McDowell Creek Watershed Management Plan

Completed by: Charlotte-Mecklenburg Storm Water Services Version 4
March 2, 2008

McDowell Creek Watershed Management Plan Version 4

Completed by:
Charlotte-Mecklenburg Storm Water Services
Water Quality Program Staff:
David Kroening
Brian Sikes
David Caldwell
Rusty Rozzelle

Date Completed:
February 7, 2007
Revised March 2, 2008

Table of Contents

Executive Summary 1
Section 1 Introduction 3
1.1 Purpose 3
1.2 Background 3
Section 2 Current and Historical Conditions 9
2.1 Previous Work 9
2.1.1 McDowell Creek Watershed HSPF Model 9
2.1.2 USGS 9
2.1.3 Charlotte-Mecklenburg Storm Water Services 10
2.1.4 North Carolina Wetlands Restoration Program 10
2.2 Existing Conditions 11
2.2.1 Water Chemistry 11
2.2.2 Biological 13
2.2.3 Physical 14
2.2.4 Stream Flow 18
2.2.5 Land Use/Land Cover 19
2.2.6 Soils 20
2.3 Current Watershed Protection Efforts 22
2.3.1 Watershed Protection Ordinance 22
2.3.2 S.W.I.M. Buffer Ordinance 23
2.3.3 Huntersville Water Quality Ordinance 25
2.3.4 BMP Retrofits and Land Acquisition 26
Section 3 Watershed Indicators and Goals 28
3.1 Upland. 28
3.1.1 Upland Water Quality Indicators 28
3.1.2 Upland Water Quality Goals 28
3.2 In-Stream 28
3.2.1 In-Stream Water Quality Indicators 28
3.2.2 In-Stream Water Quality Goals 28
3.3 Channel 28
3.3.1 Stream Channel Indicators 29
3.3.2 Stream Channel Goals 30
Section 4 Watershed Assessment 32
4.1 Upland Characterization 32
4.1.1 Methodology 32
4.1.2 Results 36
Section 5 Candidate Restoration, Retrofit \& Preservation Sites 40
5.1 Upland BMP Retrofit Sites 40
5.1.1 Priority Catchments 40
5.1.2 Public Parcels 45
5.2 Stream Restoration Reaches 51
5.3 Stream Buffer Restoration Areas 51
5.3.1 Priority Catchments 51
5.3.2 Public Parcels 55
5.4 Master Planning for Restoration, Retrofit and Preservation Projects 56
Section 6 Measuring Success and Adaptive Management 58
6.1 Establishing an Ongoing Water Quality Monitoring Program 58
6.2 Annual Status Report 58
6.3 Adaptive Management. 59
Section 7 Process Forward. 61
Section 8 Conclusion 64
List of Tables:
Table 1 General McDowell Creek Watershed Statistics. 2
Table 2 McDowell Creek Stream Class Descriptions. 8
Table 3 Storm Water Chemistry Statistics for MC4 11
Table 4 Baseflow Water Chemistry Statistics 12
Table 5 McDowell Creek Land Use Categories 19
Table 6 Hydrologic Soil Groups Found Within McDowell Creek Watershed 21
Table 7 Watershed Protection Ordinance for the McDowell Creek Watershed 22
Table 8 S.W.I.M. Buffer Requirements for Cornelius and Huntersville 24
Table 9 Upland Pollutant Loading Rate Goals 28
Table 10 In-Stream Water Quality Goals 29
Table 11 McDowell Creek Land Use Categories 32
Table 12 Upland Pollutant Loading Rates by Land Use. 34
Table 13 Results of Upland Impairment Characterization 36
Table 14 Public Parcels Meeting BMP Criteria \& Priority 47
Table 15 Priority Catchments for S.W.I.M. Buffer Restoration 51
Table 16 Public Parcels in Need of Buffer Restoration 56
Table 17 Watershed Restoration Goals. 58
Table 18 McDowell Creek Watershed Restoration Process \& Schedule 61

List of Figures:

Figure 1 Mecklenburg County Watershed and Jurisdictional Boundaries 4
Figure 2 Special Features Within the McDowell Creek Watershed 5
Figure 3 Urbanization Around I-77 at Exit 25 in the McDowell Creek Watershed 6
Figure 4 McDowell Creek Showing Spoils Piles from Channel Straightening 6
Figure 5 McDowell Creek Stream Classes 7
Figure 6 Restoration Sites Identified by CH2M Hill (2003) 10
Figure 7 Historical Water Chemistry Data for McDowell Creek 12
Figure 8 Historical Baseflow Water Quality Index Values 13
Figure 9 McDowell Creek Benthic Macroinvertebrate Scores 13
Figure 10 Significant Channel Incision (Scour) on McDowell Creek 15
Figure 11 Sediment Transported Down McDowell Creek into Mountain Island Lake 16Figure 12 Distribution of Land Uses in the McDowell Creek Watershed20
Figure 13 Distribution of Hydrologic Soil Groups in McDowell Creek Watershed. 21
Figure 14 Distribution of Watershed Protection Zones McDowell Creek Watershed.. 23
Figure 15 Approximate Extent of McDowell Creek Watershed S.W.I.M. Buffers 24
Figure 16 Currently Funded BMP Retrofit \& Stream/Wetland Restoration Projects 26
Figure 17 Distribution of Land Uses in the McDowell Creek Watershed 33
Figure 18 McDowell Creek Watershed Catchments 34
Figure 19 Distribution of Forested \& Un-Forested Stream Buffers in McDowell Cr 35
Figure 20 TN Ranking 37
Figure 21 TP Ranking 37
Figure 22 TSS Ranking 38
Figure 23 Degree of Impacted Stream Buffer 38
Figure 24 Degree of Catchment Imperviousness 39
Figure 25 Overall Impairment (based upon pollutant load) 39
Figure 26 Retrofit BMP Focus Areas Within the McDowell Creek Watershed 40
Figure 27 Focus Area 1 41
Figure 28 Focus Area 2 42
Figure 29 Focus Area 3 43
Figure 30 Focus Area 4 44
Figure 31 Focus Area 5 45
Figure 32 McDowell Public Parcels Meeting BMP Criteria \& Pollutant Rank 46
Figure 33 Aerial Photo of Parcels 017-41-116, 017-42-110, 017-20-401, 017-20-403 and 017-06-207 48
Figure 34 Aerial Photo of Parcels 005-18-302 and 005-27-206 48
Figure 35 Aerial Photo of Parcel 005-16-678 49
Figure 36 Aerial Photo of Parcels 009-11-119 and 009-11-130 49
Figure 37 Aerial Photo of Parcel 017-12-113 50
Figure 38 Aerial Photo of Parcels 005-20-129 and 003-17-401 50
Figure 39 Catchments Prioritized for S.W.I.M. Buffer Enhancement 52
Figure 40 Re-Forestation Priority Catchment MD19 53
Figure 41 Re-Forestation Priority Catchment MDT1-10 53
Figure 42 Re-Forestation Priority Catchment MD28 54
Figure 43 Re-Forestation Priority Catchment MDTC28 54
Figure 44 Public Parcels in Need of S.W.I.M. Buffer Re-Forestation 55
Figure 45 High Priority Buffer Restoration Sites 56
Figure 46 Water Quality Monitoring Site at MC4 along Beatties Ford Road 59
Appendices
Appendix A: McDowell Creek and Cove Water Quality Monitoring Plan 84
Appendix B: References 99
Appendix C: BMP Master Plan 101

