APPENDIX 1-A

Use Support Ratings for All Monitored Waters In the North Fork New River Watershed

Draft 2010 IR Category	INTEGRATED REPORTING CATEGORIES FOR INDIVIDUAL ASSESSMENT UNIT/USE SUPPORT CATEGORY/ Parameter Assessments. A single AU can have multiple assessments depending on data available and classified uses.
1	All designated uses are monitored and supporting
1b	Designated use was impaired, other management strategy in place and no standards violations for the parameter of interest (POI)
1nc	DWQ have made field determination that parameter in exceedance is due to natural conditions
1r	Assessed as supporting watershed is in restoration effort status
1t	No criteria exceeded but approved TMDL for parameter of interest
2	Some designated uses are monitored and supporting none are impaired Overall only
2b	Designated use was impaired other management strategy in place and no standards violations Overall only
2r	Assessed as supporting watershed is in restoration effort status overall only
2t	No criteria exceeded but approved TMDL for POI Overall only
3a	Instream/monitoring data are inconclusive (DI)
3b	No Data available for assessment
3c	No data or information to make assessment
3n1	Chlorophyll a exceeds TL value and SAC is met-draft
3n2	Chlorophyll a exceeds EL value and SAC is not met first priority for further monitoring-draft
3n3	Chlorophyll a exceeds threshold value and SAC is not met first second priority for further monitoring-draft
3n4	Chlorophyll a not available determine need to collect-draft
3t	No Data available for assessment -AU is in a watershed with an approved TMDL
4b	Designated use impaired other management strategy expected to address impairment
4c	Designated use impaired by something other than pollutant
4cr	Recreation use impaired no instream monitoring data or screening criteria exceeded
4cs	Shellfish harvesting impaired no instream monitoring data- no longer used
4ct	Designated use impaired but water is subject to approved TMDL or under TMDL development
4s	Impaired Aquatic Life with approved TMDL for Aquatic Life POI or category 5 listing
4t	Designated use impaired approved TMDL
5	Designated use impaired because of biological or ambient water quality standards violations and needing a TMDL
5r	Assessed as impaired watershed is in restoration effort status

	NC 2010 Integrated Report										
				l) List for Mercury due to statewi			ecies				
_	Numb		J_Name A	U_Description		-	sification				
		Parameter		Reason for Rating	Use Category	Collection Year	())				
-		er Basin		l la a a N	North Fork New Rive		5000101				
		er Basin er Basin		Upper N	ew River Subba		5050001				
-			Die Herre Greek				5000101				
0		-21-(4.5)	Big Horse Creek	From SR#1362 to SR#135	· · ·	5.5 FW Miles	C;11:+				
	1	Ecological/bi	ological Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008					
•	10-2	-21-(7)	Big Horse Creek (Horse Creek)	From SR#1353 (Tuckerda New R	le) to North Fork	6.5 FW Miles	C:+				
	1	Ecological/bi	ological Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008					
	1	Ecological/bi	ological Integrity FishCom	Good Bioclassification	Aquatic Life	2008					
0	10-2	-14	Big Laurel Creek	From source to North For	k New River	17.5 FW Miles	C;Tr:+				
	1	Ecological/bi	ological Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008					
	1	Ecological/bi	ological Integrity FishCom	Good Bioclassification	Aquatic Life	2008					
•	10-2	-8	Brush Fork	From source to North For	k New River	5.1 FW Miles	C;Tr:+				
	1	Ecological/bi	ological Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008					
•	10-2	-20	Buffalo Creek	From source to North For	k New River	9.7 FW Miles	C;Tr:+				
	1	Ecological/bi	ological Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008					
	3 a	Ecological/bi	ological Integrity FishCom	Not Rated Bioclassification	Aquatic Life	2008					
•	10-2	-27	Helton Creek	From NC-VA State Line to River	North Fork New	19.0 FW Miles	C;Tr:+				
	1	Ecological/bi	ological Integrity Benthos	Good Bioclassification	Aquatic Life	2008					
	3a	Ecological/bi	ological Integrity FishCom	Not Rated Bioclassification	Aquatic Life	2008					
•	10-2	-7	Hoskin Fork	From source to North For	k New River	5.2 FW Miles	C;Tr:+				
	1	Ecological/bi	ological Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008					
0	10-2	-20-1	Little Buffalo Creek	From source to Buffalo C	reek	4.4 FW Miles	C;Tr:+				
	5	Ecological/bi	ological Integrity Benthos	Fair Bioclassification	Aquatic Life	2008	2000				
•	10-2	-21-8	Little Horse Creek	From source to Big Horse	Creek	10.9 FW Miles	C;Tr:+				
	1	Ecological/bi	ological Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008					
•	10-2	-23	Little Phoenix Creel	From source to North For	k New River	4.6 FW Miles	C;Tr:+				
	1	Ecological/bi	ological Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008					
0	10-2	-25	Long Shoals Creek	From source to North For	k New River	2.7 FW Miles	C;Tr:+				
	1	Ecological/bi	ological Integrity Benthos	Not Impaired Bioclassificat	ion Aquatic Life	2008					

