Basic Water Treatment Math Formulas for Surface and Well Exams

These formulas are intended to serve as a general resource and are not intended to be an all-inclusive list.

AREA

Rectangle: A, $ft^2 = L * W$ Circle: A, $ft^2 = 0.785 * D^2$

VOLUME

Rectangular Tank: V, $ft^3 = L * W * H$ Circular Pipe or Tank: V, $ft^3 = 0.785 * D^2 * H$

FORCE

Force, lbs = Area, Sq. Inches x PSI

DOSAGE (Pounds Formula)

Lbs = mg/L * MGD * 8.34

 $Mg/L = \underline{lbs}$ MGD * 8.34

FLUORIDATION

AFI = Molecular Weight of Fluoride/Total Molecular Weight of Chemical * (100)

Feed Rate, lbs/day = (<u>Dosage, mg/L</u>)(Flow, MGD)(8.34, lbs/gal)

(Fluoride Solution, as a decimal)(Purity, as a decimal)

Feed Rate, gpd = <u>Feed Rate</u>, <u>lbs/day</u> Chemical Solution, <u>lbs/gal</u>

Feed Dose, mg/L = Desired Dose, mg/L – Actual Concentration, mg/L

Mixture Strength, % = (Tank, gal)(Tank, %)+(Vendor, gal)(Vendor, %)

Tank, gal + Vendor, gal

For Saturator

Feed Rate, gpd = <u>Capacity, gpd * dose, mg/L</u> 18,000 mg/L

FILTRATION

Filtration Rate (gpm/ft²) = flow, gpm Surface Area ft²

Backwash Water, (gal) = (Backwash Flow, gpm)(Backwash Time, min)

Backwash Flow, (gpm) = (Filter Area sq. ft.)(Backwash Rate, gpm/sq ft.)

Backwash % = (Total Backwash, gal)(100%)

Totaled Filtered, gal

Rate of Rise, $(ft/min) = \frac{Backwash Rate, gpm/ft2}{7.48 gals/ft3}$

PUMPS AND MOTORS

Water, whp = (Flow, gpm)(Total Water Head, ft)3,960

Brake, bhp = <u>(Flow, gpm)(Head, ft.)</u> (3,960)(Decimal Pump Efficiency)

Motor, mhp = <u>(Flow, gpm)(Head, ft.)</u> (3,960)(Decimal Pump Efficiency)(Decimal Motor Efficiency)

Total Dynamic Head, ft = Static Head, ft. + Friction Loss, ft.

Cost = Motor, hp * .746 kW * Cost * Hrs. * Days

DISINFECTION

Well Disinfection
Chlorine Required/gallon =
(Casing Volume, gal)(Desired Dose, mg/L)
Chlorine Solution, mg/L

Dose (mg/L) = Demand (mg/L) + Residual (mg/L)

Chlorine Demand (mg/L) = Chlorine Dose (mg/L) - Chlorine Residual (mg/L)

Residual (mg/L) = Dosage (mg/L) – Demand (mg/L)

Chlorine lbs. =

(Hypochlorite, gal)(8.34 lbs/gal)(Hypochlorite, %)

100%

Hypochlorite strength, % =

(Chlorine required, lbs/day)(100%)

(Hypochlorinator Flow, gal/day)(8.34 lbs/gal)

Water Added, gal to hypochlorite solution = (Hypo, gal)(Hypo, %)-(Hypo, gal)(Desired Hypo, %)

Desired Hypo, %

DETENTION TIME (Minutes)

(Basin Vol, gal)(24 hr/day)(60 min/hr) Flow, gal/day

MEMBRANE TREATMENT PROCESS

Efficiency, % = (Mass In – Mass Out)(100%)

Mass In

Recovery, % = (Product Flow, MGD)(100%) Feed Flow, MGD

Mineral Rejection, % = 1 - $\frac{Product TDS, mg/L}{Feed TDS, mg/L}$ (100%)

ION EXCHANGE

Grains/gallon = <u>Total Hardness</u>, mg/L 17.1 mg/L/Grain

Hardness, mg/L = (Hardness, grains/gal)(17.1 mg/L)

1 grain/gal

Exchange Capacity, grains = (Media Volume, ft³)(Removal Capacity, grains/ft³)

Water Treated, gal = <u>Exchange Capacity, grains</u> Hardness Removed, grains/gal.

Bypass Water, gal = (Softener Capacity, gal)(Bypass Flow, gpd)
Softener Flow, gpd

Total Hardness, mg/L as CaCO₃ = Calcium Hardness, + Magnesium Hardness (mg/L as CaCO₃) (mg/L as CaCO₃)

COAGULATION and FLOCULATION

Polymer, lbs = (Polymer solution, gal)(8.34 lbs./gal)(Polymer, %)(Sp Gr)
100%

Polymer, % = (Dry Polymer, lbs.)(100%) (Dry Polymer, lbs + Water, lbs.)

Liquid Polymer, gals = (Polymer Solution, %)(Volume of Solution, gal)
(Liquid polymer, %)

VELOCITY

$$Q = A * V$$
 $V = Q/A$ $A = Q/V$

TEMPERATURE

Temperature, $^{\circ}$ C = ($^{\circ}$ F - 32 $^{\circ}$ F) / 1.8

Temperature, $^{\circ}F = (1.8 * ^{\circ}C) + 32 ^{\circ}F$

CONSTANTS

- 1. 2.54 centimeters = 1 inch
- 2. 3.28 feet = 1 meter
- 3. 43,560 square feet = 1 acre
- 4. 640 acres = 1 square mile
- 5. 7.48 gallons = 1 cubic foot
- 6. 1.0 gallon of water = 8.34 lbs
- 7. 1.0 liter = 1,000 cubic centimeters
- 8. 1.0 liter = 1,000 milliliter (ml)
- 9. 1.0 gallon = 3.785 liters
- 10. 1.0 pound = 7,000 grains
- 11. 1.0 pound = 453.5 grams
- 12. 1.0 grain per gallon = 17.1 parts per million (p.p.m.)
- 13. 1.0 grain 0.0648 grams
- 14. 1.0 p.p.m. = 8.34 lbs. per million gallons of water
- 15. 1.0 cubic foot of water weighs 62.4 pounds
- 16. 1.0 gram = 15.43 grains
- 17. 1.0 ounce = 28.35 grams
- 18. 1.0 ounce = 29.57 milliliter (ml)
- 19. 1.0 quart = 0.9464 liters
- 20. 1.0 foot of water = .433 psi
- 21. 1.0 psi = 2.31 feet of water
- 22. 1.0 inch of mercury = 1.13 feet of water
- 23. 1.0 Horsepower = 33,000 ft. lbs. per minutes
- 24. 1.0 Horsepower = 746 watts
- 25. 1.0 million gallons per day = 1.55 cubic feet per second
- 26. 1.0 million gallons per day 694 gallon per minute
- 27. 1 day = 1440 minutes
- 28. $\pi = 3.14$
- 29. 1 meter = 100 centimeters
- 30. 1.0 kilograms = 2.205 lbs
- 31. 1 mile = 5,280 ft.