Executive Summary

The McDowell Creek Watershed is located in northwest Mecklenburg County and drains portions of the Towns of Huntersville and Cornelius. General statistics regarding the McDowell Creek Watershed are provided in Table 1 on page 2 of this document. McDowell Creek empties into Mountain Island Lake at McDowell Creek Cove, which is just upstream of a drinking water intake owned and operated by Charlotte Mecklenburg Utilities. An average of 80 million gallons of raw drinking water a day is pumped from this intake for the citizens of Charlotte-Mecklenburg. As such, most of the watershed has been designated as a Water Supply, which requires new development to observe certain impervious, buffer and storm water quality and detention requirements. McDowell Creek Cove has some of the worst water quality conditions of any of the reservoirs (Lake Norman, Mountain Island Lake and Lake Wylie) comprising Mecklenburg County's western border. McDowell Creek has been listed by the North Carolina Department of Environment and Natural Resources as being biologically impaired, which means that populations of aquatic insects are not diverse and/or plentiful. Because of the degraded conditions in McDowell Creek and McDowell Creek Cove, a proactive Water Quality Ordinance was developed and implemented by the Town of Huntersville, which places strict storm water runoff treatment requirements on all new development beyond what is required by the water supply watershed requirements. The ordinance was designed to prevent continued degradation of the creek and cove; however, pre-existing sources of pollution from development that occurred prior to the implementation of the Water Quality Ordinance was not mitigated. In order to address the pre-existing sources of pollution, watershed management efforts, including production of this Watershed Management Plan, have been undertaken. Already, several cooperative efforts between public and private interests have resulted in five (5) Best Management Practice (BMP) retrofit projects. This plan will provide information regarding assessment of upland and in-stream sources of pollution and guide the continued implementation of BMPs and restoration efforts to mitigate existing sources of pollution in the McDowell Creek Watershed.

In order to identify the cause of impairment of McDowell Creek and McDowell Creek Cove and to guide effective implementation, the watershed was segmented into approximately one square mile catchments. Each of the catchments was evaluated for pollutant loading, extent of stream buffer impact and overall catchment imperviousness. The catchments were then ranked to identify those areas with the most potential for negative water quality impacts. The most impacted areas are clustered in five (5) "Focus Areas," which are situated around Sam Furr Road, Downtown Cornelius, Old Statesville Road, Gilead Road and Central Piedmont Community College - North Campus. Mecklenburg County staff will conduct a windshield survey of each of the five (5) focus areas to determine location, practicality and feasibility of projects. An assessment of instream sources of pollution was completed in December, 2006. This assessment was focused on documenting riparian conditions and management needs. Data collection and subsequent analysis, which are presented in the retrofit and restoration plan, will allow for the prioritization of the worst reaches of stream for future enhancements. Validation of the measurements will be performed using bank pin measurements and full crosssection surveys at five (5) long term monitoring sites that best represent the McDowell

Creek Watershed. The assessment included performing Bank Erosion Hazard Index (BEHI) and Near Bank Stress (NBS) measurements, habitat assessments, and geomorphic assessments on approximately 80 miles of stream channel in the McDowell Creek Watershed. In addition to the aforementioned analysis, a parcel level pollutant loading analysis was conducted for all publicly owned parcels in the McDowell Creek
Watershed. Each property was evaluated for BMP feasibility and effectiveness. Of the 41 publicly owned parcels, 14 were identified as "high" priority for BMP retrofits and 17 were identified as "high" priority for S.W.I.M. Buffer restoration. Mecklenburg County Storm Water staff members are currently pursuing funding to implement the findings of the McDowell Creek Watershed Management Plan through grants and public - private partnerships.

Table 1: General McDowell Creek Watershed Statistics.

McDowell Creek Watershed Population		330% Increase
	1990 4731	
	2000 15,633	
McDowell Creek Watershed Area	18,283 acres ($28.6 \mathrm{miles}^{2}$)	
Stream Miles (Draining > 50 acres)	73.8 miles	
Dominant Land Uses	Vacant/Forest	5,514 ac (30\%)
	Rural Residential	3,892 ac (21\%)
	Transportation	1,968 ac (11\%)
	Medium Density Residential	2,635 ac (14\%)
	Low Density Residential	968 ac (5\%)
Major Political Jurisdictions	Cornelius	$\begin{aligned} & \text { 3,386 ac. (18.5 \% } \\ & \text { of Watershed) } \end{aligned}$
	Huntersville	$\begin{aligned} & 14,897 \mathrm{ac} .(81.5 \\ & \% \text { of Watershed) } \end{aligned}$
Major Streams in the McDowell Creek Watershed	Caldwell Station	1.03 miles
	McDowell Creek	10.71 miles
	McDowell Creek Trib \#1	0.84 miles
	McDowell Creek Trib \#2	0.55 miles
	Torrence Creek	3.30 miles
	Torrence Creek Trib \#1	2.53 miles
	Torrence Creek Trib \#2	1.56 miles

SECTION 1. INTRODUCTION

1.1 Purpose

The purpose of this Watershed Management Plan is to guide restoration, retrofit and preservation efforts aimed at achieving specific goals for improving water quality conditions in McDowell Creek and McDowell Creek Cove such that these waters meet or exceed their State designated uses and are no longer rated as impaired on 303(d) lists.