APPENDICES

1-A.2

				2010 Integrated Re	-		
				st for Mercury due to statewide			
	Numb	Parameter	Name AU_E	Description Reason for Rating	LengthArea Use Category	Collection Year	sification 303(d)year
-		er Basin			orth Fork New River W		000101
0		-21-8-1	Middle Fork Little Horse Creek	From source to Little Horse		4.5 FW Miles	
	1	Ecological/biol	ogical Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008	
•	10-2	-28	Millpond Branch	From source to North Fork	New River	2.0 FW Miles	C:+
	1	Ecological/biol	ogical Integrity Benthos	Excellent Bioclassification	Aquatic Life	2003	
•	10-2	-(1)	North Fork New River	From source to Three Top C	reek	14.1 FW Miles	C;Tr:+
	1	Ecological/biol	ogical Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008	
	1	Ecological/biol	ogical Integrity FishCom	Good Bioclassification	Aquatic Life	2008	
•	10-2	-(12)	North Fork New River	From Three Top Creek to Ne	ew River	36.5 FW Miles	C:+
	1	Ecological/biol	ogical Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008	
	1	Fecal Coliform	(recreation)	No Criteria Exceeded	Recreation	2008	
	1	Water Quality	Standards Aquatic Life	No Criteria Exceeded	Aquatic Life	2008	
•	10-2	-15	Rich Hill Creek	From source to North Fork	New River	4.9 FW Miles	C;Tr:+
	1	Ecological/biol	ogical Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008	
•	10-2	-10	Roundabout Creek	From source to North Fork	New River	4.0 FW Miles	C;Tr:+
	1	Ecological/biol	ogical Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008	
⊙	10-2	-13	Three Top Creek	From source to North Fork N	New River	13.2 FW Miles	C;Tr:+
	1	Ecological/biol	ogical Integrity Benthos	Good Bioclassification	Aquatic Life	2008	
	3a	Ecological/biol	ogical Integrity FishCom	Not Rated Bioclassification	Aquatic Life	2008	
Ne	w Rive	er Basin		So	outh Fork New River W	atershed 0505	000102
0	10-1	-37	Cranberry Creek (Mulberry Creek)	From source to South Fork N	New River	18.9 FW Miles	B;Tr:+
	1	Ecological/biol	ogical Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008	
	1	Ecological/biol	ogical Integrity FishCom	Good Bioclassification	Aquatic Life	2008	
•	10-1	-3-(1)	East Fork South Fork New River	From source to Watauga Co	unty SR 1524	2.3 FW Miles	WS-IV;Tr:+
	5	Ecological/biol	ogical Integrity Benthos	Fair Bioclassification	Aquatic Life	2003	2008
•	10-1	-3-(8)	East Fork South Fork New River	From .8 mile downstream o SR 1524 to S Fk New River	f Watauga Co	0.5 FW Miles	WS-IV;CA:-
	1	Ecological/biol	ogical Integrity Benthos	Good Bioclassification	Aquatic Life	2008	

APPENDIX 1-B

BIOLOGICAL (BENTHIC & FISH) SAMPLE SITE DATA SHEETS

STATION ID*			DESCRIPTION	COUNTY	Site Location	SAMPLE RESULTS
			Benthic Sample Sites			
KB117	Ut. L. Phoenix Cr.	10-2-23ut5	Source to L Phoenix Cr.	Ashe	Old NC 16	08 - Not Rated 07 - Not Rated
KB118*	Ut. L. Phoenix Cr.	10-2-23ut6	Source to L Phoenix Cr.	Ashe	SR 1649	07 - Not Impaired
KB119*	Brush Fk.	10-2-8	From source to North Fork New River	Ashe	NC 88	08 - Excellent
KB120*	Roundabout Cr.	10-2-10	From source to North Fork New River	Ashe	SR 1308	08 - Excellent
KB121*	M. Fk. Little Horse Cr.	10-2-21-8-1	From source to Little Horse Cr.	Ashe	SR 1334	08 - Excellent
KB122*	Big Horse Cr.	10-2-21-(4.5)	From SR 1362 to SR 1353 (Tuckerdale)	Ashe	SR 1362	08 - Excellent
KB123*	Long Shoals Cr.	10-2-25	From source to North Fork New River	Ashe	SR 1574	08 - Not Impaired
KB125*	L. Phoenix Cr.	10-2-23	From source to North Fork New River	Ashe	SR 1513	08 - Excellent
KB127*	N. Fk. New R.	10-2-(12)	From Three Top Creek to New River	Ashe	SR 1549	08 - Excellent
KB129*	Ut. Mill Cr.	10-1-18ut4	Source to Mill Cr.	Ashe	SR 1111	07 - Not Impaired
KB134*	Buffalo Cr.	10-2-20	From source to North Fork New River	Ashe	NC 194-88	08 - Excellent
KB135*	N. Fk. New R.	10-2-(12)	From Three Top Creek to New River	Ashe	Old NC 16	08 - Excellent
KB136*	Helton Cr.	10-2-27	From NC-VA State Line to North Fork New River	Ashe	SR 1526	08 - Excellent
KB137*	Helton Cr.	10-2-27	From NC-VA State Line to North Fork New River	Ashe	SR 1370	08 - Excellent
KB138*	Three Top Cr.	10-2-13	From source to North Fork New River	Ashe	SR 1100	09 - Excellent 08 - Good
KB141*	N. Fk. New R.	10-2-(1)	From source to Three Top Creek	Ashe	SR 1118	08 - Excellent
KB23	N. Fk. New R.	10-2-(12)	From Three Top Creek to New River	Ashe	SR 1100	08 - Excellent 03 - Excellent
KB25	Helton Cr.	10-2-27	From NC-VA State Line to North Fork New River	Ashe	SR 1536	08 - Excellent 03 - Excellent
KB26	Hoskin Fk.	10-2-7	From source to North Fork New River	Ashe	NC 88	08 - Excellent 03 - Excellent
KB27	N. Fk. New R.	10-2-(12)	From Three Top Creek to New River	Ashe	SR 1644	08 - Excellent 03 - Excellent
KB30	Big Laurel Cr.	10-2-14	From source to North Fork New River	Ashe	NC 88	08 - Excellent 03 - Excellent
KB31	Buffalo Cr.	10-2-20	From source to North Fork New River	Ashe	NC 194-88	08 - Excellent 03 - Excellent
KB32	L. Buffalo Cr.	10-2-20-1	From source to Buffalo Creek	Ashe	SR 1153	08 - Fair 03 - Poor
KB33	Big Horse Cr. (Horse Cr.)	10-2-21-(7)	From SR#1353 (Tuckerdale) to North Fork New R	Ashe	NC 194	08 - Excellent 03 - Excellent
KB63	L. Horse Cr.	10-2-21-8	From source to Big Horse Creek	Ashe	SR 1334	08 - Excellent 03 - Good
KB86*	Rich Hill Cr.	10-2-15	From source to North Fork New River	Ashe	NC 88	08 - Excellent
			Fish Community Sample Sites		1	
KF21*	Buffalo Cr.	10-2-20	From source to North Fork New River	Ashe	NC 88/194	08 - Not Rated
KF2	Cranberry Cr.	10-1-37	From source to South Fork New River	Ashe	SR 1600	08 - Good 98 - Excellent
KF16*	Grassy Cr.	10-3	From North Carolina-Virginia State	Ashe	SR 1549	08 - Good-Fair
KF1	Big Horse Cr.	10-2-21-(7)	From SR#1353 (Tuckerdale) to North Fork New R	Ashe	SR 1350	08 - Good 98 - Good

