Appendix 1B

Biological Assessment Macroinvertebrate and Fish Site Sample Results

Tar River Headwaters Subbasin HUC 03020101

The full report is available on the DWQ Environmental Sciences Section website:

http://portal.ncdenr.org/web/wq/ess/reports.

_	Waterb		Location			Station ID	Bioclassification	
	TAR	R		US 158	(04/09/07	OF44	Good
	County	Subbasin	8 digit HUC	Latitude	Longitu	ıde	AU Number	Level IV Ecoregion
	GRANVILLE	1	03020101	36.33333333	-78.76833	3333	28-(1)	Carolina Slate Belt

Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Average Depth (m)	Reference Site
WS-IV;NSW	26	470	11	0.4	Yes

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	90	10 (rural residential)	0	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)

None

NPDES Number

Volume (MGD)

Water Quality Parameters

 Temperature (°C)
 8.5

 Dissolved Oxygen (mg/L)
 10.4

 Specific Conductance (μS/cm)
 72

 pH (s.u.)
 6.9

Water Clarity Clear

Habitat Assessment Scores (max)

Habitat / 100000 mont occirco (max)	
Channel Modification (5)	5
Instream Habitat (20)	19
Bottom Substrate (15)	12
Pool Variety (10)	10
Riffle Habitat (16)	7
Left Bank Stability (7)	7
Right Bank Stability (7)	7
Light Penetration (10)	8
Left Riparian Score (5)	5
Right Riparian Score (5)	5
Total Habitat Score (100)	85

Substrate

cobble, boulder, bedrock

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
04/09/07	2007-07	16	46	Good
10/14/99	99-63	18	54	Excellent
06/24/99	99-53	18	54	Excellent
04/27/99	99-25	17	52	Good

Most Abundant Species

Highfin Shiner

Exotic Species

Green Sunfish

Species Change Since Last Cycle

Gains -- Pirate Perch, Creek Chubsucker, Carolina Darter, and Highfin Shiner. **Losses** -- Roanoke Bass, Brown Bullhead, White Sucker, Eastern Mosquitofish, Largemouth Bass, and Chainback Darter.

Data Analysis

Watershed -- the extreme headwaters of the Tar River basin; drains the eastern edge of Person County and part of Granville County; includes no major municipalities. Habitat -- high quality Carolina Slate Belt type habitats with an abundance of rocky pools, undercut banks, root mats, and lots of *Podostemum* on the rocky substrates; good bank stabilities and extensive riparian zones. 2007 -- a relatively diverse assemblage of fish including 3 intolerant species and the first collection of Carlina Darter or Pirate Perch at this site. 1999 - 2007 -- the drop in NCIBI score and bioclassification since 1999 is mostly related to a slight shift in trophic structure towards more insectivores and fewer piscivores, including Roanoke Bass and Largemouth Bass. Twenty six fish species are known from this site, including 4 species of suckers, 4 species of darters, and 6 species of minnows. This site continues to exhibit good water quality, with no apparent issues.

Waterbody		Location		St			Date	Bioclassification
TAR F	TAR R		SR 1150				5/25/07	Good-Fair
County	Subbasin	8 digit HUC	Latitud	de Longi	tude A	U Number	Lev	rel IV Ecoregion
GRANVILLE	1	03020101	361738	8 7842	221	0	Northe	ern Outer Piedmont
Stream Classifica	tion [Orainage Area (mi2	2)	Elevation (ft) S	tream Width	(m)	Stream Depth (m)
WS-IV;NSW	1	51.4		400		8		0.1
	Foi	rested/Wetland	U	rban	Agri	culture	O1	ther (describe)
Visible Landuse	(%)	40		0		60		0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)

NPDES Number

Volume (MGD)

None

Water Quality Parameters

 Temperature (°C)
 23.7

 Dissolved Oxygen (mg/L)
 5.1

 Specific Conductance (μS/cm)
 90

 pH (s.u.)
 6.5

Water Clarity clear

Habitat Assessment Scores (max)

` '	
Channel Modification (5)	3
Instream Habitat (20)	16
Bottom Substrate (15)	15
Pool Variety (10)	8
Riffle Habitat (16)	10
Left Bank Stability (7)	6
Right Bank Stability (7)	5
Light Penetration (10)	8
Left Riparian Score (5)	5
Right Riparian Score (5)	5
Total Habitat Score (100)	81

81	Substra	te Mixture	of gravel, cobb	le, and boulder	
Sample ID	ST	EPT	ВІ	EPT BI	Bioclassification

Sample Date	Sample ID	ST	EPT	ВІ	EPT BI	Bioclassification
06/25/07	10193	17	17	5.4	5.4	Good-Fair
07/21/97	7374	14	14	5.6	5.6	Good-Fair
09/09/92	6013	65	12	6.5	4.9	Fair

Taxonomic Analysis

Several new mayflies, stoneflies, and caddisflies were added to the taxa list for this location in 2007. Mayflies included *Plauditus dubius* group, *Baetis intercalaris*, *Baetis pluto*, and *Tricorythodes* sp. Caddisflies included *Chimarra* sp. and *Dolophilodes* sp., both of which are sensitive to pollution as well as the more tolerant *Nectopsyche exquisita*. No stoneflies were collected at this location during the current sampling event.

Data Analysis

The bioclassification of this study location has improved from Fair in 1992 to Good-Fair in both 1997 and 2007. It was not sampled in 2002 because access was restricted to protect a federally endangered mussel. There are no upstream NPDES dischargers and the habitat received a high score. The number of EPT taxa has increased slightly over the 15 years of sampling at this site. The current bioclassification may have been negatively affected by the severity of drought conditions in 2007. This suggestion is supported by the low levels of dissolved oxygen at this site at the time of sampling; many pollution sensitive taxa (i.e. some EPT) are affected by physico-chemical stress.

TAR R		SR 16	SR 1609		, <u> </u>	Date 06/27/07		Bioclassification Good
County	Subbasin	8 digit HUC	Latitude	Longitude	AU Nu	ımber	Leve	el IV Ecoregion
FRANKLIN	1	03020101	355805	781320	0		Norther	rn Outer Piedmont
Stroam Classific	otion	Drainago Aroa (mi2)	Elev	(ation (ft)	Stroon	a Width (m)		Stroam Donth (m)

Stream Classification	Drainage Area (miz)	Elevation (it)	Stream width (m)	Stream Depth (m)
WS-V;NSW	633.1	200	18	0.3

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	40	10	50	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)	NPDES Number	Volume (MGD)
Oxford WWTP	NC0025054	3.5
Franklin County WWTP	NC0069311	3.0
Tar River WRF	NC0020231	1.37

Water Quality Parameters

 Temperature (°C)
 27.9

 Dissolved Oxygen (mg/L)
 6.4

 Specific Conductance (μS/cm)
 120

 pH (s.u.)
 7.3

Water Clarity slightly turbid

Habitat Assessment Scores (max)

Instream Habitat (20) 15 Bottom Substrate (15) 7 Pool Variety (10) 9 Riffle Habitat (16) 14 Left Bank Stability (7) 5		
Pool Variety (10) 9	Channel Modification (5)	3
Pool Variety (10) 9 Riffle Habitat (16) 14 Left Bank Stability (7) 5	Instream Habitat (20)	15
Riffle Habitat (16) Left Bank Stability (7) 14 5	Bottom Substrate (15)	7
Left Bank Stability (7) 5	Pool Variety (10)	9
	Riffle Habitat (16)	14
Right Bank Stability (7)	Left Bank Stability (7)	5
right Bank Stability (7)	Right Bank Stability (7)	5
Light Penetration (10)	Light Penetration (10)	7
Left Riparian Score (5) 5	Left Riparian Score (5)	5
Right Riparian Score (5) 5	Right Riparian Score (5)	5
Total Habitat Score (100) 75	Total Habitat Score (100)	75

Substrate Mostly gravel and sand

EDT PL PRINCE PRI

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
06/27/07	10199	68	25	4.9	3.9	Good
07/23/02	8917	68	26	5.2	4.6	Good
08/27/97	7462	73	23	5.2	4.6	Good

Taxonomic Analysis

Several pollution sensitive taxa were collecting during the 2007 sampling event; these included the mayflies *Isonychia* sp., *Heptagenia pulla*; the stoneflies *Acroneuria abnormis*, *Neoperla* sp. *Paragnetina fumosa*, and *Pteronarcys dorsata*; and the caddisflies *Chimarra* sp., and *Micrasema rusticum*. New EPT taxa included *Pseudocloeon propinguum*, *Maccaffertium lenati*, *Perlesta* sp., and *Micrasema rusticum*.

Data Analysis

This study location has rated Good all three times that it has been sampled between 1997 and 2007. There are three major NPDES dischargers upstream of the study site contributing to the high conductivity measured during the current sampling event. The habitat at this study location was fairly high quality except for the marginal instream habitat for invertebrate colonization and the homogeneous streambed substrata consisting of mostly sand and gravel.

