5 4 3 2 7 0	9	8	7	0	сл	4	ω	N	_				Par07
										Date			
										Data		7	
	258	284	230	236	250	300	494	280		BDL=1		Fotal Dissol	
	258	284	230	236	250	300	494			1/2DL		lved Solids	
		Max. Pred Cw	Max. Value	Mult Factor =		Þ	C.V. (default)	Mean	Std Dev.	Results		olids	
			494.0 mg/L			9	0.6000	290.2222	79.9152		points = 58	Values" then "COPY"	Use "PASTE SPECIAL
876543210		_	7	ი	σı	4	ω	N	_				Par10
										Date			
				^	^		٨	^	^				
	0.2	0.7	0.62	- •	- •	6.1				Data		0	
							.5 0.25	1 0.5	1 0.5	BDL=1/2DL		Chromium, Toti	

		MIDA. FIEU CW	Max Drad Com	Mox Volue		=		CV (default)	Mean		Rasulte	1	2	
		11.1 pg/c	b.1 µg/L	1.81		4	0.0000	1.1144	1 1 1 4 4	4 0040	oc = sunod	. Maximum data	Values" then "COPY"	Use "PASTE SPECIAL
876543276	5 e	a	~	10	0 0	4 r	× 0) N	– د		,			Pa11
	٨			^	^			~	. ^	Date				
	0.5	0.21	0.26	, ე		4.08	0.25	, 		Data				
	0.2	0.2	0.2	2.5	0.1	4.0	0.2	0.1		801=1/201		Copper		
	0.			5 Mult Factor =		3	C.V. (default)			Results				
			4.08 ug/L			9	0.6000	1.0056	.3594		points = 58	- Maximum data	Use PASIE SPELIA	
										-				8.C
8 7 8 3 4 3 1 1 0	G	8	7	0	თ	4	ω	2	-					Par14
8 7 8 8 7 8 8 8 8 8 8	9	8	7	6	5	4	G	2		Date				Par14
5 ± 3 5 5 5 5 5 5	٨	^	7 < 0.1	^	^	4 3.84		~ ~	1	Date				Par14
8788340210	< 0.1	< 0.1		^ 1	^ 1		0.1		1 ~ 1 0			Lead		Par14
8788540210	< 0.1 0.05	< 0.1 0.05	0.05	< 1 0.5	^ 1	3.84	0.1 0.1	0.5	Ų,	8DL=1/2DL		Lead		Par14
878878	< 0.1 0.05	< 0.1 0.05		< 1 0.5	^ 1	3.84	0.1 0.1	0.5	1 < 1 0.5 Std Dev.	8DL=1/2DL		Lead		Par14
6	< 0.1 0.05	< 0.1 0.05 Max. Pred Cw	0.05	< 1 0.5 Mult Factor =	< 1 0.5	3.84 n	0.1 0.1	0.5 Mean	Ų,	8DL=1/2DL		Lead Values" then "COPY"	Una "PASTE SPECIAL	Par14
0 1 3 3 4 3 3 6 7 8 8 7 8 5 4 3 2 1 1 0	< 0.1 0.05	< 0.1 0.05 Max. Pred Cw 6.950 ug/L	0.05 Max. Value 3.840 ug/L	< 1 0.5 Mult Factor = 1.81	< 1 0.5	3.84 n 9	0.1 0.1 C.V. (default) 0.6000	0.5 Mean	Std Dev. 1	8DL=1/2DL		Value	Uan "PASTE SPECIAL	Par14 Par15
	< 0.1 0.05	< 0.1 0.05 Max. Pred Cw 6.950 ug/L	0.05 Max. Value 3.840 ug/L	< 1 0.5 Mult Factor = 1.81	< 1 0.5	3.84 n 9	0.1 0.1 C.V. (default) 0.6000	0.5 Mean 0.6767	5 Std Dev. 1.2063 1	8DL=1/2DL		Value	Use "PASTE SPECIAL	

*

e.