* New station location; therefore, no data from the previous cycle.

STATION ID*	Waterbody	Assessment Unit #	DESCRIPTION	County	Site Location	SAMPLE RESULTS
KF22*	Big Laurel Cr.	10-2-14	From source to North Fork New River	Ashe	NC 88	08 - Good
KF5	Helton Cr.	10-2-27	From NC-VA State Line to North Fork New River	Ashe	SR 1536	08 - Not Rated 98 - Good
KF10	N. Fk. New R.	10-2-(1)	From source to Three Top Creek	Ashe	SR 1119	08 - Good 98 - Good
KF23*	Three Top Cr.	10-2-13	From source to North Fork New River	Ashe	SR 1123	08 - Not Rated

* New station location; therefore, no data from the previous cycle.

FISH COMMUNITY SAMPLE

Waterbody			Location		Date	Station	ID	Bioclassi	fication	
N FK NEW R			R 1119		05/21/08	/08 KF10		Good		
County	County Subbasin 8 digit HUC			Longit	ude AU	Number		Level IV Ecore	egion	
ASHE	2	05050001	36.407098	-81.68	1014 1	0-2-(1)	South	ern Crystalline Ridg	es & Mountains	
Stream Classifica	Elevatio	n (ft)	Stream Wi	dth (m)	Aver	age Depth (m)	Reference Site			
C;Tr,+		23.9	3118	3	9			0.5	No	
		Forested/Wetland	Rural Re	sidential	ntial Agriculture Other (descrit			scribe)		
Visible Landuse	(%)	60	5			35		•	0	
Upstream NPDES Di	scharger	s (>1MGD or <1MGD None	and within 1 m	nile)			Number	Vo	olume (MGD) 	
Water Quality Param	eters					Si	te Photo	graph		
Temperature (°C)		11.2		10.3/	RY			ST ZU		
Dissolved Oxygen (mg	g/L)	10.2		A A						
Specific Conductance	(µS/cm)	59			Silv 1		A are	AND /M		
pH (s.u.)		6.5			(The	North We				
Water Clarity		Clear								
Habitat Assessment	Scores (I	max)				and and	Lan	6-2-1		
Channel Modification	(5)	5			with the					

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification
05/21/08	2008-46	15	48	Good
06/29/98	98-56	14	50	Good
Most Abundant Species	Western Blacknose Dace.	Exotic	Species Brown Trout.	

cobble, gravel, sand, boulder.

Substrate

18

8

4

16 4

4

4

5 3

71

Species Change Since Last Cycle

Gains -- Bluehead Chub, Bigmouth Chub. Losses -- Rosyface Shiner.

Data Analysis

Instream Habitat (20)

Bottom Substrate (15)

Left Bank Stability (7) Right Bank Stability (7)

Light Penetration (10)

Left Riparian Score (5)

Right Riparian Score (5)

Total Habitat Score (100)

Pool Variety (10) Riffle Habitat (16)

Watershed -- located along the rural west-central edge of the New River basin where Watauga and Ashe Counties meet; this catchment drains the North Fork New River's headwaters plus the main tributaries of Pine Mountain Branch, Brush Fork, and Hoskin Fork. Habitats -- primarily riffles and runs with some chutes that were holding trout, and a few silt bottom pools; the reach is mostly sunlit because of the vegetation type along the banks and in the riparian corridor (majority of shrubs and grasses vs. trees); substrates exhibited moderate to high embededdness. **2008** -- a diverse and abundant population of cool and cold water fish species were present, including three intolerant taxa (New River Shiner, Tonguetied Minnow, and Kanawha Darter); more than twice the total abundance was collected than in 1998 (1368 vs. 552); Western Blacknose Dace (n=553) represented 40% of the sample. **1998-2008** -- very similar species compositions were observed and nearly identical NCIBI metrics were calculated for both monitoring years, indicating that water quality in this headwater catchment has remained good over a ten year period.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
07/31/08	10517	119	57	3.67	2.73	Excellent
08/19/03	9222	81	44	3.96	3.51	Excellent
08/17/98	7710	96	52	4.05	3.23	Excellent
07/29/93	6296	102	50	3.95	3.01	Excellent

Taxonomic Analysis

The greatest number of EPT taxa collected at the site occurred in 2008. A few EPT taxa were collected for the first time, including: *Acroneuria* carolinensis, Hydroptila, and Nectopsyche exquisita.

Data Analysis

The site is 8.2 miles west of Jefferson. This is the site furthest upstream of the three basinwide sites on North Fork New River.