Waterbo	dy	Locat	ion	Station II)	Date	Bioclassification
TAR	R	NC :	97	OB58		06/27/07	Good-Fair
County	Subbasin	8 digit HUC	Latitude	Longitude	AU Num	ber Le	evel IV Ecoregion
EDGECOMBE	2	03020101	355719	774716	0	Ro	olling Coastal Plain

Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Stream Depth (m)
C;NSW	867.4	75	40	0.2

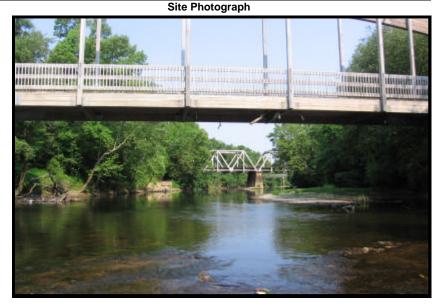
	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	20	70	0	10 (Industrial)

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)	NPDES Number	Volume (MGD)
Oxford WWTP	NC0025054	3.5
Franklin County WWTP	NC0069311	3.0
Tar River WRF	NC0020231	1.37
Sunset Avenue WWTP	NC0072133	not limited

Water Quality Parameters

 Temperature (°C)
 28

 Dissolved Oxygen (mg/L)
 7.3


 Specific Conductance (μS/cm)
 110

 pH (s.u.)
 6.9

Water Clarity Clear

Habitat Assessment Scores (max)

Channel Modification (5)	2
Instream Habitat (20)	11
Bottom Substrate (15)	9
Pool Variety (10)	9
Riffle Habitat (16)	3
Left Bank Stability (7)	5
Right Bank Stability (7)	5
Light Penetration (10)	2
Left Riparian Score (5)	2
Right Riparian Score (5)	3
Total Habitat Score (100)	51

Substrate Mostly gravel and cobble

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
06/27/07	10201	72	21	6.0	5.0	Good-Fair
07/24/02	8916	89	24	6.0	5.0	Good-Fair
07/22/97	7381	71	26	5.9	5.0	Good
07/23/92	5913	79	24	5.9	4.8	Good-Fair
07/12/90	5359	77	23	5.6	4.7	Good

Taxonomic Analysis

Stoneflies have not been collected at this location since 1990. EPT Taxa not previously collected at NC 97 were limited to the mayflies *Pseudocloeon dardanum* and *Maccaffertium terminatum*. Most of the EPT taxa collected are considered relatively pollution tolerant; exceptions included the sensitive mayfly *Leucrocuta* sp. and the caddisflies *Oecetis morsei* and *Chimarra* sp.

Data Analysis

This location has been given the bioclassification of either Good or Good-Fair during the last five sampling events. Likely contributing to the current rating of Good-Fair are the presence of four major upstream dischargers. In addition to these point source pollutants, this study location is within the City of Rocky Mount, and therefore likely receives significant nonpoint source pollution as well. In addition to the chemical stressors at this site, the habitat was also degraded. Contributing to this score was a combination of stream channelization, a lack of quality colonizable habitats, infrequent riffles, and an open stream canopy.

		-	Station	שו		Date	Bioclassification
	SR 12	252	OB6	3	06	/27/07	Good
Subbasin	8 digit HUC	Latitude	Longitude	AU N	Number	Lev	rel IV Ecoregion
2	03010107	355622	773926		0	Rolli	ing Coastal Plain
on D	rainage Area (mi2	e) Elev	vation (ft)	Strea	am Width	(m)	Stream Depth (m)
	1006.8		39		30		0.1
	2	Subbasin 8 digit HUC 2 03010107 n Drainage Area (mi2	2 03010107 355622 n Drainage Area (mi2) Elec	Subbasin 8 digit HUC Latitude Longitude 2 03010107 355622 773926 n Drainage Area (mi2) Elevation (ft)	Subbasin 8 digit HUC Latitude Longitude AU N 2 03010107 355622 773926 n Drainage Area (mi2) Elevation (ft) Stream	Subbasin 8 digit HUC Latitude Longitude AU Number 2 03010107 355622 773926 0 Drainage Area (mi2) Elevation (ft) Stream Width	Subbasin 8 digit HUC Latitude Longitude AU Number Lev 2 03010107 355622 773926 0 Rolli n Drainage Area (mi2) Elevation (ft) Stream Width (m)

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	20	0	50	30 (Residential)

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)	NPDES Number	Volume (MGD)
Oxford WWTP	NC0025054	3.5
Franklin County WWTP	NC0069311	3.0
Tar River WRF	NC0020231	1.37
Tar River Regional WWTP	NC0030317	21

Water Quality Parameters

 $\begin{array}{lll} \text{Temperature (°C)} & 30.7 \\ \text{Dissolved Oxygen (mg/L)} & 9 \\ \text{Specific Conductance (}\mu\text{S/cm)} & 153 \\ \text{pH (s.u.)} & 7.8 \\ \end{array}$

Water Clarity slightly turbid

Habitat Assessment Scores (max)

Channel Modification (5)	2
()	45
Instream Habitat (20)	15
Bottom Substrate (15)	6
Pool Variety (10)	10
Riffle Habitat (16)	7
Left Bank Stability (7)	3
Right Bank Stability (7)	3
Light Penetration (10)	2
Left Riparian Score (5)	4
Right Riparian Score (5)	5
Total Habitat Score (100)	57

Sample Date	Sample ID	ST	EPT	ВІ	EPT BI	Bioclassification
06/27/07	10203	63	23	5.7	4.8	Good
08/01/02	8897	79	19	5.8	4.8	Good-Fair
07/22/97	7379	68	26	5.4	4.4	Good
03/02/88	4499	66	14	6.9	5.1	Fair

Mostly gravel

Substrate

Taxonomic Analysis

Several pollution sensitive taxa were collected during this sampling event including the mayfly *Isonychia* sp., the stoneflies *Acroneuria abnormis* and *Neoperla* sp., and the caddisflies *Chimarra* sp., *Oecetis morsei*, and *Oxyethira* sp. However, most of the EPT taxa collected are considered facultative.

Data Analysis

The bioclassification of this location has steadily improved from Fair in 1988 to Good in 2007. There are several major NPDES dischargers upstream of SR 1252. The drought that occured in 2007 may have concentrated the various effluents, and the high conductivity reported here seems to support this assertion. In addition to chemical stressors the habitat received a low score because it lacked quality streambed substrate and riffle habitats, and a stream canopy. Although a combination of stressors is likely at work at this location, a trend of increasing bioclassification still persists.

Waterb	ody		Location			Station ID	Bioclassification
SHELTO	N CR	US 158			05/17/06	OF38	Good
County	Subbasin	8 digit HUC	Latitude	Longit	ude	AU Number	Level IV Ecoregion
GRANVILLE	1	03020101	36.31305556	-78.7211	11111	28-4	Carolina Slate Belt

_	Stream Classification	Drainage Area (mi2)	Elevation (ft) Stream Width (m		Average Depth (m)	Reference Site	
	WS-IV,NSW	23.8	0	12	0.4	Yes	

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	75	10 (rural residential)	15	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)

NPDES Number

Volume (MGD)

None

Water Quality Parameters

Temperature (°C)
Dissolved Oxygen (mg/L)
Specific Conductance (µS/cm)
pH (s.u.)

Water Clarity

Turbid

14.2 8.5

73

6.0

Habitat Assessment Scores (max)

Channel Modification (5) 5 Instream Habitat (20) 16 Bottom Substrate (15) 10 10 Pool Variety (10) Riffle Habitat (16) 7 6 Left Bank Stability (7) Right Bank Stability (7) 6 Light Penetration (10) 9 5 Left Riparian Score (5) 5 Right Riparian Score (5) **Total Habitat Score (100)** 79 Site Photograph

Substrate

cobble, gravel, sand

	Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
	05/17/06	2006-49	18	50	Good
	04/06/99	99-01	20	56	Excellent
I	04/14/97	97-20	24	58	Excellent
I	04/07/92	92-04	19	54	Excellent

Most Abundant Species

Bluehead Chub

Exotic Species

Green Sunfish

Species Change Since Last Cycle

Gains -- White Sucker, Eastern Mosquitofish, Largemouth Bass, and Creek Chub. Losses -- Warmouth, Notchlip Redhorse, Golden Shiner, Highfin Shiner, and Chainback Darter.

Data Analysis

Sampled in 2006 as part of an EEP Local Watershed study (BAU Memo 20060728). **Watershed** -- a headwater tributary to the Tar River located in west-central Granville County; this catchment lies between the Tar River headwaters and the North Fork Tar River watersheds. **Habitat** -- pools, runs with snags, riffles, *Valisneria*, and deadfalls crossing the stream; good riparian zone widths. **2006** -- fewer total species than expected, but still a diverse and abundant fish community present; the change in NCIBI score and rating comes from a slight shift in the trophic structure including the loss of the intolerant Chainback Darter. **1992 - 2006** -- there are a total of 29 known species from this watershed including 4 species of suckers, 8 species of minnows, 6 species of sunfish, 3 species of darters, and 2 species of catfish. Even with the slight decline in NCIBI score and rating, water quality remains high in this watershed.