	з З	2.7	3.2	4.5	3.7	3.8		2.3		8DL=1/2DL	Mercury	
		Max. Pred Cw	Max. Value	Mult Factor =		J	C.V. (default)	Mean	Std Dev.	Results		
		9.0 ng/L	4.5 ng/L	2.01		7	0.6000	3.3143	0.7426	and annual	. Maximum data	Use "PASTE SPECIAL
\$ 7 5 5 4 5 2 7 5	9	8	7	6	G	4	ω	2	_			Par16
										Date		
				٨	^	٨		٨	٨	Data		
	0.52	0.47	0.57	G	<u> </u>	<u> </u>	0.63	-	-		Mo	
	<u>.</u> 0	.0	.0		~	~	.o	~	~	BDL=1/2DL	Molybdenum	
					0.5		0.63 C.1			-	mur	
		Max. Pred Cw	ax. Value	ult Factor =			C.V. (default)	Mean	Std Dev.	Results		
		4.5 ug/L	2.5 ug/L	1.81		9	0.6000	0.7433	0.6605	are - surrout	- Maximum data	Use "PASTE SPECIAL
878543846	9	80	7	6	ບາ	4	ω	N	_1			Par17 &
										Date		Par18
				^						Data		
	1.7	2,4	2.2	თ	1.99	3.03	1.9	1.69	1.82	_		
		2	2	2	1.0	3.0	1.9	1.6	1.8	BDL=1/201	Nickel	
					90							
		Max. Pred Cw	x. Value	It Factor =			C.V. (default)	an	Std Dev.	sults		
	į	5.5 µg/L	3.0 µg/L	1.81		9	0.6000	2.1367	0.4432	ag - sound	Values" then "COPY , Maximum data	Use "PASTE SPECIAL
876542276	_	-	_			4	ω	N	_			Par19
										Date		

25	^ Data	^ /	۸	^ .	^ /	۸	۸	۱	~ /				
Sele	1 1 80L:	<u> </u>	0.5	4 0	<u> </u>	- ת) Л	ວ ເ ກ ເ	5				
	0. 1	0.5											
Results	Results Std Dev.	Mean	C.V. (default)	C.V. (deladit)	-		Any Volue	Max. Value	VIAA. FIEU UW				
Values" then "COPY" . Maximum data points = 58	0.7193	0.6111	0.000	0.0000	ŝ		1.81						
	-	- 0	יונ	د	4 r	о 0	10	~	• o	5 6	3 73 :	4	16
Date	Date												
Data		^ ^	× /	^		^	^	^		,			
Zinc BDL=1/2	BDL=1/;	יט ת								ā			
.		2.5 St								c			
sults	Results Std Dev	d Dev.	Mean	V. (default)			<pre>it Factor =</pre>	Max. Value	ax. Pred Cw				
Values" then "COPY" . Maximum data points = 58	0053 7	4.5329	5.3222	0.6000	9			17.0					
	-	-	_	-	-	_				_		14 1	16 5
	<u>.</u>	<u>د</u> د	N	ω	4	G	o O	7	00	Ōĸ	- 10 -		
Date		<u>ــ</u> د		ω	4	G	σ	7	00	0 4	N -		
Date Data	Date		^	ω	4 ^	٥ı ۸	о	7 <	^	0 4	N -		
Data	Date Data		^	3 < 0.5	4 < 1	^	^	^	× 0.5	٨			
	Date Data BDL=1	1 0.5	^	< 0.5	^ 1	^ 1	۸ 5	< 0.5	~ 0.5	< U.5			
Antimony Data BDL=1/2DL	Date Data BDL=1/2DL	~ 1 0.5	< 1 0.5	< 0.5 0.25	< 1 0.5	^ 1	< 5 2.5	< 0.5 0.25	< 0.5 0.25	< U.5			
Antimony Data BDL=1/2DL	Date Data BDL=1/2DL Results	< 1 0.5 Std Dev.	< 1 0.5	< 0.5 0.25 C.V. (default)	< 1 0.5 n	^ 1	< 5 2.5	< 0.5 0.25	~ 0.5	< U.5			