This Watershed Management Plan seeks to:

1. Summarize important information regarding the McDowell Creek Watershed relative to water quality.
2. Describe current and historical water quality conditions/trends in the watershed.
3. Describe current efforts underway in the watershed to protect and restore water quality.
4. Describe water quality goals for the watershed.
5. Prioritize areas for restoration, retrofit and preservation efforts aimed at achieving water quality goals.
6. Describe the process forward for implementing water quality efforts.

The ultimate goal after complete implementation of this Watershed Management Plan is a fully functioning and supporting stream ecosystem in McDowell Creek and a safe and secure water supply downstream in McDowell Creek Cove and Mountain Island Lake.

1.2 Background

The McDowell Creek Watershed is located in the northern portion of Mecklenburg County and lies predominantly within Huntersville's jurisdiction with a small portion of the headwaters in Cornelius' jurisdiction. Figure 1 shows the location of the McDowell Creek Watershed in Mecklenburg County along with its jurisdictional boundaries. McDowell Creek drains to Mountain Island Lake at McDowell Creek Cove, which is directly upstream of the main Charlotte Mecklenburg Utilities' water intake. Water quality conditions in McDowell Creek Cove are among the worst in the reservoirs that comprise the western boundary of Mecklenburg County (Lake Norman, Mountain Island Lake and Lake Wylie). The major features within the McDowell Creek Watershed, including the Charlotte Mecklenburg Utilities water intake, are shown in Figure 2. Also shown in Figure 2 are the main-stem of McDowell Creek and many of the tributaries draining to it.

Figure 1: Mecklenburg County Watershed and Jurisdictional Boundaries.

Figure 2: Special Features Within the McDowell Creek Watershed. Note: MC4, MC2A1, MC3E and MC2A denote Mecklenburg County water quality monitoring sites.

Historically, land in the McDowell Creek Watershed was used for agriculture. However, the construction of I-77 through much of the headwaters and the recent growth of the Charlotte region has resulted in a significant increase in land development activities in the watershed which has dramatically altered the landscape (see Figure 3). In addition to the recent changes brought about by urbanization, drastic changes to the stream system have occurred in the last century. At some point in the past, the stream was straightened, most likely by the U.S. Army Corps of Engineers, either to prevent flooding or to improve the land for agricultural uses (Charlotte-Mecklenburg Storm Water Services, 1997). Spoils piles from this process can still be seen along several of the stream reaches (Figure 4). Additionally, during recent years mining of the creek bed for sand was conducted. Mecklenburg County staff describe long sections of the bed material of McDowell Creek as sandy. It is possible that the bed for portions of McDowell Creek has always been sandy, which may limit the effectiveness of stream restoration efforts.

Figure 3: Urbanization Around I-77 at Exit 25 in the McDowell Creek Watershed.

Figure 4: McDowell Creek Showing Spoils Piles from Channel Straightening.

McDowell Creek is listed in the 2004 Draft of the North Carolina 303(d) list (North Carolina, 2004) as having "Overall" "Impaired biological integrity: stressors not identified." A total of 9.8 miles of McDowell Creek are identified in the list, which includes the entire stream from its source to Mountain Island Lake. Typically streams are listed on the 303(d) list dependant upon their intended uses. Intended uses are generally determined through the stream class. Figure 5 shows the main segments of McDowell Creek and its tributaries color coded by Stream Class. Table 2 lists stream classes appropriate for McDowell Creek and the associated description. In North Carolina, surface water quality regulations are defined for particular classes of use support. For instance, Class C waters must support aquatic life and secondary recreation (infrequent human body contact), while Class B waters must support aquatic life and primary recreation (frequent human body contact or swimming). Individual streams, lakes, and reservoirs (or portions of each) are assigned one or more classes. All of the contributing streams to a body of water receive the same designation when they are not specifically defined. Each class has a set of regulations, including water quality standards associated with it. If chemical/physical water quality monitoring reveals that a stream is not meeting a water quality standard, then it is considered "Impaired." If biological monitoring indicates a lack of abundance and/or diversity of aquatic life in a stream, then it is considered as having "Impaired biological integrity." Impaired streams are placed on the 303 (d) list and a restoration method is specified such as the development of a total maximum daily load or TMDL.

