### ROCKY RIVER WATERSHED INTERAGENCY MEETINGS





Intersection of Rocky River
Water Quality and Needs of its
Rare Species

Rocky River hosts a diverse assemblage of rare mussels (including several State-listed t/e species) and the Cape Fear Shiner





Photo: Conservation Fisheries, Inc.

### Conservation considerations

- In addition to other limiting factors, most endangered aquatic animals are also vulnerable because of small population sizes
  - Small stretches of stream critically important
  - Few individuals to sustain populations
  - Natural re-colonization after impacts slow
  - Mussels are sedentary

### Rocky River's fishes and mussels...

- Feed, respire, and reproduce in the water
- Exposed to pollutants in water, sediment, food
- Have persisted despite problems and improvements
- Have been more prevalent well downstream (?)
- Short-term response to dam removal

### Water quality and aquatic life

• We can measure exposure in water, sediment, tissues ...

#### **Exposure**

interaction of a chemical with animals, plants and the environment



### ... but exposure is only part of risk

#### **Exposure**

interaction of a chemical with animals, plants and the environment

#### Hazard

rinherent capacity of a chemical to cause an adverse outome

... also need data on hazard (toxicity)

### Cape Fear Shiner in-lab testing...

Arch. Environ. Contam. Toxicol. 48, 143–154 (2005) DOI: 10.1007/s00244-003-3038-1



Assessing Contaminant Sensitivity of Endangered and Threatened Aquatic Species: Part I. Acute Toxicity of Five Chemicals

F. J. Dwyer, F. L. Mayer, L. C. Sappington, D. R. Buckler, C. M. Bridges, I. E. Greer, D. K. Hardesty, C. E. Henke, C. G. Ingersoll, L. Kunz, D. W. Whites, T. Augspurger, D. R. Mount, K. Hattala, G. N. Neuderfer



Assessing Contaminant Sensitivity of Endangered and Threatened Aquatic Species: Part III. Effluent Toxicity Tests

F. J. Dwyer, D. K. Hardesty, C. E. Henke, C. G. Ingersoll, D. W. Whites, T. Augspurger, T. J. Canfield, D. R. Mount, F. L. Mayer

...individual chemicals, mixtures, effluents,

## Summary ranks among endangered fishes

• USGS Evaluated toxicity of 5-chemicals to 15 fish species (including 12 t/e fishes)...

...Cape Fear Shiner ranked 8 of 15



Photo: Ken Taylor

 Cape Fear Shiners are sensitive fish to pollutants, but not the most sensitive among fishes already tested

- Cape Fear Shiners are sensitive fish to pollutants, but not the most sensitive
- Meeting water quality standards (derived based on sensitivity of other fishes and aquatic organisms) is likely sufficient

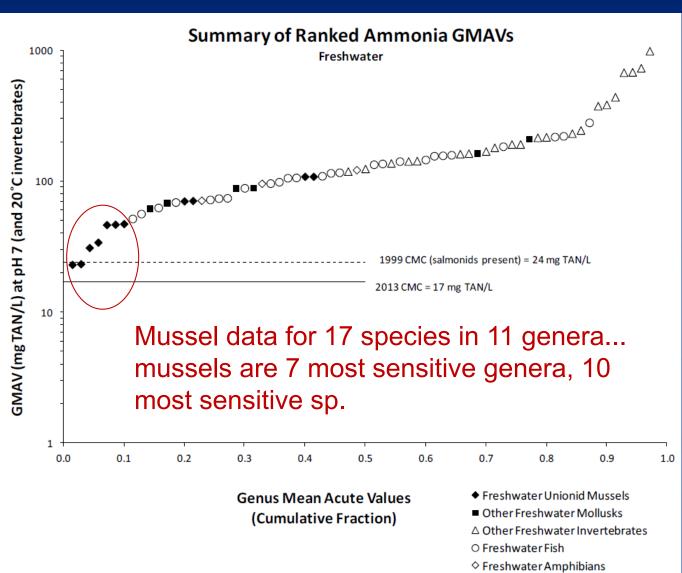
- Excess sedimentation would be a concern for Cape Fear Shiner spawning habitat
- Remember, with some rare species, a single adverse impact can have lasting population level effects

- "Dam construction in the Cape Fear River system has probably had the most serious impact on the species by inundating the species' rocky riverine habitat and altering stream flows."
- Fish's presence and range expansion will be telling

### Explaining mussel declines, from 45 studies

| Cause                                   | <u>Percentage</u> |
|-----------------------------------------|-------------------|
| Pollution, water quality degradation    | 47                |
| Habitat destruction and alteration      | 47                |
| Damming and impoundment                 | 33                |
| Introduction of exotic species          | 29                |
| Hydrologic change                       | 20                |
| Exploitation and harvesting             | 18                |
| Recruitment failure, lack of fish hosts | 13                |
| Watershed alterations                   | 13                |
| Riparian alterations                    | 7                 |
| Predation                               | 7                 |

Strayer et al. 2004. Changing perspectives on pearly mussels, North America's most imperiled animals. BioScience 54: 429-439.