٠

+

												Ĕ	ω
										Date			
										Data			
	0.04	0.05	0.052	0.05	0.06	0.07	0.05	0.05	0.05				
	~	_	.0	~	~	~	~	~	~	BDL=1/2DL		Barium	
							0.05 C					3	
		ax. Pred Cw	Max. Value	ult Factor =			C.V. (default)	Mean	td Dev.	Results			
			0.070000 mg/L			9	0.6000	0.0524	0.0083		points = 58	Values" then "COPY . Maximum data	Use PASTE SPECIA
1 <td>9</td> <td>00</td> <td>- 7</td> <td>on</td> <td>сл</td> <td>4</td> <td>ω</td> <td>N</td> <td>_</td> <td></td> <td></td> <td></td> <td>Par24</td>	9	00	- 7	on	сл	4	ω	N	_				Par24
										Date			
										Data			
	54	53.5	54.5	57.1	59	66	62	59	63				
		(7	(1)	(7)						BDL=1/2DL		Sulfates	
					59		62 C		63 SI	•		es	
		Max. Pred Cw	Max. Value	Mult Factor =			C.V. (default)	Mean	Std Dev.	Results			
		119.460000 mg/L	66.000000 mg/L	1.81		9	0.6000	58.6778	4.3614		points = 58	Values" then "COPY" "Maximum data	Use "PASTE SPECIAL
876543210	9	8	7	о	сл	4	ω	2					Par25
										Date			
				^	^	٨		^	٨	Data			
	0.05	0.1	0.1	-	0.2	0.2	0.08	0.2	0.2	•			
	.0	0	0	0	0	0	0.08	0	0	BDL=1/2DI		Thallum	
						с л		.1 Mean				3	
		c. Pred Cv	Max. Value	t Factor =			C.V. (default)	UE	Dev.	Results			
			0.500000			9	0.6000	0.1367	0.1373		points = 5	Values" then "	Use "PASTE SP

A

COPYT

5088 RPA seep 106, input 6/25/2018

Freshwater RPA - 95% Probability/95% Confidence Using Metal Translators

MAXIMUM DATA POINTS = 58

C REQUIRED DATA ENTRY

Table 1. Project Information

I able I	. Project information	
	CHECK IF HOW OR ORW WQS	1
Facility Name	Rogers Energy Complex	Par01
WWTP/WTP Class		Par02
NPDES Permit	NC0005088	Par03
Outfall	Seep 106	Par04
Flow, Qw (MGD)	1.900	Par05
Receiving Stream	UT Broad River	Par06
HUC Number		Par07
Stream Class	1410	Par08
Apply WS Hardness WQC	A1-C 88	Par09
7Q10s (cfs)	0.00	C Par10
7Q10w (cfs)	0.00	C Par11
30Q2 (cfs)	0.00	C Par12
QA (cfs)	0.00	C Par13
1Q10s (cfs)	0.00	Par14
Effluent Hardness	default 99 mg/L -Ws (Eff Hard Avg = 100 mg/L)	Par15
Upstream Hardness	25 mg/L (Avg)	Part6
Combined Hardness Chronic	99 mg/L	Par17
Combined Hardness Acute	99 mg/L	Par18
Data Source(s)		Par19
CHECK TO APPLY MODEL		Par20
		Par21 Par22 Par23
	Follow directions for data entry. In some cases a comment menu list the available choices or a dropdown menu will provide a list you may select from. Error message occur if data entry does not	Par24 Par25
	meet input criteria.	

	Table 2.	Parameters of Concern	SJ(of Conce	3			
	Name	WQS	Туре	Chronic	Modifier	Acute	PQL	Units
ar01	Arsenic	Aquactic Life	0	150	FW	340		ug/L
ar02	Arsenic	Human Health Water Supply	0	10	HHWS	N/A		ug/L
ar03	Beryllium	Aquatic Life	NC	6.5	FW	65		ug/L
ar04	Cadmium	Aquatic Life	NC	1.6678	FW	10.7582		ug/L
ar05	Chlorides	Water Supply	NC	250	WS			mg/L
ar06	Aluminum	Water Supply	NC	6,5	SM			mg/L
ar07	Total Dissolved Solids	Water Supply	NC	500	SM			mg/L
ar08	Chromium III	Aquatic Life	NC	363.4201	FW	2793.8313		ug/L
ar09	Chromium VI	Aquatic Life	NC	11	FW	16		µg/L
ar10	Chromium, Total	Aquatic Life	NC	N/A	FW	N/A		Hg/L
ar11	Copper	Aquatic Life	NC	25.5442	FW	38.2981		ug/L
ar12	Cyanide	Aquatic Life	NC	57	FW	22	10	ug/L
ar13	Fluoride	Aquatic Life	NC	1,800	FW			ug/L
ar14	Lead	Aquatic Life	NC	13.5358	FW	347.3518		ug/L
ar15	Mercury	Aquatic Life	NC	12	FW		0.5	ng/L
ar16	Molybdenum	Water Supply	NC	160	SM			ug/L
ar17	Nickel	Aquatic Life	NC	119.2776	FW	1073.9039		µg/L
ar18	Nickel	Water Supply	NC	25.0000	SM	N/A		µg/L
ar19	Selenium	Aquatic Life	NC	5	FW	56		ug/L
ar20	Silver	Aquatic Life	NC	0.06	FW	3.1616		ug/L
ar21	Zinc	Aquatic Life	NC	406.7415	FW	403.4414		ug/L
ar22	Antimony	Water Supply	NC	5.6	SM			1/6rt
ar23	Barium	Water Supply	NC	1	SM			mg/L
ar24	Sulfates	Water Supply	NC	250	SM			mg/L
ar25	Thallum	Water Supply	NC	2	SM			hg/L