Waterbody		Location			Station	ID		Date	Bioclassification
N FK TAR	R	US 1	58		OB1	9	06	6/25/07	Fair
County	Subbasin	8 digit HUC	Lat	Latitude Longitude AU Number		Number	er Level IV Ecoregion		
GRANVILLE	1	03020101	36′	1856	784143		0	Northe	ern Outer Piedmont
Stream Classificatio	on D	Orainage Area (mi2))	Elev	ation (ft)	Strea	am Width	(m)	Stream Depth (m)
WS-IV; NSW		276.8			407		8		0.3
	For	ested/Wetland		Urban		Agricult	ture	Ot	ther (describe)
Visible Landuse (%	b)	20		0		80			0
Upstream NPDES	S Discharge	ers (>1MGD or <1M	GD ar	d withir	n 1 mile)	NF	DES Nur	nber	Volume (MGD)
		None							
Water Quality Paramete	ers						Site Pho	tograph	
Temperature (°C)		20.7							Co. I have been
Dissolved Oxygen (mg/L))	3.4						N Z	
Specific Conductance (µS	S/cm)	113							- A S
pH (s.u.)		6.8					76		
Water Clarity	Ş	slightly turbid			1010				
Habitat Assessment Sc	ores (max)			MAR			307		
Channel Modification (5)		3					C Contin		A 19
Instream Habitat (20)		12				-			
Bottom Substrate (15)		14						1000	
Pool Variety (10)		8			Se Carrie				
Riffle Habitat (16)		3		Later Section					

68 Substrate

6

10

4

Mostly gravel and cobble

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
06/25/07	10192	12	12	5.3	5.3	Fair
07/21/97	7375	17	17	5.3	5.3	Good-Fair
07/27/92	5915	8	8	6.3	6.3	Fair

Taxonomic Analysis

Left Bank Stability (7) Right Bank Stability (7)

Light Penetration (10)

Left Riparian Score (5)

Right Riparian Score (5)

Total Habitat Score (100)

Several taxa occurred in the 2007 sample that have not been previously collected at this location; including the mayflies *Baetis flavistriga* and *B. intercalaris*; the stonefly *Perlesta* sp.; and the caddisfly *Mystacides sepulchralis*. Most of the species collected are relatively tolerant of pollution, but a few, incuding the mayflies *Isonychia* sp. and *Leucrocuta* sp. are sensitive.

Data Analysis

This study site has been given Fair and Good-Fair bioclassifications for the years 1992 and 1997, and the current sample was given a Fair rating. The habitat at this site received a correspondingly low score that was largely affected by a lack of colonizable habitats such as rootmats and woody debris and the infrequency of riffles. In addition, the remains of a beaver dam upstream suggested that flow may have been severely interrupted in the recent past. The majority of pollution coming into this stream originates from nonpoint sources in this agricultural watershed. Since 2007 was a year of extreme drought, it seems unlikely that these were a major factor affecting water quality.

Waterbody		I	ocation		Date Station ID	Bioclassification			
N FK TAR RIVER SF		R 1151		04/09/07	OF60	Exce	ellent		
County	Subbasin	8 digit HUC	Latitude	Longi	jitude AU Number		Level IV	Level IV Ecoregion	
GRANVILLE	1	03020101	36.299579	-78.70	07895	28-5	Carolina Slate Belt		
Stream Classificati	Stream Classification Drainage Area (mi2)		Elevation (ft)		Stream Width (m)		Average Depth (m)	Reference Site	
WS-IV;NSW		21.2	400		10		0.5	No	
Forested/We			Urb			ariculture		describe)	

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	70	5 (rural residential)	0	25 (logged a few years ago)

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile) **NPDES Number** Volume (MGD) None

Water Quality Parameters

Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µS/cm) pH (s.u.)

8.8 11.1 87 7.0

Water Clarity

Clear

Habitat Assessment Scores (max)

Channel Modification (5) 5 Instream Habitat (20) 16 4 Bottom Substrate (15) 10 Pool Variety (10) 5 Riffle Habitat (16) 2 Left Bank Stability (7) Right Bank Stability (7) 2 Light Penetration (10) 9 Left Riparian Score (5) 5 Right Riparian Score (5) 5 **Total Habitat Score (100)** 63

Site Photograph

Substrate

Gravel, sand, clay banks

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
04/09/07	2007-08	18	58	Excellent
10/14/99	99-64	15	46	Good
06/24/99	99-54	20	48	Good
04/06/99	99-02	18	48	Good
04/14/97	97-21	23	54	Excellent
04/07/92	92-05	16	46	Good

Most Abundant Species

Swallowtail Shiner

Exotic Species

None

Species Change Since Last Cycle

Gains -- Roanoke Bass, Satinfin Shiner, Chain Pickerel, Northern Hogsucker, Largemouth Bass, Highfin Shiner, Margined Madtom, and Roanoke Darter (intolerant). Losses -- Green Sunfish, Warmouth, Redear Sunfish, V-lip Redhorse, and Creek Chub.

Data Analysis

Sampled this location as a 2007 Random Ambient Monitoring site, but will also serve as the new basinwide site; formerly sampled at US 158 (one bridge and 1.9 miles upstream). Watershed -- a transitional site with its catchment in both the Carolina Slate Belt and the Northern Outer Piedmont ecoregions; drains the north-central part of Granville County, west of Oxford. Land use is largely forest and agriculture. Habitats -- lots of coarse woody debris including snags and large deadfalls (some creating riffles accross the channel), and gravel riffles; low flow. 2007 -- a diverse and trophically balanced assemblage of fish including 18 species, three of which are considered intolerant to pollution. This sample represents the highest NCIBI score to date for this stream. 1992 - 2007 -- good water quality continues to be displayed in this watershed, with a total of 34 known fish species, including 5 suckers, 10 minnows, 6 sunfish, 3 catfish, and 3 darters.

FISHING CR		Location	on Station ID		ID	Date Date		Bioclassification
		SR 1643		OB10		06/25/07		Good-Fair
County	Subbasin	8 digit HUC	Latitude	Longitude	AU N	lumber L		el IV Ecoregion
GRANVILLE 1 0302		03020101	361326 783430			0		rn Outer Piedmont
Stream Classification		Drainage Area (mi2)	Elev	ation (ft)	Strea	am Width (m)		Stream Depth (m)
C:NSW		76.9		310		20		0.2

_	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	30	30	40	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)	NPDES Number	Volume (MGD)
Oxford WWTP	NC0025054	3.5

Water Quality Parameters

 Temperature (°C)
 24.3

 Dissolved Oxygen (mg/L)
 8.3

 Specific Conductance (μS/cm)
 339

 pH (s.u.)
 7.7

Water Clarity clear

Habitat Assessment Scores (max)

,	
Channel Modification (5)	5
Instream Habitat (20)	16
Bottom Substrate (15)	12
Pool Variety (10)	9
Riffle Habitat (16)	10
Left Bank Stability (7)	6
Right Bank Stability (7)	5
Light Penetration (10)	7
Left Riparian Score (5)	5
Right Riparian Score (5)	5
Total Habitat Score (100)	80
· · · · · · · · · · · · · · · · · · ·	

Mixture of gravel, cobble, and boulders

EPT Sample Date Sample ID ST ы EPT BI Bioclassification 06/25/07 10194 59 19 5.9 5.5 Good-Fair 03/23/06 79 23 9820 5.5 4.2 Good 07/22/02 8812 16 5.1 62 5.7 Good-Fair 05/18/99 7855 11 11 5.6 5.6 Fair 07/21/97 7376 61 18 5.8 5.3 Good-Fair

Substrate

Taxonomic Analysis

While the number of EPT taxa declined from 23 in 2006 to 19 in 2007, there is an overall trend of increasing diversity for these orders since 1997. There were more Ephemeroptera collected in 2007 (12) than in 2006 (9), including the sensitive taxa *Isonychia* sp., *Leucrocuta* sp., and *Stenacron pallidum*. There were no Plecoptera collected in 2007, whereas 6 species were recorded in 2006. However, seasonal differences were likely important in this and other taxonomic disimilarities between the 2006 and 2007 data.

Data Analysis

Bioclassifications at SR 1643 have fluctuated between Fair and Good since 1997. For the 2007 sampling event, riffles were infrequent along the study reach, but the overall habitat at this study site was still good and received a score of 80. Interestingly, of the five years of data compared here, all but those of 2007 had stoneflies. The absence of these animals negatively affected the bioclassification of this site. Although the severe drought of 2007 may have affected the benthic community directly (i.e. stoneflies require flowing water) the specific conductance was 339, indicating that wastewater effluent may have also been concentrated and an additional stressor to aquatic life.