### Ammonia and mussels

"We suggest that excessive concentrations of interstitial un-ionized ammonia may be responsible for widespread declines of freshwater mussel populations, especially in agricultural areas."

Strayer and Malcom 2012

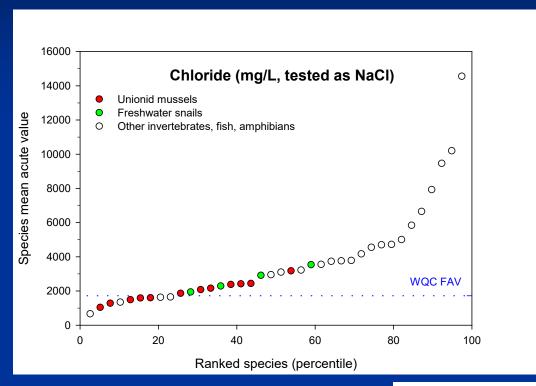
Strayer DL, Malcom HM. 2012. Causes of recruitment failure in freshwater mussel populations in southeastern New York. *Ecological Applications* 22: 1780-1790.

### USEPA 2013 Ammonia Criteria



>600 tests

99 species

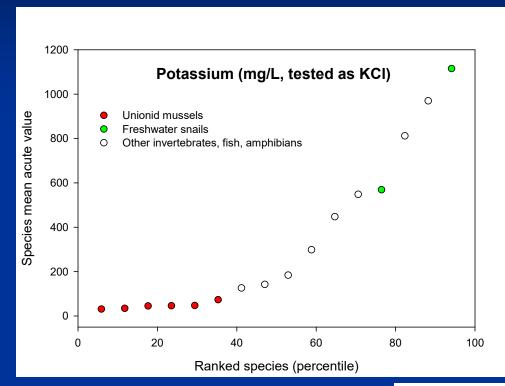

69 genera

51 invert. sp.

44 fish sp.

4 amphib. sp.

### Chloride – mussels sensitive

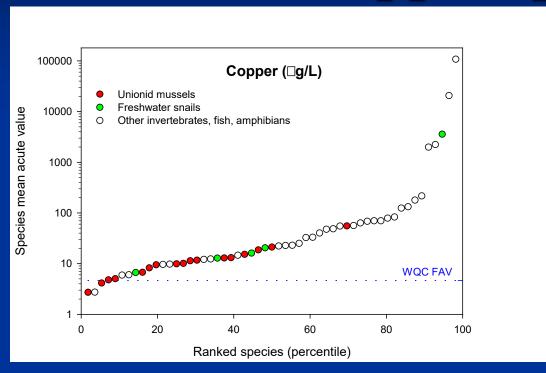





Environmental Toxicology and Chemistry, Vol. 36, No. 3, pp. 786–796, 2017 Published 2016 SETAC Printed in the USA

ACUTE SENSITIVITY OF A BROAD RANGE OF FRESHWATER MUSSELS TO CHEMICALS WITH DIFFERENT MODES OF TOXIC ACTION

# Potassium – mussels sensitive, and no AWQC

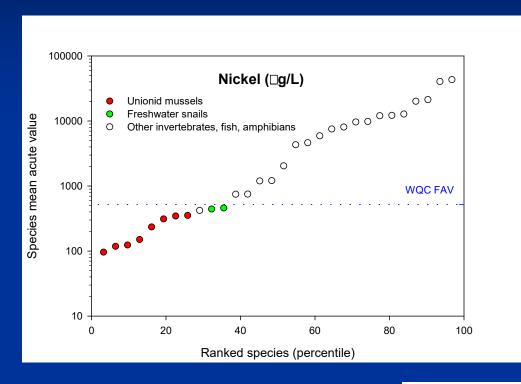



SETAC PRESS

Environmental Toxicology and Chemistry, Vol. 36, No. 3, pp. 786–796, 2017 Published 2016 SETAC Printed in the USA