NPDES Implementation of Instream Dissolved Metals Standards - Freshwater Standards

The NC 2007-2015 Water Quality Standard (WQS) Triennial Review was approved by the NC Environmental Management Commission (EMC) on November 13, 2014. The US EPA subsequently approved the WQS revisions on April 6, 2016, with some exceptions. Therefore, metal limits in draft permits out to public notice after April 6, 2016 must be calculated to protect the new standards - as approved.

Parameter	Acute FW, µg/l (Dissolved)	Chronic FW, µg/l (Dissolved)	Acute SW, µg/l (Dissolved)	Chronic SW, µg/l (Dissolved)
Arsenic	340	150	69	36
Beryllium	65	6.5		
Cadmium	Calculation	Calculation	40	8.8
Chromium III	Calculation	Calculation		
Chromium VI	16	11	1100	50
Copper	Calculation	Calculation	4.8	3.1
Lead	Calculation	Calculation	210	8.1
Nickel	Calculation	Calculation	74	8.2
Silver	Calculation	0.06	1.9	0.1
Zinc	Calculation	Calculation	90	81

Table 1. NC Dissolved Meta	ls Water	Quality	Standards/Aquatic Life Protection
-----------------------------------	----------	---------	-----------------------------------

Table 1 Notes:

- 1. FW= Freshwater, SW= Saltwater
- 2. Calculation = Hardness dependent standard
- 3. Only the aquatic life standards listed above are expressed in dissolved form. Aquatic life standards for Mercury and selenium are still expressed as Total Recoverable Metals due to bioaccumulative concerns (as are all human health standards for all metals). It is still necessary to evaluate total recoverable aquatic life and human health standards listed in 15A NCAC 2B.0200 (e.g., arsenic at 10 µg/l for human health protection; cyanide at 5 µg/L and fluoride at 1.8 mg/L for aquatic life protection).

Table 2. Dissolved Freshwater Standards for Hardness-Dependent Metals

The Water Effects Ratio (WER) is equal to one unless determined otherwise under 15A NCAC 02B .0211 Subparagraph (11)(d)

Metal	NC Dissolved Standard, μg/l
Cadmium, Acute	WER*{1.136672-[ln hardness](0.041838)} · e^{0.9151 [ln hardness]-3.1485}
Cadmium, Acute Trout waters	WER* $\{1.136672-[ln hardness](0.041838)\} \cdot e^{0.9151[ln hardness]-3.6236\}$
Cadmium, Chronic	WER* $\{1.101672$ - $[ln hardness](0.041838)\} \cdot e^{0.7998}[ln hardness]-4.4451\}$
Chromium III, Acute	WER*0.316 · e^{0.8190[ln hardness]+3.7256}
Chromium III, Chronic	WER*0.860 $\cdot e^{0.8190[ln hardness]+0.6848}$
Copper, Acute	WER*0.960 · e^{0.9422[ln hardness]-1.700}
Copper, Chronic	WER* $0.960 \cdot e^{0.8545[ln hardness]-1.702}$
Lead, Acute	WER* $\{1.46203-[ln hardness](0.145712)\} \cdot e^{\{1.273[ln hardness]-1.460\}}$
Lead, Chronic	WER* $\{1.46203-[ln hardness](0.145712)\} \cdot e^{\{1.273[ln hardness]-4.705\}}$
Nickel, Acute	WER*0.998 $\cdot e^{0.8460[ln hardness]+2.255}$
Nickel, Chronic	WER*0.997 · e^{0.8460[ln hardness]+0.0584}