The site has consistently received classifications of Excellent following each summer sampling event (a Good was received after a non-summer sampling event in March 1989). No indications of impact are exhibited by the benthic community.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/20/08	10541	99	49	3.93	3.31	Excellent
08/21/03	9234	72	45	3.66	3.31	Excellent
08/19/98	7719	87	50	3.77	2.91	Excellent
07/28/93	6294	93	46	4.00	2.94	Excellent

Taxonomic Analysis

EPT Richness at the site has shown very little change for the four summer sampling events between 1993 and 2008. *Helicopsyche paralimnella* has been recorded for the first time from the site; this is only one of five sites in the state so far at which the species has been found by BAU, though undoubtedly more sites will be found.

Data Analysis

The site is 4.6 miles NNW of Jefferson and is directly upstream of the mouth of Big Horse Creek. The town of West Jefferson is almost entirely included in the catchment above the site.

Consistently high EPT Richness and low NCBI values have resulted in classifications of Excellent for each sampling event between 1993 and 2008. The healthy benthic community indicates an absence of stressors at the site.

Taxonomic Analysis

There is little difference between this new basinwide site and the former upstream basinwide site in terms of richness within the major groups; the number of taxa collected within each group at the new site is within the range of taxa collected at the upstream site with the exception of Lepidoptera (one taxon collected at this site; never collected at the former site) and Oligochaeta (only lumbriculids collected at this site in 2008; at least two taxa collected upstream). However, there were a few EPT taxa collected at Old NC 16 that have not been collected at NC 16 over eight sampling events, including (all rare within the sample except as noted): Acerpenna pygmaea, Heterocloeon anoka (common), Anthopotamus distinctus, Agnetina, Hydroptila, and Pycnopsyche lepida group.

Data Analysis

The site is 7.4 miles northeast of Jefferson and six stream-miles above the confluence with South Fork New River. This is the furthest downstream site of the three basinwide sites on North Fork New River. The town of West Jefferson is almost entirely included in the catchment above the site. This site replaces the basinwide site at NC 16, which is about two stream-miles upstream of this site, due to difficult access to the river at NC 16.

The four summer sampling events in 1989, 1993, 1998, and 2003 resulted in classifications of Excellent at the former basinwide site. There appears to be little difference in water quality either temporally or longitudinally between sampling events on this lower segment of North Fork New River.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
07/31/08	10514		38		3.18	Excellent
08/19/03	9221		37		2.92	Excellent
08/17/98	7709		35		3.59	Good
07/23/93	6299		30		3.56	Good

Taxonomic Analysis

The number of EPT taxa identified from the site has increased with each successive sampling event since 1993. A few taxa were collected for the first time at the site, including: *Ephemerella subvaria, Serratella deficiens, Hexagenia, Acroneuria carolinensis,* and *Leucotrichia pictipes*.

Data Analysis

The site is about 1.5 miles east of the closest point on the Tennessee Valley Divide and 0.8 stream-miles from the confluence with North Fork New River.

Increasing EPT richness with each successive sampling event since 1993 is suggestive of improving water quality at the site.

A fairly diverse EPT community exists at the site. There are no historical data for the site, so trends in community composition can not be analyzed. A few taxa were collected here that have not been collected at the former basinwide site downstream, including: *Procloeon, Maccaffertium pudicum, Diplectrona modestum, Ceraclea,* and *Chimarra*.

Data Analysis

The site is 8.1 miles west of Jefferson. This new basinwide site is 1.3 stream-miles upstream of the former site at SR 1100. The site was moved to remove the influence of development directly upstream of the old basinwide site, and to locate it in the Amphibolite Mountains ecoregion so that a potential reference site for the ecoregion could be established.

The same number of EPT taxa were recorded for this site in 2008 as were for the former site in 2003. In both cases the additional of a single EPT taxon would have resulted in a classification of Excellent.

FISH COMMUNITY SAMPLE

Waterbody			Location Da				Station ID	В	ioclassification
THREE TO	P CR		S	R 1123		05/20/08	KF23		Not Rated
County	Subba	asin 8 di	git HUC	Latitude	Longi	ude	AU Number	L	evel IV Ecoregion
ASHE	2		050001	36.420699	-81.62		10-2-13		phibolite Mountains
Stream Classificat	tion	Drainage	Area (mi2)	Elevatio	on (ft)	Stream Wi	dth (m)	Average Depth	(m) Reference Site
C;Tr			3.1	290		10		0.4	Yes
				·					
Forested/W Visible Landuse (%) 65			Rurai	Residentia 15	1	Agriculture 5		Other (describe) 15 (lumber mill)	
				10		0			
Upstream NPDES Dis	rs (>1MGE	or <1MGD	and within 1 n	nile)		NPDES No	umber	Volume (MGD)	
			None						
Water Quality Param	eters			_			Site	Photograph	
Temperature (°C)			14.4		19	- Series		× CANY	The second second
Dissolved Oxygen (mg	g/L)		9.5	1 pro	1 Dent				a start and the
Specific Conductance	(µS/cm)	1	38	A A	1			4	
pH (s.u.)			6.4	A.S.	alles #	A States	and the second second	A ALA	
				Ser and	1 a to		the and 4		
Water Clarity		С	ear	1 Stat		A Carlos	Mar A	E and the second second	
Habitat Assessment	Scores	(max)					- Bar		all and
Channel Modification		(max)	5						
Instream Habitat (20)	(•)		20		E CON				
Bottom Substrate (15)			12						
Pool Variety (10)			6	5	S COL				
Riffle Habitat (16)			16	5.57					
Left Bank Stability (7)			7	P CONTRACTOR					and the second
Right Bank Stability (7)		7		Ser -		Sa alla alla		
Light Penetration (10)			7		140	1.2.3	2	A BEE	
Left Riparian Score (5)		3						
Right Riparian Score (,		2						
Total Habitat Score (100)		85	Subs	strate	lat cobble, bou	llder, bedrock, g	gravel, sand.	
Sample Date			Sample	ID	Spec	ies Total	N	СІВІ	Bioclassification
05/20/08			2008-4	5		15			Not Rated
Most Abundant	Specie	s Fant	ail Darter.			Exotic S	pecies Ro	ck Bass, Brown Ti	rout.
Species Change	Since La	ast Cycle	N/A						
		-							
Data Analysis				North Fork New					