ACUTE SENSITIVITY OF A BROAD RANGE OF FRESHWATER MUSSELS TO CHEMICALS WITH DIFFERENT MODES OF TOXIC ACTION

# Copper – mussels sensitive, and AWQC appear protective




SETAC PRESS

Environmental Toxicology and Chemistry, Vol. 36, No. 3, pp. 786–796, 2017 Published 2016 SETAC Printed in the USA

ACUTE SENSITIVITY OF A BROAD RANGE OF FRESHWATER MUSSELS TO CHEMICALS WITH DIFFERENT MODES OF TOXIC ACTION

# Nickel – mussel data could drive a reassessment of the 1995 AWQC





Environmental Toxicology and Chemistry, Vol. 36, No. 3, pp. 786–796, 2017 Published 2016 SETAC Printed in the USA

ACUTE SENSITIVITY OF A BROAD RANGE OF FRESHWATER MUSSELS TO CHEMICALS WITH DIFFERENT MODES OF TOXIC ACTION

### Summary: Mussel sensitivity

| Toxicant      | Acute sensitivity | Chronic sensitivity |  |  |  |  |  |
|---------------|-------------------|---------------------|--|--|--|--|--|
| Alachlor      | Yes               | ND                  |  |  |  |  |  |
| Metolachlor   | Yes               | ND                  |  |  |  |  |  |
| 4-Nonylphenol | Yes               | No                  |  |  |  |  |  |
| Azoxystrobin  | No                | No                  |  |  |  |  |  |
| Ammonia       | Yes               | Yes                 |  |  |  |  |  |
| Potassium     | Yes               | Yes                 |  |  |  |  |  |
| Chloride      | Yes               | Yes                 |  |  |  |  |  |
| Nitrate       | No                | Yes                 |  |  |  |  |  |
| Sulfate       | Yes               | Yes                 |  |  |  |  |  |
| Aluminum      | No                | Yes                 |  |  |  |  |  |
| Cadmium       | No                | No                  |  |  |  |  |  |
| Chromium (VI) | No                | No                  |  |  |  |  |  |
| Copper        | Yes               | Yes                 |  |  |  |  |  |
| Lead          | No                | No                  |  |  |  |  |  |
| Nickel        | Yes               | Yes                 |  |  |  |  |  |
| Zinc          | Yes               | Yes                 |  |  |  |  |  |

### Mussel vulnerabilities to excessive sedimentation

Upon settling, excessive sediment can: smother adult and juvenile life stages reduce feeding reduce respiration from clogged gills reduce growth rates limit burrowing activity impair interaction with host fish

# Also tests from the lab have been short and do not typically include mussel reproduction

- Mussel are long-lived so estimates of protective concentrations will likely decrease with longer test durations and as additional endpoints are evaluated
- Recall Brena's point about nitrate...

# A working summary ... we can improve on it together

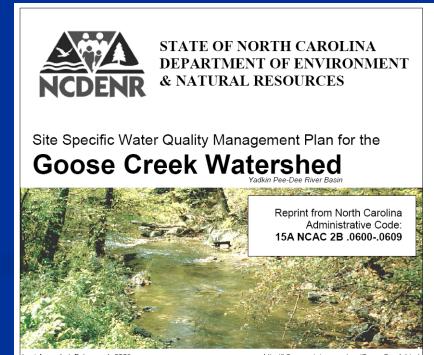
| Parameter | Are Mussels particularly sensitive? | Are Cape Fear<br>Shiners particularly<br>sensitive? | Water<br>Quality<br>Criteria? | Monitored in Rocky River? |
|-----------|-------------------------------------|-----------------------------------------------------|-------------------------------|---------------------------|
| Sediment  | Y                                   | Y                                                   | None                          | Y                         |
| Ammonia   | Y                                   |                                                     | EPA 2013                      | Y                         |
| Chloride  | Y                                   |                                                     | EPA 1988                      | Y                         |
| Potassium | Y                                   |                                                     | None                          |                           |
| Sulfate   | Y                                   |                                                     | None                          |                           |
| Nitrate   | Y                                   |                                                     | None                          | Y                         |
| Copper    | Y                                   |                                                     | EPA 2007                      |                           |
| Nickel    | Y                                   |                                                     | EPA 1995                      |                           |
| Zinc      | Y                                   |                                                     | EPA 1995                      |                           |

# Other approaches to protective concentrations (if no national ambient water quality criteria)

Statewide water quality standards

Stream or site-specific standards

Permit limits


Water quality guidance / recommendations

### Site-specific standards example

#### Habitat for the endangered Carolina heelsplitter



Carolina heelsplitter, NCWRC



### Goose Creek – ammonia exposure

#### Ambient Monitoring System Station Summaries NCDENR, Division of Water Quality

Basinwide Assessment Report

Location: GOOSE CRK AT SR 1524 NR MINT HILL

Station #: Q8360000 Hydrologic Unit Code: 3040105

Latitude: 35.13090 Longitude: -80.63105 Stream class: C

NC stream index: 13-17-18 NCAMBNT Agency:

Time period: 01/07/2002 to 12/12/2006

|                                         | #      | #  | Results not meeting EL |   |     | Percentiles |      |      |      |      |      |      |      |
|-----------------------------------------|--------|----|------------------------|---|-----|-------------|------|------|------|------|------|------|------|
|                                         | result | ND | EL                     | # | %   | %Conf       | Min  | 10th | 25th | 50th | 75th | 90th | Max  |
| Field                                   |        |    |                        |   |     |             |      |      |      |      |      |      |      |
| D.O. (mg/L)                             | 60     | 0  | <4                     | 4 | 6.7 |             | 1    | 5.1  | 6.8  | 8.4  | 10.4 | 12.3 | 14.7 |
|                                         | 60     | 0  | <5                     | 5 | 8.3 |             | 1    | 5.1  | 6.8  | 8.4  | 10.4 | 12.3 | 14.7 |
| pH (SU)                                 | 60     | 0  | <6                     | 1 | 1.7 |             | 5.9  | 6.3  | 6.6  | 6.8  | 7.4  | 7.9  | 8.6  |
|                                         | 60     | 0  | >9                     | 0 | 0   |             | 5.9  | 6.3  | 6.6  | 6.8  | 7.4  | 7.9  | 8.6  |
| Spec. conductance<br>(umhos/cm at 25°C) | 60     | 0  | N/A                    |   |     |             | 91   | 101  | 121  | 141  | 212  | 358  | 609  |
| Water Temperature (°C)                  | 60     | 0  | >32                    | 0 | 0   |             | 4    | 7.7  | 11.3 | 17.9 | 22.9 | 25.2 | 30.9 |
| Other                                   |        |    |                        |   |     |             |      |      |      |      |      |      |      |
| TSS (mg/L)                              | 20     | 2  | N/A                    |   |     |             | 2.5  | 2.6  | 4    | 5    | 14.5 | 27.8 | 48   |
| Turbidity (NTU)                         | 60     | 0  | >50                    | 4 | 6.7 |             | 2.1  | 4    | 4.9  | 10.3 | 20   | 48.9 | 80   |
| Nutrients (mg/L)                        |        |    |                        |   |     |             |      |      |      |      |      |      |      |
| NH3 as N                                | 58     | 10 | N/A                    |   |     |             | 0.02 | 0.02 | 0.02 | 0.07 | 0.41 | 1.66 | 18   |

### Goose Creek – ammonia hazard



Environmental Toxicology and Chemistry, Vol. 22, No. 11, pp. 2569-2575, 2003

Printed in the USA

0730-7268/04 \$12.00 + .00

WATER QUALITY GUIDANCE FOR PROTECTION OF FRESHWATER MUSSELS (UNIONIDAE) FROM AMMONIA EXPOSURE

Tom Augspurger, \*† Anne E. Keller, † Marsha C. Black, § W. Gregory Cope, | and F. James Dwyer#

†U.S. Fish and Wildlife Service, P.O. Box 33726, Raleigh, North Carolina 27636-3726

[U.S. Environmental Protection Agency, Water Management Division, 701 San Marcos Boulevard, Jacksonville, Florida 32207

§Department of Environmental Health Science, University of Georgia, Athens, Georgia 30602, USA

||North Carolina State University, Department of Environmental and Molecular Toxicology, Raleigh, North Carolina 27695-7633, USA

#U.S. Fish and Wildlife Service, 608 East Cherry Street, Columbia, Missouri 65201

### Safe ammonia level for mussels about 0.5 mg/L for this stream's pH

### Site-specific standards outcome

### 15A NCAC 02B .0604 SITE SPECIFIC WATER QUALITY MANAGEMENT PLAN FOR THE GOOSE CREEK WATERSHED: CONTROL TOXICITY INCLUDING AMMONIA

No activity that results in direct or indirect discharge is allowed if it causes toxicity to the Carolina heelsplitter (*Lasmigona decorata*) endangered mussel. For any direct or indirect discharge that may cause ammonia toxicity to the Carolina heelsplitter freshwater mussel, action shall be taken to reduce ammonia (NH3-N) inputs to achieve 0.5 milligrams per liter or less of total ammonia based on chronic toxicity defined in 15A NCAC 02B .0202. This level of total ammonia is based on ambient water temperature equal to or greater than 25 degrees Celsius.