		Permit No.
Silver, Acute	WER*0.85 $\cdot e^{\{1.72[ln \text{ hardness}]-6.59\}}$	
Silver, Chronic	Not applicable	21 H I I
Zinc, Acute	WER*0.978 $\cdot e^{0.8473[ln hardness]+0.884}$	
Zinc, Chronic	WER*0.986 $\cdot e^{\{0.8473[ln hardness]+0.884\}}$	1946

Downsite Nice

General Information on the Reasonable Potential Analysis (RPA)

The RPA process itself did not change as the result of the new metals standards. However, application of the dissolved and hardness-dependent standards requires additional consideration in order to establish the numeric standard for each metal of concern of each individual discharge.

The hardness-based standards require some knowledge of the effluent and instream (upstream) hardness and so must be calculated case-by-case for each discharge.

Metals limits must be expressed as 'total recoverable' metals in accordance with 40 CFR 122.45(c). The discharge-specific standards must be converted to the equivalent total values for use in the RPA calculations. We will generally rely on default translator values developed for each metal (more on that below), but it is also possible to consider case-specific translators developed in accordance with established methodology.

RPA Permitting Guidance/WQBELs for Hardness-Dependent Metals - Freshwater

The RPA is designed to predict the maximum likely effluent concentrations for each metal of concern, based on recent effluent data, and calculate the allowable effluent concentrations, based on applicable standards and the critical low-flow values for the receiving stream.

If the maximum predicted value is greater than the maximum allowed value (chronic or acute), the discharge has reasonable potential to exceed the standard, which warrants a permit limit in most cases. If monitoring for a particular pollutant indicates that the pollutant is not present (i.e. consistently below detection level), then the Division may remove the monitoring requirement in the reissued permit.

- 1. To perform a RPA on the Freshwater hardness-dependent metals the Permit Writer compiles the following information:
 - Critical low flow of the receiving stream, 7Q10 (the spreadsheet automatically calculates the 1Q10 using the formula 1Q10 = 0.843 (s7Q10, cfs)^{0.993}
 - Effluent hardness and upstream hardness, site-specific data is preferred
 - Permitted flow
 - Receiving stream classification
- 2. In order to establish the numeric standard for each hardness-dependent metal of concern and for each individual discharge, the Permit Writer must first determine what effluent and instream (upstream) hardness values to use in the equations.

The permit writer reviews DMR's, Effluent Pollutant Scans, and Toxicity Test results for any hardness data and contacts the Permittee to see if any additional data is available for instream hardness values, upstream of the discharge.

If no hardness data is available, the permit writer may choose to do an initial evaluation using a default hardness of 25 mg/L (CaCO3 or (Ca + Mg)). Minimum and maximum limits on the hardness value used for water quality calculations are 25 mg/L and 400 mg/L, respectively.

If the use of a default hardness value results in a hardness-dependent metal showing reasonable potential, the permit writer contacts the Permittee and requests 5 site-specific effluent and upstream hardness samples over a period of one week. The RPA is rerun using the new data.

The overall hardness value used in the water quality calculations is calculated as follows: Combined Hardness (chronic)

= (<u>Permitted Flow, cfs *Avg. Effluent Hardness, mg/L</u>) + (s7Q10, cfs *Avg. Upstream Hardness, mg/L) (Permitted Flow, cfs + s7Q10, cfs)

The Combined Hardness for acute is the same but the calculation uses the 1Q10 flow.

3. The permit writer converts the numeric standard for each metal of concern to a total recoverable metal, using the EPA Default Partition Coefficients (DPCs) or site-specific translators, if any have been developed using federally approved methodology.