	Waterb	ody		Location	Da	ate	Station ID	Bioclassification
	FISHING CR		SR 1643		05/1	8/06	OF17	Excellent
•	County	Subbasin	8 digit HUC	Latitude	Longitude		AU Number	Level IV Ecoregion
	GRANVILLE	1	03020101	36 22277778	-78 57638889		28-11e	Northern Outer Piedmont

Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Average Depth (m)	Reference Site	
C;NSW	44.1	0	12	0.4	No	

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	100	0	0	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)</th>NPDES NumberVolume (MGD)Oxford Waste Water Treatment Plant (~5.25 miles upstream)NC00250543.5

Water Quality Parameters

Temperature (°C)
Dissolved Oxygen (mg/L)
Specific Conductance (µS/cm)
pH (s.u.)

15.6 8.4 186 6.1

Water Clarity Turbid

Habitat Assessment Scores (max)

Channel Modification (5) 5 18 Instream Habitat (20) 14 Bottom Substrate (15) 10 Pool Variety (10) Riffle Habitat (16) 16 Left Bank Stability (7) 7 7 Right Bank Stability (7) Light Penetration (10) 9 Left Riparian Score (5) 5 5 Right Riparian Score (5) **Total Habitat Score (100)** 96

Substrate cobble, boulder, gravel

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
05/18/06	2006-52	22	56	Excellent
04/08/02	2002-02	20	50	Good
04/14/97	97-22	18	52	Good
04/07/92	92-06	18	42	Good-Fair

Most Abundant Species

Swallowtail Shiner

Exotic Species

Green Sunfish

Species Change Since Last Cycle

Gains -- Roanoke Bass, Eastern Mosquitofish, Bull Chub, Chainback Darter, and Blacktip Jumprock. Losses -- Rosyside Dace, Largemouth Bass, and Creek Chub.

Data Analysis

Sampled in 2006 as part of an EEP Local Watershed study (BAU Memo 20060728). **Watershed** -- a tributary to the Tar River, located about 3 miles above its confluence; drains part of central Granville County, including the Town of Oxford. **Habitat** -- high quality Carolina Slate Belt type habitats; runs, riffles, and boulder pools; great forested riparian zones including bluffs with mountain laurel. **2006** -- high abundance (n = 621) and diversity of the fish community, including 3 intolerant species, over 400 more fish than in 2002, and the highest rating ever at this site. **1992 - 2006** -- high diversity site; 27 species of fish are known from this watershed, including 4 species of suckers, 5 species of sunfish, 10 species of minnows, and 4 species of darters. Despite a slightly higher conductivity (9% higher than 2002), the additional effluent flow from the Oxford WWTP (increased from 2.17 to 3.5 MGD in early 2004) appears to be benefiting the fish community through consistant flows in this part of the watershed.

Waterbody Location				Date	Station ID	Bioclassification	
COON CR SR 1609		C	05/18/06	OF11	Good		
County	Subbasin	8 digit HUC	Latitude	Longitu	de	AU Number	Level IV Ecoregion
GRANVILLE	1	03020101	36.26805556	-78.56777	7778	28-11-5	Northern Outer Piedmont

Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Average Depth (m)	Reference Site
C,NSW	25.2	0	10	0.4	No

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	100	0	0	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile) **NPDES Number** Volume (MGD) None

Water Quality Parameters

Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µS/cm) pH (s.u.)

Water Clarity

Slightly turbid

14.6 7.8

125

6.1

Habitat Assessment Scores (max)

Channel Modification (5) 5 Instream Habitat (20) 18 Bottom Substrate (15) 3 9 Pool Variety (10) Riffle Habitat (16) 0 5 Left Bank Stability (7) Right Bank Stability (7) 5 10 Light Penetration (10) 5 Left Riparian Score (5) 5 Right Riparian Score (5)

Site Photograph

Substrate

sand

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
05/18/06	2006-51	20	46	Good
04/08/02	2002-03	18	54	Excellent

Most Abundant Species

Total Habitat Score (100)

Johnny Darter

65

Exotic Species

Green Sunfish and Redear Sunfish

Species Change Since Last Cycle

Gains -- Redfin Pickerel, Eastern Mosquitofish, Green Sunfish, and Redear Sunfish. Losses -- Rosyside Dace and Chainback Darter.

Data Analysis

Sampled in 2006 as part of an EEP Local Watershed study (BAU Memo 20060728). Watershed -- a tributary to Fishing Creek located in east-central Granville County; drains the northern and eastern portions of the Town of Oxford. Habitat -- shallow runs with snags, undercuts, coarse woody debris, and no riffles; good canopy and riparian zone widths; moderately elevated conductivity due to the urban drainage. 2006 -- a diverse and abundant (n = 426) fish community present; although the NCIBI score and rating fell in 2006, the changes within the trophic structure causing the decline were not substantial. 2002 -2006 -- a total of 22 fish species are known from this stream including 2 sucker species, 7 minnow species, and 4 darter species; despite the non point urban runoff from Oxford, water quality remains pretty good in this catchment.

Waterbody Location		Date	Station ID	Bioclassification			
MIDDLI	E CR	SR 1203		04/09/07	OF28	Excellent	
County	Subbasin	8 digit HUC	Latitude	Longi	itude	AU Number	Level IV Ecoregion
FRANKLIN	1	03020101	36.17194444	-78.4	875	28-15	Northern Outer Piedmont

Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Average Depth (m)	Reference Site
C;NSW	8.8	295	7	0.5	No

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	100	0	0	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)

None

NPDES Number

Volume (MGD)

Water Quality Parameters

Temperature (°C)
Dissolved Oxygen (mg/L)
Specific Conductance (µS/cm)
pH (s.u.)

Water Clarity

Clear

9.8

83

7.3

Habitat Assessment Scores (max)

Channel Modification (5) 5 Instream Habitat (20) 13 Bottom Substrate (15) 3 10 Pool Variety (10) Riffle Habitat (16) 0 2 Left Bank Stability (7) Right Bank Stability (7) 2 Light Penetration (10) 9 5 Left Riparian Score (5) 5 Right Riparian Score (5)

Total Habitat Score (100) 54 Substrate

Site Photograph

ate sa

sand, silt

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
04/09/07	2007-09	25	56	Excellent
04/08/02	2002-01	19	50	Good

Most Abundant Species

Pinewoods Shiner

Exotic Species

Green Sunfish

Species Change Since Last Cycle

Gains -- White Sucker, Redfin Pickerel, Eastern Silvery Minnow, Pumkinseed, Warmouth, Bluegill, Largemouth Bass, and Blacktip Jumprock. **Losses** -- Yellow Bullhead and Rosyside Dace.

Data Analysis

Watershed -- a small tributary to the Tar River; drains a forested area along the Granville and Franklin county line. Habitat -- deep pools and runs (influenced by beaver activity), side snags, undercuts, and no riffles; the habitat score was low primarily because of the sandy substrates and the lack of riffle habitats; bank stabilities also suffer in places because of sandy soils; good canopy and riparian zones. 2007 -- very diverse and trophically balanced fish population including two intolerant darters (Chainback Darter and Roanoke Darter) and one intolerant minnow species (Pinewoods Shiner). 2002 - 2007 -- the bioclass improvement to Excellent is primarily due to an increase in the species richness and composition metrics; an additional 3 sunfish species and 2 sucker species were collected in 2007. Twenty seven fish species are now known from this site, including 4 species of suckers, 9 species of minnows, and 4 species of darters.

Waterb	ody		Location		Date	Station ID	Bioclassification
TABBS	S CR		SR 1100	04/	10/07	OF41	Good
County	Subbasin	8 digit HUC	Latitude	Longitude		AU Number	Level IV Ecoregion
VANCE	1	03020101	36.18222222	-78.45583333	3	28-17-(0.5)b	Northern Outer Piedmont

Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Average Depth (m)	Reference Site
C;NSW	70.8	270	11	0.5	No

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	95	5 (rural residential)	0	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)

None

NPDES Number

Volume (MGD)

Water Quality Parameters

Temperature (°C)
Dissolved Oxygen (mg/L)
Specific Conductance (µS/cm)
pH (s.u.)

Water Clarity

Clear

8.2 10.3

101

6.3

Habitat Assessment Scores (max)

Channel Modification (5) 5 Instream Habitat (20) 10 Bottom Substrate (15) 4 10 Pool Variety (10) Riffle Habitat (16) 0 4 Left Bank Stability (7) Right Bank Stability (7) 4 9 Light Penetration (10) 5 Left Riparian Score (5) 5 Right Riparian Score (5) **Total Habitat Score (100)** 56

Site Photograph

Substrate

gravel, sand

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
04/10/07	2007-10	19	48	Good
10/14/99	99-65	21	46	Good
06/24/99	99-55	21	48	Good
04/09/99	99-05	21	50	Good
04/15/97	97-23	25	56	Excellent
04/08/92	92-07	24	56	Excellent

Most Abundant Species

Redbreast Sunfish

Exotic Species

Green Sunfish

Species Change Since Last Cycle

Gains -- Yellow Bullhead, Redfin Pickerel, Northern Hogsucker, and Largemouth Bass. **Losses** -- Pirate Perch, Warmouth, Bluehead Chub, Bull Chub, Mimic Shiner, and Blacktip Jumprock.