New basinwide site. **Watershed** -- a tributary to the North Fork New River that flows north, draining part of west-central Ashe County. **Habitats** -- high quality instream habitats consisting of riffles and runs with deep chutes that were holding trout, and some small side pools; roads on both sides of the stream prevent broad riparian widths, but the stream's banks were very stable, with some Mountain Laurel on the right bank; the tree canopy provides about 50% shading to the stream. **2008** -- a diverse assemblage of cool and cold water fish fauna were collected from the stream, including four species that are considered to be intolerant to pollution (Rock Bass, Tonguetied Minnow, Kanawha Darter, and Appalachia Darter); Fantail Darters represented 36% of the sample and Mottled Sculpin comprised 29%; overall, the fish community of Three Top Creek appears to be healthy, and suggests no obvious water quality issues.

APPENDICES

New River Basin: North Fork New River Watershed (HUC 0505000101)

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
06/19/08	10468		53		2.62	Excellent
08/19/03	9225		38		2.92	Excellent
07/17/98	7712		40		3.49	Excellent
07/29/93	6298		48		3.29	Excellent

Taxonomic Analysis

The greatest number of EPT taxa collected from the site occurred in 2008. Taxa collected for the first time included: *Eurylophella verisimilis, Ephemera, Anthopotamus distinctus, Brachycentrus appalachia, Ceratopsyche slossonae, Oecetis persimilis, and Triaenodes ignitus.*

Data Analysis

The site is near the confluence with North Fork New River and about eight miles west of Jefferson.

The highest EPT richness and the lowest EPT BI values were recorded for the site in 2008. Each time the site has been sampled it has received a classification of Excellent. The benthic community does not exhibit signs of impact.

FISH COMMUNITY SAMPLE

Species Change Since Last Cycle

N/A

Data Analysis

New basinwide site. **Watershed** -- a tributary to the North Fork New River that drains the northwestern-most edge of Ashe County. **Habitats** -- good instream habitat qualities in this large mountain stream, consiting primarily of runs and some riffles; moderate to high embeddedness of substrates; good bank stabilities and vegetated riparian widths, but shading is limited to the stream's edges. **2008** -- a highly diverse and trophically balanced population of mostly cool and cold water fish species was collected, including seven taxa that are considered intolerant to pollution (Rock Bass, Tonguetied Minnow, New River Shiner, Rosyface Shiner, Kanawha Minnow, Kanawha Darter, and Appalachia Darter); Mountain Redbelly Dace represented 47% of the sample (n=350); two Hellbenders (one adult and one young-of-year) were also collected, suggesting high quality water.

Taxonomic Analysis	
--------------------	--

The EPT portion of the benthic community at the site is diverse. *Baetisca berneri*, a mayfly often collected in the New River basin but uncollected at the prior basinwide site on Buffalo Creek, was abundant at this site. The low EPT BI indicates a community intolerant to the presence of pollutants.

Data Analysis

The site is about 2 miles west of Jefferson. The basinwide site for Buffalo Creek was relocated to above the mouth of Little Buffalo Creek to assess conditions in the catchment without the influence of West Jefferson WWTP; the original basinwide site is about 0.4 stream-miles downstream of the present site. At the new location the catchment is mostly forest and pasture with no urban influence.

The high EPT Richness and low EPT BI value indicates a healthy benthic community and the absence of stressors.

FISH COMMUNITY SAMPLE

Waterbo	dy		L	ocation		Date		Station ID	Station ID Biocla		fication
BUFFAL	O CR		NC	88/194		05/19/	/08	KF 21		Not R	ated
County	Subb	asin	8 digit HUC	Latitude	e Longitude AU N		AU Number	ber Level IV Ecoregion		coregion	
ASHE	1		05050001	36.433146	-81.51			10-2-20	Amphibolite Mountains		
AGHE			03030001	30.433140	-01.51	11071		10-2-20		pribolite	Wounding
Stream Classifica	ation	Draiı	nage Area (mi2)	Elevatio	n (ft)	Stream	m Wid	th (m) 🛛 🖌	verage Depth	(m)	Reference Site
C;Tr			12.6	2833	3		7		0.4		Yes
	Residenti	al/Comm	ercial	A	griculture	c	Other (de	scribe)			
Visible Landuse	(%)		50		30			5	15 (ro	ad - NC	, 88 and 194)
Upstream NPDES Di	ischarg	ers (>1	MGD or <1MGD	and within 1 m	nile)	<u> </u>		NPDES Num	iber	V	olume (MGD)
None											
Water Quality Param	neters							Site Pr	notograph		
-			17.0				S. W.			- Alton	
Temperature (°C) 17.0 Dissolved Oxygen (mg/L) 9.3			the second		1				ere and a second	Harris Com	
Specific Conductance (µS/cm) 62				1 N 1			AND THE		Real T	MARY ALL	
pH (s.u.) 6.9							Carlos and				
	,					NOP 1					→ 1 × 1
Water Clarity Clear											
Habitat Assessment	Scores	(max)							and the second second	44	
Channel Modification	(5)		5							- Balling	
Instream Habitat (20)			20			and the second s	-		in the	and the second second	
Bottom Substrate (15)		12			Contraction of the second					
Pool Variety (10)			4								
Riffle Habitat (16)			16	-		The second					and the a
Left Bank Stability (7)			6	ter filmer				and the second			The second second
Right Bank Stability (7			6	19		and the second s	and a second		E C		
Light Penetration (10)			7			and they			94		and the second second
Left Riparian Score (5			4	and the second sec	and a second	and the second					and the second
Right Riparian Score Total Habitat Score			3 83	Subs	strate	flat cobble	arav	el, boulder.			
Total Habitat Score	(100)		03		, in allo		, grav				
Sample Date	e	_	Sample I		Spe	cies Total	-	NCI	BI	Bio	classification
05/19/08			2008-42			15					Not Rated
Most Abundant Species Fantail Darter.						Exc	otic Sp		Bass, Bluegill, , Brown Trout.	Saffron S	Shiner, Rainbow