EPA default partition coefficients or the "Fraction Dissolved" converts the value for dissolved metal at laboratory conditions to total recoverable metal at in-stream ambient conditions. This factor is calculated using the linear partition coefficients found in *The Metals Translator: Guidance for Calculating a Total Recoverable Permit Limit from a Dissolved Criterion* (EPA 823-B-96-007, June 1996) and the equation:

 $\label{eq:cdiss} \begin{array}{l} \underline{C_{diss}} &= & 1 \\ \hline C_{total} & 1 + \{ \, [K_{po}] \, [ss^{(1+a)}] \, [10^{-6}] \, \} \end{array}$

Where:

ss = in-stream suspended solids concentration [mg/l], minimum of 10 mg/L used, and

Kpo and a = constants that express the equilibrium relationship between dissolved and adsorbed forms of metals. A list of constants used for each hardness-dependent metal can also be found in the RPA program under a sheet labeled DPCs.

4. The numeric standard for each metal of concern is divided by the default partition coefficient (or site-specific translator) to obtain a Total Recoverable Metal at ambient conditions.

In some cases, where an EPA default partition coefficient translator does not exist (ie. silver), the dissolved numeric standard for each metal of concern is divided by the EPA conversion factor to obtain a Total Recoverable Metal at ambient conditions. This method presumes that the metal is dissolved to the same extent as it was during EPA's criteria development for metals. For more information on conversion factors see the June, 1996 EPA Translator Guidance Document.

5. The RPA spreadsheet uses a mass balance equation to determine the total allowable concentration (permit limits) for each pollutant using the following equation:

 $Ca = (\underline{s7Q10 + Qw}) (Cwqs) - (\underline{s7Q10}) (Cb)$ Qw

Where: Ca = allowable effluent concentration ($\mu g/L$ or mg/L)

Cwqs = NC Water Quality Standard or federal criteria (μ g/L or mg/L)

Cb = background concentration: assume zero for all toxicants except NH₃* (μ g/L or mg/L) Qw = permitted effluent flow (cfs, match s7Q10)

s7Q10 = summer low flow used to protect aquatic life from chronic toxicity and human health through the consumption of water, fish, and shellfish from noncarcinogens (cfs) * Discussions are on-going with EPA on how best to address background concentrations

Flows other than s7Q10 may be incorporated as applicable:

1Q10 = used in the equation to protect aquatic life from acute toxicity

QA = used in the equation to protect human health through the consumption of water, fish, and shellfish from carcinogens

30Q2 = used in the equation to protect aesthetic quality

- 6. The permit writer enters the most recent 2-3 years of effluent data for each pollutant of concern. Data entered must have been taken within four and one-half years prior to the date of the permit application (40 CFR 122.21). The RPA spreadsheet estimates the 95th percentile upper concentration of each pollutant. The Predicted Max concentrations are compared to the Total allowable concentrations to determine if a permit limit is necessary. If the predicted max exceeds the acute or chronic Total allowable concentrations, the discharge is considered to show reasonable potential to violate the water quality standard, and a permit limit (Total allowable concentration) is included in the permit in accordance with the U.S. EPA Technical Support Document for Water Quality-Based Toxics Control published in 1991.
- When appropriate, permit writers develop facility specific compliance schedules in accordance with the EPA Headquarters Memo dated May 10, 2007 from James Hanlon to Alexis Strauss on 40 CFR 122.47 Compliance Schedule Requirements.
- 8. The Total Chromium NC WQS was removed and replaced with trivalent chromium and hexavalent chromium Water Quality Standards. As a cost savings measure, total chromium data results may be used as a conservative surrogate in cases where there are no analytical results based on chromium III or VI. In these cases, the projected maximum concentration (95th %) for total chromium will be compared against water quality standards for chromium III and chromium VI.
- 9. Effluent hardness sampling and instream hardness sampling, upstream of the discharge, are inserted into all permits with facilities monitoring for hardness-dependent metals to ensure the accuracy of the permit limits and to build a more robust hardness dataset.

Parameter	Value	Comments (Data Source)
Average Effluent Hardness (mg/L)	25	No data (002)
[Total as, CaCO ₃ or (Ca+Mg)]		
Average Upstream Hardness (mg/L)	25	No data
[Total as, CaCO3 or (Ca+Mg)]		
7Q10 summer (cfs)	849	
1Q10 (cfs)	232	
Permitted Flow (MGD)		15.5 MGD

10. Hardness and flow values used in the Reasonable Potential Analysis for this permit included:

Date: _____4/20/2018

Permit Writer: _____ Teresa Rodriguez