Data Analysis

Watershed -- a large tributary to the Tar River located about 1.5 miles above its confluence; drains the rural southwest area of Vance County, the southern edge of Henderson County, and part of western Granville County. Habitat -- mostly run habitats with good woody snags and deadfalls, and no true riffles; fairly straight channel. 2007 -- diverse community of fish present, including 5 species of suckers and 4 species of darters. 1992 - 2007 -- stable NCIBI metrics and bioclassifications across sampling years; the fish community remains dominated by insectivores. A total of 36 species are known from this site including 6 species of suckers, 10 species of minnows, and 4 species of darters.

 Waterb	ody		Location		Date	Station ID	Bioclassification
LYNCH	I CR		SR 1235		04/10/07	OF27	Good
County	Subbasin	8 digit HUC	Latitude	Longi	itude	AU Number	Level IV Ecoregion
FRANKLIN	1	03020101	36.14861111	-78.341	66667	28-21-(0.7)	Northern Outer Piedmont

Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Average Depth (m)	Reference Site
WS-IV;NSW	23.9	220	9	0.5	No

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	90	0	10	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile) **NPDES Number** Volume (MGD) None

Water Quality Parameters

Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µS/cm) pH (s.u.)

Water Clarity

Clear

8.1 10.4

70

6.8

Habitat Assessment Scores (max)

Channel Modification (5) 5 Instream Habitat (20) 18 Bottom Substrate (15) 3 10 Pool Variety (10) Riffle Habitat (16) 5 Left Bank Stability (7) 6 Right Bank Stability (7) 6 Light Penetration (10) 9 5 Left Riparian Score (5) 5 Right Riparian Score (5)

72 **Substrate**

clay, silt, sand, gravel

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
04/10/07	2007-11	25	50	Good
05/24/99	99-35	19	46	Good
04/15/97	97-25	24	48	Good
06/18/92	92-20	15	38	Fair

Most Abundant Species

Total Habitat Score (100)

Satinfin Shiner

Exotic Species

Green Sunfish

Species Change Since Last Cycle

Gains -- Chain Pickerel, Tessellated Darter, Eastern Mosquitofish, Eastern Silvery Minnow, Northern Hogsucker, Warmouth, Bluegill, and Notchlip Redhorse. Losses -- American Eel and Bluehead Chub.

Data Analysis

Watershed -- a tributary to the Tar River located about one mile above its confluence; drains parts of northwest Franklin County and southeast Vance County. Habitat -- although well within the Northern Outer Piedmont, this site exhibits habitat types that resemble a bottom lands stream of the Rolling Coastal Plain; slightly stained runs and pools with coarse woody debris, snags, and deadfalls; good riparian zone widths. 2007 -- very diverse fish community present with the highest NCIBI score yet at this site. 1992 - 2007 -- this site continues to maintain an abundant and highly diverse fish community, with relativley stable metric scores and no apparent water quality issues. Thirty three species are known from this site including 5 species of suckers, 5 species of darters, and 9 species of minnows.

Waterb	ody		Location		Date	Station ID	Bioclassification
CEDAF	RCR		SR 1105	0	06/10/04	OF6	Excellent
County	Subbasin	8 digit HUC	Latitude	Longitue	de	AU Number	Level IV Ecoregion
FRANKLIN	1	03020101	36.07166667	-78.40916	6667	28-29-(2)b	Northern Outer Piedmont

Stream Classification	assification Drainage Area (mi2) Elevation (ft)		Stream Width (m)	Average Depth (m)	Reference Site	
C, NSW	31.5	240	6	0.4	No	

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	100	0	0	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)	NPDES Number	Volume (MGD)	
Franklin County WWTP	NC0069311	1.0 (prior to 12/2002)	
Franklin County WWTP	NC0069311	3.0 (since 12/2002)	

Water Quality Parameters

Temperature (°C)
Dissolved Oxygen (mg/L)
Specific Conductance (µS/cm)
pH (s.u.)

6.6 180 6.2

27.0

Water Clarity

Slightly turbid

Habitat Assessment Scores (max)

Channel Modification (5)	5
Instream Habitat (20)	14
Bottom Substrate (15)	4
Pool Variety (10)	6
Riffle Habitat (16)	2
Left Bank Stability (7)	4
Right Bank Stability (7)	4
Light Penetration (10)	8
Left Riparian Score (5)	5
Right Riparian Score (5)	5
Total Habitat Score (100)	57

Substrate

Sand and coarse woody debris

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
06/10/04	2004-80	21	56	Excellent
04/10/02	2002-09	22	54	Excellent
04/16/97	97-26	17	50	Good
04/08/92	92-08	19	48	Good

Most Abundant Species

Bluehead Chub and Green Sunfish

Exotic Species

Green Sunfish

Species Change Since Last Cycle

Gains -- Yellow Bullhead, Brown Bullhead, and Green Sunfish. **Losses** -- Pinewoods Shiner, Golden Shiner, Blacktip Jumprock, and Redear Sunfish.

Data Analysis

Watershed -- drains central Franklin County, including the southwest part of the Town of Franklin; site is ~1.1 miles below WWTP; site is ~4.2 miles above the basinwide site sampled from 1992-2002 and the difference in the drainage area was 8.7 sq. miles; treated as the same site (Station ID 0F6 and OF7). Habitat -- sandy runs, coarse woody debris on current; snag pools; gravelly riffles; good riparian zones. 2004 -- almost twice as many fish collected in 2004 than in 2002 5 species of darters were present; Creek Chub represented only by young-of-year. 1992 - 2004 -- conductivity has steadily increased from 74 μS/cm in 1992 to 180 μS/cm in 2004; 26 species known from the site, including 5 species of darters, 4 species of suckers, and 3 intolerant species; NCIBI Score has gradually increased from 48 (Good) in 1992 to 56 (Excellent) in 2004; 2004 data were also used as part of a NCSU Urban Fish Study.

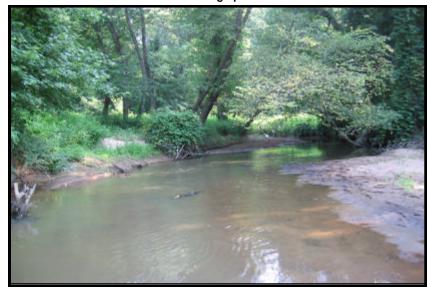
Waterbody CEDAR CR		Location SR 1109		Station ID OB4		Date 06/26/07		Bioclassification Good	
FRANKLIN	1	03020201	360337	782114		0	Northe	rn Outer Piedmont	
Stream Classification		Drainage Area (mi2)	Flex	ration (ft)	Stra	am Width (m	1)	Stream Denth (m)	

Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Stream Depth (m)
C;NSW	633.1	229	5	0.2

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	30	10	60	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)	NPDES Number	Volume (MGD)
Franklin County WWTP	NC0069311	3.0

Water Quality Parameters


23.9 Temperature (°C) 6.5 Dissolved Oxygen (mg/L) 282 Specific Conductance (µS/cm) 7.1 pH (s.u.)

Water Clarity turbid

Habitat Assessment Scores (max)

5
10
3
9
3
5
5
7
4
4
55

Substrate Predominantly sand

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
06/26/07	10195	21	21	5.2	5.2	Good
07/22/02	8863	15	15	5.0	5.0	Good-Fair
07/28/97	7384	14	14	4.4	4.4	Good-Fair

Taxonomic Analysis

The number of Ephemeroptera or mayfly taxa increased from 4 and 6 in 1997 and 2002 respectively to 9 in 2007. New taxa included Paracloeodes minutus, Procloeon sp., and Tricorythodes sp.. In addition, the number of Plecoptera or stonefly taxa increased from 3 in 1997 and 2002 to 5 in 2007; new species included Perlesta sp. and the pollution sensitive taxon Pteronarcys dorsata. Of the 7 Trichoptera taxa collected in 2007, only Brachycentrus nigrosoma is considered pollution sensitive.

Data Analysis

The streambed substrata was mostly sand, which is a poor habitat for many EPT taxa. In addition, few colonizable habitats were noted, and many of those present were no longer viable due to the severe drought conditions of 2007. Further, riffle habitats were considered rare and of poor quality due to a lack of larger streambed substrata that many macroinvertebrates prefer. The high conductivity measured at SR 1109 may indicate that the upstream Franklin County WWTP is negatively affecting water quality. Despite the effects of poor habitat, drought, and possibly water quality, the bioclassification at this site improved slightly from Good-Fair in 1997-2002, to Good in 2007.