Species Change Since Last Cycle

N/A

Data Analysis

New basinwide site. **Watershed** -- a tributary to the North Fork New River that drains part of central Ashe County, just to the west of Jefferson. **Habitats** -- high quality instream habitats including swift riffles and runs with a few chutes and a few shallow side pools that were holding trout; good bank stabilities and vegetated riparian widths; the canopy was providing equal amounts of shade and sunlight to the stream; low to moderate embeddedness of substrates; the Buffalo Meadows WWTP (<1MGD, 100% domestic) located 2.8 miles upstream may be contributing to the slightly elevated conductivity. **2008** -- a diverse and fairly trophically balanced mix of mostly cool and cold water fish taxa was collected, including three species that are considered intolerant to pollution (Rock Bass, Kanawha Darter, and Rainbow Trout); Fantail Darters (intermediately tolerant insectivores) represented 59% of the collected sample; overall, this stream is supporting a reasonably healthy fish population and appears to have no obvious water quality issues.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/21/08	10543	63	13	6.00	5.00	Fair
08/20/03	9228	22	6	6.40	4.11	Poor
08/18/98	7713	39	14	7.07	5.28	Fair
07/13/93	6265	24	0	8.31		Poor

Taxonomic Analysis

The EPT portion of the benthic community has differed significantly with each sampling event. Even for the two sampling events with similar EPT richness (1998 and 2008) only four taxa were in common. In 2008 four EPT taxa were collected that had not been collected during prior sampling events, and three of those (*Maccaffertium pudicum, Hydropsyche betteni,* and *Leucotrichia pictipes*) were abundant in the sample.

Data Analysis

The site is one mile west of downtown Jefferson and within 0.9 stream-miles downstream of the West Jefferson WWTP. The stream is on the state's 303(d) list for nutrients and impaired biological integrity.

For the four sampling events since 1993 the lowest NCBI value is shown for 2008, and EPT Richness is close to the high value from 1998. Of the four years that benthic sampling was performed 2008 exhibited the lowest flows for area streams. Dry conditions should increase instream effluent concentrations from the WWTP upstream; the benthic community does not reflect this.

FISH COMMUNITY SAMPLE

Waterbody		Location			Date	Date Station ID		Bioclassification				
BIG HORS	BIG HORSE CR SR		SR 1350	R 1350 05/20/08		8 KF	KF1		od			
County	Subl	basin	8 digit HUC	Latitude	Long	itude AU Number		jitude AU Number		ber	Level IV Ecoregion	
ASHE	:	2	05050001	36.487395	-81.50	00386	10-2-21-((7)	New Rive	er Plateau		
Stream Classifica	tion	Drai	nage Area (mi2) Elevatio	on (ft)	Stream	Width (m)	Ave	erage Depth (m)	Reference Site		
C;Tr,+	C;Tr,+		56.2	268	2681		13		0.7	No		
Forested/Wetland			Rural Re	Rural Residential		Agriculture		Other (describe)				
Visible Landuse	(%)		75	1	10		15		0			
Upstream NPDES Di	scharg	ers (>1	MGD or <1MG	D and within 1 r	nd within 1 mile)		NPDE	NPDES Number		olume (MGD)		
Town	of Lans	sing WV	VTP (<1MGD -	1.1 miles upstrea	am)		NC	0066028		0.05		
Water Quality Parameters							:	Site Phot	tograph			
Temperature (°C)			12.5			A AL		-				

Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µS/cm) pH (s.u.)

Water Clarity

Slightly turbid

9.7

46

6.0

Habitat Assessment Scores (max)

Channel Modification (5)	5
Instream Habitat (20)	16
Bottom Substrate (15)	8
Pool Variety (10)	4
Riffle Habitat (16)	5
Left Bank Stability (7)	5
Right Bank Stability (7)	4
Light Penetration (10)	2
Left Riparian Score (5)	5
Right Riparian Score (5)	5
Total Habitat Score (100)	59

Substrate sa

e sand, cobble, boulder, gravel.

Sample Date		Sample ID	Spe	cies Total		NCIBI	Bioclassification
05/20/08		2008-43		15		48	Good
06/29/98		98-57		13		48	Good
Most Abundant Species	Fanta	ail Darter.		Exotic S	pecies	Rock Bass, Smallmo	outh Bass, Brown Trout.
Species Change Since Last	Cycle			1 <i>1</i>		· · · · ·	wha Minnow, Longnose w River Shiner, Rosyface
Data Analysis							
Watershed a tributary to the No			• •		•		•

Watershed -- a tributary to the North Fork New River that drains a good portion of the northwestern tip of Ashe County; the site is located just southeast of Lansing. Habitats -- low quality instream habitats composed of wide and swift sandy runs with some boulder and cobble, few pools, and very few riffles for a mountain stream; the banks were generally healthy except for a 25 foot area on the right bank that was sloughng into the stream; riparian zones vegetated with mostly grasses, shrubs and very few trees; full sun over most of the stream due to its' width and the lack of canopy trees. 2008 -- a diverse and trophically balanced community of cool and cold water fish species was collected, including six intolerant taxa (Rock Bass, Smallmouth Bass, Tonguetied Minnow, Silver Shiner, Kanawha Minnow, and Kanawha Darter); almost three times the total abundance than in 1998 (652 vs. 242). 1998-2008 -- a total of 20 fish species have been collected from this site; in spite of some habitat issues, this stream is supporting a healthy assemblage of fish, and continues to exhibit good water quality.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
06/10/08	10470	123	60	4.33	2.84	Excellent
08/19/03	9226	89	50	3.95	3.42	Excellent
08/18/98	7715	103	56	4.18	3.14	Excellent
07/28/93	6293	129	56	4.10	2.78	Excellent