MAPLE CR County Subl		S	D 4740								
			R 1713		05/08	3/07	OF5	0	Not	t Rated	
NASH :	oasın 8	3 digit HUC	Latitude	Longi	itude		AU Numbe	er	Level	IV Ecoregion	
	2	03020101	35.943983	-77.83	35555		28-66		Rolling	Coastal Plain	
Stream Classification	Draina	ge Area (mi2)	Elevatio	n (ft)	Strea	am Wid	lth (m)	Ave	rage Depth (m)	Reference	Site
WS-IV,NSW		10.5	100			8			0.3	No	
	Fores	sted/Wetland	Urban/Sı	uburban		Agı	riculture		Other	(describe)	
Visible Landuse (%)		50	4	0			0			quarry pond)	
Ipstream NPDES Discharg	oro (> 1M	CD or 4MCD	and within 1 n	oilo)			NDDES	Numbe	_	Volume (MGD)	
pstream NPDES Discharg	jers (> i ivi	None	and within i ii	ille)			NPDES		r	volume (MGD)	
		. 10.10									
Vater Quality Parameters				N. W.		ASSESSED NO.	S	ite Phot	ograph	5 B 7.18	
emperature (°C)		13.7				100		3-1	1		7
Dissolved Oxygen (mg/L)		6.5	400		- AND						强
Specific Conductance (µS/cn	n)	116		The -			1000		3		辐
H (s.u.)		6.8	人类						- W 38		
Nater Clarity	Slightly t	urbid			X	4	7			41//	
labitat Assessment Scores	s (max)						N. A.	美国			
Channel Modification (15)	. ,	15		15.7		1	100	LAZE			
nstream Habitat (20)		8		A STATE OF THE PARTY OF THE PAR	-				A A		
Sottom Substrate (15)		7	- 1.4						- 2		
ool Variety (10)		8								de de la constante de la const	
eft Bank Stability (10)		4						2		1 / N	
Right Bank Stability (10)		4								-	
ight Penetration (10)		10								-	
eft Riparian Score (5)		5		-				-		STATE .	
tight Riparian Score (5)		4									
otal Habitat Score (100)		65	Subs	strate	Sand						

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
05/08/07	2007-43	10		Not Rated

Most Abundant Species

Eastern Mosquitofish and American Eel

Exotic Species

Green Sunfish

Species Change Since Last Cycle

N/A

Data Analysis

This is the first fish community sample collected at this site. **Watershed** -- tributary to the Tar River; drains eastern Nash County; urban/suburban watershed. **Habitat** -- natural channel with bends; an urban stream; shallow, slow moving runs; a few snags and undercuts; bottomland forest; low quality instream habitats; very low flow. **2007** -- low abundance and diversity (fewest species and fish of any site in 2007); 6 of 10 species represented by only 1 or 2 fish/species; dominant species accounted for 63 percent of all the fish; percentage of tolerant fish high (50 percent); intolerant species absent. This site is not rated because the appropriate NCIBI metrics and criteria have yet to be developed for coastal plain streams.

_	Waterbody			Location	Da	te	Station ID	Bioclassification	
	PIG BASKET CR		SR 1433		04/10/07		OF32	Not Rated	
	County Subbasin								
	County	Subbasin	8 digit HUC	Latitude	Longitude		AU Number	Level IV Ecoregion	
	County	Subbasin	8 digit HUC	Latitude	Longitude		AU Number	Level IV Ecoregion	

Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Average Depth (m)	Reference Site
C;NSW	19	50	6	0.5	No

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	85	15 (rural residential)	0	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)	NPDES Number	Volume (MGD)
None		

Water Quality Parameters

Temperature (°C)
Dissolved Oxygen (mg/L)
Specific Conductance (µS/cm)
pH (s.u.)

Slightly turbid, tannin stained

13.4 9.1

99

6.7

Water Clarity

Habitat Assessment Scores (max)

Channel Modification (15) 15 Instream Habitat (20) 15 Bottom Substrate (15) 4 10 Pool Variety (10) Left Bank Stability (10) 9 9 Right Bank Stability (10) Light Penetration (10) 10 Left Riparian Score (5) 5 Right Riparian Score (5) 5 82 **Total Habitat Score (100)**

Substrate

clay, sand

_	Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
	04/10/07	2007-12	14		Not Rated
	04/18/02	2002-23	20		Not Rated

Most Abundant Species

Eastern Mosquitofish

Exotic Species

None

Species Change Since Last Cycle

Gains -- None. **Losses** -- Mud Sunfish, Flier, Pumpkinseed, Redear Sunfish, Golden Shiner, and Margined Madtom.

Data Analysis

Watershed -- a tributary to Stony Creek located just west of the Town of Red Oak, approximately three miles above its confluence; a coastal plain stream that drains part of the Northern Outer Piedmont ecoregion. Habitat -- coastal plain habitat types with lots of coarse woody debris (snags and deadfalls), and undercut banks; the extensive riparian zones are primarily privet and briar. 2007 -- a fairly typical coastal plain fish community was collected, but with no minnow species; the total abundance of collected fish was about 50% when compared to the previous sample (n = 85 vs.162 in 2002). 2002 - 2007 -- a total of 20 fish species are known from this site including 1 species of sucker, 8 species of sunfish, 1 minnow species, and 2 species of darter; although not rateable, water quality appears to be good in this watershed.

FISH COMMUN	ITY SAMP	LE								
Waterbody	y	1	Location		Date	Station	ID	В	ioclassi	fication
COMPASS	CR		NC 97		05/08/07	7 OF5	1		Not R	ated
County	Subbasin	8 digit HUC	Latitude	Longi	tude	AU Numbe	er	L	evel IV E	Ecoregion
EDGECOMBE	2	03020101	35.977145	-77.76	6907	28-72		SE Floo	odplains	& Low Terraces
Stream Classificati	ion Drai	nage Area (mi2)	Elevatio	n (ft)	Stream V	Vidth (m)	Δν	erage Depth	(m)	Reference Site
C,NSW	lon Bran	10.4	45	11 (11)		5		0.3	(111)	No No
<u> </u>								0.0		
	Fo	rested/Wetland	Urb	oan	, ,	Agriculture		C	Other (de	scribe)
Visible Landuse (%	%)	45	()		40		15	(utility sw	vitch yard)
Upstream NPDES Dis	chargers (>	1MGD or <1MGD	and within 1 n	nile)		NPDES	S Numbe	er	Vo	olume (MGD)
•	<u> </u>	None								
Water Quality Parame	eters					S	ite Pho	tograph		
Temperature (°C)		15.2				The second		1		
Dissolved Oxygen (mg/	/L)	6.7		1800					100	A TABLE
Specific Conductance (132	7		N 7 6		7			
pH (s.u.)	,	6.3		-					1	发展的
. ,						們要認				S.V. 是一页记录
Water Clarity	Clear,	slightly stained				MA				
				10-1						214
Habitat Assessment S	Scores (max)				48	世界生	The Co		Steel Steel
Channel Modification (1	15)	15					NE C	THE REAL PROPERTY.	SELD.	- Continues
Instream Habitat (20)		17			- TAY					
Bottom Substrate (15)		7		1	The same	2				人
Pool Variety (10)		10			1					
Left Bank Stability (10)		6			Local	-			1/1	
Right Bank Stability (10	0)	6		(E)456				4		EAST
Light Penetration (10)		10					-	7 2 6		
Left Riparian Score (5)		5		25 500						
Right Riparian Score (5	5)	5		_						
Total Habitat Score (1	00)	81	Subs	strate	Sand					
Sample Date		Sample	ID	Spec	cies Total		NCIBI		Bio	classification
05/08/07		2007-44	1		22					Not Rated

05/08/07 2007-44 Not Rated

Most Abundant Species

Satinfin Shiner, Swallowtail Shiner, and Bluegill

Exotic Species

Green Sunfish, Redear Sunfish

Species Change Since Last Cycle

N/A

Data Analysis

This if the first fish community sample collected at this site. Watershed -- site is ~ 1 mile above the confluence with the Tar River; drains eastern Nash County, including the US 301 corridor and the northern area of the City of Rocky Mount. Habitat -- natural channel; very shallow, sandy runs; good snags and roots; wide riparian zones along both banks; very low flow. 2007 -- primarily coastal plain species; abundant and diverse, 22 species, including 8 species of sunfish (most species of sunfish at any site in 2007); tolerant species abundant (Satinfin Shiner, Redbreast Sunfish, and Eastern Mosquitofish); one intolerant species (Pinewoods Shiner) present. This site is not rated because the appropriate NCIBI metrics and criteria have yet to be developed for coastal plain streams.

 Waterbody			Location		Date	Station ID	Bioclassification	
BEECH BR		NC 97		97 05/08/07		OF3	Not Rated	
 County Subbasin		8 digit HUC	Latitude	Longi	tude	AU Number	Level IV Ecoregion	
EDGECOMBE	2	03020101	35.96472222	-77.675	27778	28-75-(4)	SE Floodplains & Low Terraces	

_	Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Average Depth (m)	Reference Site
	WS-IV;NSW	21.8	45	5	0.3	No

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	100	0	0	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)	NPDES Number	Volume (MGD)
None		

Water Quality Parameters

Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µS/cm) pH (s.u.)

Water Clarity Clear, tannin stained

Habitat Assessment Scores (max)

Channel Modification (15) 10 Instream Habitat (20) 15 Bottom Substrate (15) 13 Pool Variety (10) 6 9 Left Bank Stability (10) 9 Right Bank Stability (10) Light Penetration (10) 5 Left Riparian Score (5) 5 Right Riparian Score (5) 5 77 **Total Habitat Score (100)**

Substrate Sand and gravel

_	Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
	05/08/07	2007-45	28 (including 1 hybrid)		Not Rated
	04/17/02	2002-22	20		Not Rated

Most Abundant Species

Bluegill

16.6

9.4

171

6.9

Exotic Species

Redear Sunfish

Species Change Since Last Cycle

Losses -- Bowfin and Green Sunfish. Gains -- White Shiner, Bull Chub, Golden Shiner, Notchlip Redhorse, White Perch, Mud Sunfish, Largemouth Bass, Johnny Darter, and Chainback Darter.

Data Analysis

Watershed -- site is ~ 0.5 mile from the confluence with the Tar River; drains the northeast portion of the City of Rocky Mount, a portion of the Town of Battleboro, and northwestern Edgecombe County. Habitat -- channelized and logged a long time ago; open canopy; cane brakes along both shorelines; thick filamentous algae (Vaucheria); macrophytes; very shallow with pools; conductivity elevated; very low flow. 2007 -- 27 species, most species of any site in the basin in 2007, including 7 species of sunfish, 4 species of darters, and 2 species of suckers; 3 species migrants from the Tar River (Bull Chub, Notchlip Redhorse, and White Perch). 2002 & 2007 -- extremely diverse and abundant, 29 species, including 9 species of sunfish; dominant species were Bluegill, Eastern Mosquitofish, Tessellated Darter, and Satinfin Shiner; ~ twice as many fish collected in 2007 than in 2002, primarily due to low flow in 2007; Bluegill increased 7-fold, represented by Age 1 and 2 year old fish; conductivity elevated (181 and 171 μS/cm, respectively in 2002 and 2007). This site is not rated because the appropriate NCIBI metrics and criteria have yet to be developed for coastal plain streams.

Waterb	ody	Location	n	Station	ID		Date	Bioclassification
SWIFT	CR	SR 13	10	OB5	6	06	/26/07	Good
County	Subbasin	8 digit HUC	Latitude	Longitude	AU N	Number	Le	vel IV Ecoregion
NASH	2	03020101	360642	775511		0	North	ern Outer Piedmont
Stream Classification		Drainage Area (mi2)	Ele	Elevation (ft)		Stream Width (m)		Stream Depth (m)
C:ORW:NS	:\//	153.0		1/17		15		0.2

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	30	10	60	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile) **NPDES Number** Volume (MGD) None

Water Quality Parameters

24.6 Temperature (°C) 6.2 Dissolved Oxygen (mg/L) 86 Specific Conductance (µS/cm) 6.7 pH (s.u.)

Water Clarity slightly turbid

Habitat Assessment Scores (max)

Channel Modification (15)	10
Instream Habitat (20)	15
Bottom Substrate (15)	15
Pool Variety (10)	6
Left Bank Stability (10)	7
Right Bank Stability (10)	7
Light Penetration (10)	3
Left Riparian Score (5)	3
Right Riparian Score (5)	3
Total Habitat Score (100)	69

Site Photograph

Substr	rate Mostly	Mostly gravel and cobble						
ST	EPT	ВІ	EPT BI	Bioclassification				
65	22	5.0	4.1	Good				
89	30	4.8	4.0	Excellent				
62	20	53	4.2	Good				

Sample Date Sample ID 06/26/07 10197 04/24/03 9113 07/23/97 7382 11/12/96 7234 20 20 4.1 4.1 Good-Fair 03/05/96 7016 87 33 4.7 2.9 Excellent

Taxonomic Analysis

The mayfly taxa list generated in 2007 matched that of 1997 relatively closely with the additions of Pseudocloeon ephippiatum and Maccaffertium terminatum. The stonefy list was also similar between these years, but Perlesta sp. was added in 2007. Pollution sensitive taxa collected in the current sample included the mayfly Isonychia sp., the stoneflies Paragnetina fumosa and Pteronarcys dorsata, and the caddisflies Brachycentrus nigrosoma, B. numerosus, Micrasema wataga, and Pycnopsyche sp.

Data Analysis

This study location was given a bioclassification of Excellent and Good-Fair during separate collections in 1996, it rated Good in 1997, Excellent in 2003, and Good during the current sampling event. The benthic community at this location likely benefits from having no upstream NPDES dischargers and from habitats such as mixed streambed substrata and abundant riffles. These two habitat features are known to promote colonization for many sensitive (i.e. EPT) invertebrate groups. The bioclassification at this study location may have been adversely affected by the severe drought occurring during 2007, which could explain in part the decline in rating from 2003 to 2007.

Waterbody		Location		Station ID		Date	Bioclassification	
SWIFT	CR	SR 12	253	OB55		06	/27/07	Good
County	Subbasin	8 digit HUC	Latitude	Longitude	AU N	Number	Lev	el IV Ecoregion
EDGECOMBE	2	03020101	355757	773510		0	SE Floodplains and Low Terraces	

_	Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Stream Depth (m)
	WS-IV;NSW	254.3	39	15	0.2

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	40	20	40	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)	NPDES Number	Volume (MGD)
North Edgecombe High School	NC0050431	0.02

Water Quality Parameters

 Temperature (°C)
 27.3

 Dissolved Oxygen (mg/L)
 8.2

 Specific Conductance (μS/cm)
 100

 pH (s.u.)
 6.6

Water Clarity clear

Habitat Assessment Scores (max)

Channel Modification (15)	15
Instream Habitat (20)	17
Bottom Substrate (15)	12
Pool Variety (10)	9
Left Bank Stability (10)	9
Right Bank Stability (10)	9
Light Penetration (10)	7
Left Riparian Score (5)	5
Right Riparian Score (5)	5
Total Habitat Score (100)	88

				J		
Sample Date	Sample ID	ST	EPT	ВІ	EPT BI	Bioclassification
06/27/07	10202	87	28	5.5	4.0	Good
06/24/04	9392	95	30	5.5	4.1	Excellent
07/25/02	8914	86	24	5.7	4.2	Good
07/22/97	7380	73	24	5.0	3.8	Excellent
02/01/89	4810	7.4	20	5.2	3.8	Evcellent

Mostly gravel

Substrate

Taxonomic Analysis

Although the taxanomic richness of the EPT decreased slightly from the last sampling in 2004, there were several species present that had not been previously collected. These included the mayflies *Maccaffertium terminatum*, *Pseudocloeon dardanum*, and *P. ephippiatum*; and the caddisflies *Hydropsyche rossi* and *Oxyethira* sp. (an uncommon and sensitive taxon). Four stonefly taxa were also collected during sampling, including the "sensitive", or pollution intolerant taxa *Acroneuria abnormis*, *Paragnetina fumosa*, and *Pteronarcys dorsata*.

Data Analysis

The water quality at this study location has either rated Good or Excellent during five sampling events spanning 18 years. The only two years in which the bioclassification was lowered to good were during two years of severe drought (2002, 2007). This trend has also been observed at other locations (Sandy Creek, SR 1405) for these two years and within this basin and HUC. Edgecombe High School is the only NPDES discharger (minor) located upstream. The good habitat score at this site was positively affected by a lack of channelization, bank stability, and great riparian habitat.

Waterbody		Location		Station ID		Date	Bioclassification	
SAND	Y CR	SR 1	405	OB35	5	06/26/07	Good	
County	Subbasin	8 digit HUC	Latitude	Longitude	AU Numbe	r Lev	vel IV Ecoregion	
NASH	2	03020101	360738	780130	0	Roll	ing Coastal Plain	

_	Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Stream Depth (m)	
	C;NSW;+	121.5	192	6	0.2	

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	30	0	70	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)

NPDES Number

Volume (MGD)

Water Quality Parameters

 $\begin{array}{lll} \text{Temperature (°C)} & 24.2 \\ \text{Dissolved Oxygen (mg/L)} & 6.7 \\ \text{Specific Conductance (μS/cm)} & 83 \\ \text{pH (s.u.)} & 7.1 \\ \end{array}$

Water Clarity slightly turbid

Habitat Assessment Scores (max)

Channel Modification (5)	5
Instream Habitat (20)	16
Bottom Substrate (15)	11
Pool Variety (10)	9
Riffle Habitat (16)	12
Left Bank Stability (7)	5
Right Bank Stability (7)	5
Light Penetration (10)	7
Left Riparian Score (5)	5
Right Riparian Score (5)	5
Total Habitat Score (100)	80

Site Photograph

Substrate Mostly gravel and cobble

_	Sample Date	Sample ID	ST	EPT	ВІ	EPT BI	Bioclassification
	06/26/07	10196	71	22	5.0	3.9	Good
	03/23/06	9819	89	36	4.9	3.5	Excellent
ĺ	04/21/03	9109	84	32	5.2	4.5	Excellent
ĺ	06/10/02	8788	61	21	5.3	4.2	Good

Taxonomic Analysis

Considerably fewer EPT taxa were collected in 2007 than in 2006. Of these, only the mayfly *Isonychia* sp., and the stoneflies *Acroneuria abnormis* and *Pteronarcys dorsata* are considered sensitive to poor water quality. Sensitive caddisflies were more common, and included *Brachycentrus nigrosoma*, *B. numerosus*, *Neophylax fuscus*, and *N. oligius*. The mayflies *Maccaffertium terminatum*, and *Tricorythodes* sp. were collected for the first time in 2007 at this location.