Taxonomic Analysis

A large number of EPT taxa have always been collected from the site; the highest number was in 2008. Many taxa were recorded for the first time, including: *Brachycercus, Dannella simplex, Ephemerella dorothea, Eurylophella aestiva, Rhithrogena uhari, Ceraclea enodis, and Neophylax fuscus*. There were several highly tolerant taxa (i.e. with a tolerance value of 8.0 or greater) either common or abundant that helped to drive the NCBI value up: Corixidae; the midges *Chironomus, Polypedilum illinoense* group, *Procladius, Thienemannimyia* group; and *Nais*, an oligochaete.

Data Analysis

The site is about 4.7 miles NNW of Jefferson and about 0.25 stream-miles above the confluence with North Fork New River.

The site has received a classification of Excellent during each summer sampling event since 1993, in most cases driven by high EPT abundance and richness.

APPENDICES

Taxonomic Analysis

Right Bank Stability (7)

Light Penetration (10)

Left Riparian Score (5)

Right Riparian Score (5)

Total Habitat Score (100)

Sample Date

08/21/08

08/19/03

08/18/98

EPT Richness was higher in 2008 than for previous years, improving the classification for the site from Good to Excellent. *Isogenoides hansoni* was identified from the site for the first time in 2008; this is one of 44 sites from which the BAU has collected the stonefly. Leptocerids have not been collected from the site, reflecting the paucity of root mat habitat.

EPT

38

33

35

Substrate

ST

mix of cobble, boulder, gravel, sand; some silt

BI

EPT BI

2.92

3.03

3.62

Bioclassification

Excellent

Good

Good

Data Analysis

The site is about 9.7 miles northwest of Jefferson and 3.6 miles south of the Virginia border.

4

2

0

0

61

Sample ID

10544

9227

7716

The site attained a classification of Excellent for the first time in 2008. Though the benthic community does not reflect stress, the lack of a riparian zone at the reach sampled is likely limiting the fauna. A canopy over the stream would increase the presence of coldwater stenotherms, root mats provided by trees would diversify benthic habitat, and streamside vegetation would filter pollutants from runoff.

 Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/20/08	10538		37		2.93	Excellent
08/18/03	9220		40		3.12	Excellent
08/18/98	7718		37		3.14	Excellent

Taxonomic Analysis

Though abundant and common in the sample in 1998 and 2003 respectively, *Tallaperla* was uncollected in August 2008 in spite of ample leafpacks for habitat. The only leptocerid collected during summer sampling was *Setodes* (rare in the sample) in 1998, reflecting the paucity of root mats at the site. *Glossosoma*, which was abundant in 2003, was uncollected in both 1998 and 2008. Otherwise the EPT portion of the benthic community was similar among the three summer sampling events at the site, primarily with taxa rare at the site dropping in and out.

Data Analysis

The site is 8.4 miles NNE of Jefferson, and 1.7 stream-miles from the confluence with North Fork New River.

There has been little change in the benthic community among the three summer sampling events, suggesting stable conditions at the site since 1998.

FISH COMMUNITY SAMPLE

Waterbod	ły		Location		Date	Station ID	E	Bioclassification		
HELTON	HELTON CR SR				05/08/08	KF5		Not Rated		
County	Subbasin	8 digit HUC	Latitude	Longitude		AU Number L		evel IV Ecoregion		
ASHE	2	05050001	36.53472222	-81.421	38889	10-2-27		New River Plateau		
Stream Classificat	tion Dra	inage Area (mi2)	Elevatio	n (ft)	Stream W	idth (m)	Average Depth	(m) Reference Site		
C;Tr,+		43.7	2580	<u> </u>	10		0.4	Yes		
0,,						<u>.</u>				
		rested/Wetland	Rural Re		Α	griculture	(Other (describe)		
Visible Landuse ((%)	95	5	5		0		0		
Upstream NPDES Dis	schargers (>	1MGD or <1MGD) and within 1 n	nile)		NPDES N	umber	Volume (MGD)		
		None								
Water Quality Parameters Site Photograph										
Temperature (°C)		14.9					NATURAL AND			
Dissolved Oxygen (mg	µ/L)	9.7			at the la					
Specific Conductance		57		14 - C						
pH (s.u.)	u /	7.4				A State of the		yant your and		
Water Clarity		Clear				in the second				
Habitat Assessment	Scores (max	x)	Sec. 1	Section 10			the cases	AN STREET		
Channel Modification ((5)	5		and the second	Con State of the second	2.200				
nstream Habitat (20)	(-)	18						Service State		
Bottom Substrate (15)		13			The same	and the second second				
Pool Variety (10)		4			25	and the second second	The second second	The second second		
Riffle Habitat (16)		15	- and							
Left Bank Stability (7)		6	-	Real Property		-Frinz		Contraction of		
Right Bank Stability (7)	4		-	State .	The second state				
_ight Penetration (10)		7	Section 1		for an		in the second	Contraction of the local day		
Left Riparian Score (5))	5		Constant,	and the	Constant of	and the second	The second second		
Right Riparian Score (5)	3								
Fotal Habitat Score (*	100)	80	Subs	strate	Cobble, bould	er, gravel, and d	letritus			
Sample Date		Sample	ID	Spec	cies Total	N	СІВІ	Bioclassification		
05/08/08		2008-3	4		15			Not Rated		

Sample Date	Sample ID	Species Total	NCIBI	Bioclassification			
05/08/08	2008-34	15		Not Rated			
06/30/98	98-58	15	52	Good			
Most Abundant Species	ost Abundant Species Mountain Redbelly Dace		cies Saffron Shiner				
	Gains Kanawha Minnow, Mottled Sculpin, and Kanawha Darter, Losses Bluntnose Minnow, Rainbow						

Species Change Since Last Cycle

Gains -- Kanawha Minnow, Mottled Sculpin, and Kanawha Darter. **Losses** -- Bluntnose Minnow, Rainbow Trout, and Rock Bass.