Data Analysis

There are no NPDES dischargers upstream of this study location, and the historic and current bioclassifications reflect the good water quality. This study site was rated Good in 2002, Excellent in 2003 and 2006, and again Good during the current sampling event. The habitat in 2007 was also given a relatively high score. The ratings of Good instead of Excellent given to this location in 2002 and 2007 may be in part attributable to the severe drought that occurred during both years. The number of EPT taxa collected was considerably lower during these years, but this was likely a seasonal effect as many of these species emerge as adults during spring months.

Waterb	ody	Location			Date Station ID		Bioclassification	
RED BUD CR		SR 1407		04	4/11/07	OF33	Good	
County	County Subbasin		Latitude	Longitude	e	AU Number	Level IV Ecoregion	
NASH	2	03020101	36.11611111	-78.021111	11	28-78-1-17	Northern Outer Piedmont	

_	Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream Width (m)	Average Depth (m)	Reference Site
	C;NSW:+	18.9	190	7	0.4	Yes

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	100	0	0	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)

NPDES Number

Volume (MGD)

None

Water Quality Parameters

Temperature (°C)
Dissolved Oxygen (mg/L)
Specific Conductance (µS/cm)
pH (s.u.)

Water Clarity

Slightly tannin stained

10.8

80

6.1

Habitat Assessment Scores (max)

Channel Modification (5) 5 Instream Habitat (20) 18 Bottom Substrate (15) 12 6 Pool Variety (10) Riffle Habitat (16) 16 Left Bank Stability (7) 6 Right Bank Stability (7) 6 Light Penetration (10) 9 5 Left Riparian Score (5) 5 Right Riparian Score (5)

Site Photograph

Substrate

cobble, gravel, flat bedrock

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification	
04/11/07	04/11/07 2007-13 04/09/02 2002-06		50	Good	
04/09/02			50	Good	

Most Abundant Species

Total Habitat Score (100)

Pinewoods Shiner

88

Exotic Species

Green Sunfish

Species Change Since Last Cycle

Gains -- Flat Bullhead, Satinfin Shiner, Redfin Pickerel, Warmouth, Largemouth Bass, Highfin Shiner, and Swallowtail Shiner. **Losses** -- Notchlip Redhorse.

Data Analysis

Watershed -- a tributary to Sandy Creek, and ultimately Swift Creek; drains northeastern Franklin and northwestern Nash counties. Habitat -- much like a Carolina Slate Belt stream with good riffles, runs, and undercuts; good forested riparian. 2007 -- good diversity and abundance for a stream of this size. 2002 - 2007 -- nearly identical NCIBI metrics between sample years; the most notable difference was the increase in total abundance (n = 277 vs. 191 in 2002) and diversity (n = 22 species vs. 16 in 2002) of the fish population in 2007; a total of 23 species are known from this regional reference site including 3 species of darters, 6 species of minnows, and 3 species of suckers; this watershed continues to support a diverse community of fish with good water quality.

Waterbody		Locati	Location SR 1428				Date	Bioclassification
WHITE OAI	WHITE OAK SWP						/05/07	Moderate
County Subbasin		8 digit HUC	Latitude	Longitude AU Number		Lev	Level IV Ecoregion	
EDGECOMBE	2	03020101	360016	773713		0	Rolli	ng Coastal Plain
Stream Classifica	tion [Orainage Area (mi2	2) Ele	vation (ft)	Strea	m Width (m)	Stream Depth (m)
WS-IV;NSW	1	47.7		49		5		0.3
	Fo	rested/Wetland	Urban		Agricult	ure	Ot	her (describe)
Visible Landuse	(%)	100	0		0			0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)

NPDES Number

Volume (MGD)

None

Water Quality Parameters

 Temperature (°C)
 4

 Dissolved Oxygen (mg/L)
 11.5

 Specific Conductance (μS/cm)
 76

 pH (s.u.)
 5.7

Water Clarity clear/tannic

Habitat Assessment Scores (max)

Channel Modification (10)					
Instream Habitat (20)	10				
Bottom Substrate (15)	7				
Pool Variety (10)	6				
Left Bank Stability (10)	7				
Right Bank Stability (10)	7				
Light Penetration (10)	10				
Left Riparian Score (5)	4				
Right Riparian Score (5)	5				
Total Habitat Score (100)	61				

Site Photograph

Substrate Nearly all sand

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
02/05/07	10133	50	8	6.6	5.6	Moderate
02/11/02	8670	40	7	6.5	5.6	Moderate
05/03/88	4540	11	11	5.2	5.2	Not Rated

Taxonomic Analysis

The total number of taxa (ST), and the number of EPT taxa collected at this study site has increased from 2002 to 2007. Additions to this sites taxa list include the stonefly *Perlesta* sp., and the caddisfly *Ptilostomis* sp.. The Odonata increased substantially from two taxa in 2002 to 10 in 2007. New additions to the taxa list from this group included dragonflies such as *Basiaeschna janata*, *Gomphus* sp., *Macromia* sp. and *Pachydiplax longipennis*; and damselflies included *Argia* sp., *Enallagma* sp., and *Ischnura* sp..

Data Analysis

This basinwide study location was not rated in 1988, while in both 2002 and for the current sampling event, a bioclassification of Moderate was assigned. This rating implies that there is moderate environmental stress at SR 1428. However, there are no NPDES dischargers upstream of this study site and water chemistry parameters are typical for the region. Therefore, the poor habitat quality at this site may instead be the dominant stressor affecting the benthic community. Indeed, White Oak Swamp at this location is a channelized and deeply incised ditch with few colonizable instream structures, and a homogeneous bottom substrate composed of sand.

Waterbody		Location			Date	Station ID	Bioclassification	
,	WHITE OAK SWP		SR 1428			05/09/07	OF48	Not Rated
	County Subbasin 8 dig		8 digit HUC	Latitude	Long	itude	AU Number	Level IV Ecoregion
Е	EDGECOMBE	2	03020101	36.00388889	-77	.62	28-78-7-(2)	SE Floodplains & Low Terraces

Stream Classification	Drainage Area (mi2)	Elevation (ft)	Stream width (m)	Average Depth (m)	Reference Site
C;NSW	19.1	45	5	0.3	No

	Forested/Wetland	Urban	Agriculture	Other (describe)
Visible Landuse (%)	100	0	0	0

Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile)	NPDES Number	Volume (MGD)
None		

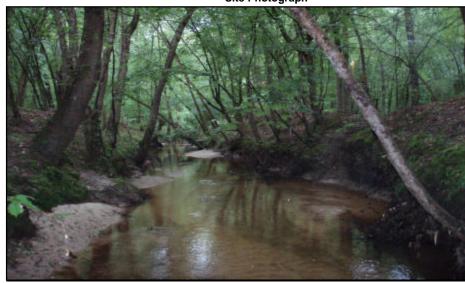
Water Quality Parameters

Temperature (°C)
Dissolved Oxygen (mg/L)
Specific Conductance (µS/cm)
pH (s.u.)

113 5.9

15.7

7.4


Water Clarity

Clear, tannin stained

Habitat Assessment Scores (max)

Channel Modification (15) 13 Instream Habitat (20) 12 Bottom Substrate (15) 7 4 Pool Variety (10) Left Bank Stability (10) 6 Right Bank Stability (10) 6 Light Penetration (10) 10 Left Riparian Score (5) 5 Right Riparian Score (5) 5 68 **Total Habitat Score (100)**

Substrate

Sand and organic matter

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
05/09/07	2007-46	17		Not Rated
04/17/02	2002-21	18		Not Rated

Most Abundant Species

Satinfin Shiner

Exotic Species

None

Species Change Since Last Cycle

Losses -- White Shiner, Creek Chubsucker, Margined Madtom, and Mud Sunfish. **Gains** -- American Eel, Silvery Minnow, and Chainback Darter.

Data Analysis

Watershed -- tributary to Swift Creek; drains rural north-central Edgecombe County; headwaters originate within the Town of Whitakers. Habitat -- channelized a long time ago; mature trees along both banks providing the canopy; white sand covered with organic matter; shallow, sandy runs; very low flow. 2007 -- coastal plain species; abundant and diverse, including 2 intolerant species (Pinewoods Shiner and Chainback Darter). 2002 & 2007 -- 21 species known from the site; no exotics have been collected from the site; dominant species have been Satinfin Shiner, Bluespotted Sunfish, and Tessellated Darter; percentage of tolerant fish, primarily Satinfin Shiner, increased from 28% in 2002 to 47% in 2007; sunfish decreased from 39% to 20% due to loss of snags and pools. This site is not rated because the appropriate NCIBI metrics and criteria have yet to be developed for coastal plain streams.