Data Analysis

Watershed -- drains southern Grayson County, VA and northern Ashe County; no municipalities within the watershed; tributary to the N Fk New River, site is ~ 2 miles from the creek's confluence with the river. Habitat -- runs, riffles, shallow uniform pools, narrow riparian zone on the right; total score in 1998 was 88; bank stability and quality of pools appeared to have declined. 2008 -- Rock Bass+Smallmouth Bass+Trout absent; ~ 60% of the fish were Mountain Redbelly Dace, Bluehead Chub, and Central Stoneroller; Mountain Redbelly Dace were extremely abundant along the stream margins; community is Not Rated pending an evaluation in 2009. 1998 & 2008 -- 18 species known from the site, including the endemic Kanawha Minnow and Kanawha Darter and the nonindigenous Saffron Shiner, Rainbow Trout, and Rock Bass; 2.4 times more fish collected in 2008 than in 1998 (1,388 vs. 581); 10 times more Mountain Redbelly Dace were collected in 2008 than in 1998; species absent in 2008 were represented by 2-4 fish/species in 1998; and fishery is managed by NCWRC as Delayed Harvest Waters, within the reach, eight 230-389 mm TL stocked Brook Trout and Rainbow Trout were collected.

NEW

APPENDIX 1-C

Ambient Monitoring Systems Station Data Sheets

STATION ID	Waterbody	AU#	Location	Impaired (By Parameter)	Impacted (By Parameter)
K7500000	North Fork New R.	10-2-(12)	SR 1573 at Crumpler	Fecal Coliform (20%)	Turbidity (7%)

Ambient Monitoring System Station Summaries

NCDENR, Division of Water Quality

Basinwide Assessment Report

Location:	N FORK NEW RIV AT SR 1573 AT CRUMPLER									
Station #:	K7500000			Hydrologic Unit Code:	05050001					
Latitude:	36.50403	Longitude:	-81.39004	Stream class:	C +					
Agency:	NCAMBNT			NC stream index:	10-2-(12)					

Time period: 02/01/2005 to 12/17/2009

	#	#		Results not meeting EL		Percentiles							
	results	ND	EL	#	%	%Conf	Min	10th	25th	50th	75th	90th	Max
Field													
D.O. (mg/L)	57	0	<4	0	0		7	8	8.6	9.9	11.4	13.4	14.3
	57	0	<5	0	0		7	8	8.6	9.9	11.4	13.4	14.3
pH (SU)	57	0	<6	0	0		6.8	7.1	7.4	7.6	8	8.2	8.6
	57	0	>9	0	0		6.8	7.1	7.4	7.6	8	8.2	8.6
Spec. conductance (umhos/cm at 25°C)	56	0	N/A				54	58	61	66	72	79	100
Water Temperature (°C)	57	0	>29	0	0		0.8	3.6	7.2	14.3	20.8	24.2	25.6
Other													
TSS (mg/L)	18	4	N/A				6	6.2	6.2	11.5	22.2	262.6	268
Turbidity (NTU)	57	2	>50	4	7		1	1.5	3.1	6.3	13.5	28.2	330
Metals (ug/L)													
Aluminum, total (Al)	8	0	N/A				82	82	262	330	518	610	610
Arsenic, total (As)	8	8	>10	0	0		5	5	5	5	5	5	5
Cadmium, total (Cd)	8	8	>2	0	0		1	1	1.2	2	2	2	2
Chromium, total (Cr)	8	8	>50	0	0		10	10	14	25	25	25	25
Copper, total (Cu)	8	8	>7	0	0		2	2	2	2	2	2	2
Iron, total (Fe)	8	0	>1000	0	0		260	260	478	575	922	1000	1000
Lead, total (Pb)	8	8	>25	0	0		10	10	10	10	10	10	10
Mercury, total (Hg)	6	6	>0.012	0	0		0.2	0.2	0.2	0.2	0.2	0.2	0.2
Nickel, total (Ni)	8	8	>88	0	0		10	10	10	10	10	10	10
Zinc, total (Zn)	8	7	>50	0	0		10	10	10	10	10	33	33
Fecal Coliform Screen	ing(#/10()mL)											
# results: Geomean	U.	# > 4()0: %>	> 400: %	Conf:								

# results:	Geomean:	<i>#</i> > 400:	% > 400		
55	73.7	11	20		

<u>Key:</u>

result: number of observations

ND: number of observations reported to be below detection level (non-detect)

EL: Evaluation Level; applicable numeric or narrative water quality standard or action level

Results not meeting EL: number and percentages of observations not meeting evaluation level

%Conf : States the percent statistical confidence that the actual percentage of exceedances is at least 10% (20% for Fecal Coliform)

Stations with less than 10 results for a given parameter were not evaluated for statistical confidence

APPENDIX 1-D

12-DIGIT SUBWATERSHED MAPS

NEW RIVER BASIN: NORTH FORK NEW RIVER WATERSHED (HUC 0505000101)

NEW RIVER BASIN: NORTH FORK NEW RIVER WATERSHED (HUC 0505000101)

NEW RIVER BASIN: NORTH FORK NEW RIVER WATERSHED (HUC 0505000101)