Figure 5: McDowell Creek Stream Classes.

Table 2: McDowell Creek Stream Class Descriptions.

Stream Class	Description
C	Freshwaters protected for secondary recreation, fishing, aquatic life including propagation and survival, and wildlife. All freshwaters shall be classified to protect these uses at a minimum.
WS-IV- CA	Water Supply IV - Critical Area: Area within $1 / 2$ mile of the normal pool elevation of a water supply reservoir where risk associated with pollution is greatest. Freshwaters protected as a water supply in moderate to highly developed watersheds. Local governments required to control non-point sources of pollution.
WS-IV-PA	Water Supply IV - Protected Area: Adjoining and upstream of the critical area up to 5 miles from the normal pool elevation or ridgeline, whichever is less. Freshwaters protected as a water supply in moderate to highly developed watersheds. Local governments required to control non-point sources of pollution.

SECTION 2. CURRENT AND HISTORICAL CONDITIONS

2.1 Previous Work

2.1.1 McDowell Creek Watershed HSPF Model

In June 2000, Mecklenburg County contracted with Tetra Tech, Inc. to perform a detailed analysis of McDowell Creek with the ultimate goal of providing a watershed based water quality model. The HSPF model eventually developed by Tetra Tech was used to compare the potential range of water quality in McDowell Creek and McDowell Creek Cove under existing and future land use conditions. The model was developed using a number of data sources, including meteorological, water quality, and land use data from Mecklenburg County, stream gaging and water quality data from USGS, and several other sources of information needed to fully parameterize and calibrate the model. Details of the model, its calibration, and the results are available in a previous report (Tetra Tech, 2002). The results of the model indicated massive increases in sediment and nutrient loading as well as peak flow rates and runoff volume. An increase in each of the indicators was expected to cause continued degradation of water quality conditions in McDowell Creek and McDowell Creek Cove as the watershed continues to develop. The results of the model were presented to the Huntersville Town Board, which subsequently adopted the Huntersville LID ordinance (Section 2.3.3) to mitigate the water quality impacts of expected development.

2.1.2 USGS

The USGS performed a series of studies in Mecklenburg County during the 1990's which included the McDowell Creek watershed (Bales, Weaver, and Robinson, 1999; Robinson, Hazell, and Garrett, 1996; Robinson, Hazell, and Garrett, 1998; Sarver, Hazell, and Robinson, 1999; Ferrell, 2001). The USGS also undertook a detailed study of Mountain Island Lake (Bales, Sarver and Giorgino, 2001). The North Carolina Division of Water Quality performed a study of the influence of the WWTP on McDowell Creek and Mountain Island Lake (NCDWQ, 1996). Two of the aforementioned studies most pertinent to the McDowell Watershed Management Plan are discussed below:

Bales, Sarver and Giordino (2001): This report characterized ambient hydrologic and water quality conditions in Mountain Island Lake including McDowell Creek Cove. The study established the direct linkage between the water quality of Mountain Island Lake and pollutant loading from Lake Norman as well as McDowell Creek. In other words, although Cowans Ford Dam supplies more than 80% of the flow in Mountain Island Lake pollutant loadings from McDowell Creek are disproportionately important to the water quality in McDowell Creek Cove.

Bales, Weaver and Robinson (1999): This report characterized storm water runoff at several sites throughout Mecklenburg County, including McDowell Creek at Beatties Ford Road (USGS Site 44). Results indicated that developing watersheds such as the McDowell Creek Watershed typically produce higher loads of nutrients, metals and
sediment than do stable watersheds. These results support the need for post-construction controls on development as well as mitigation of existing sources of pollution in McDowell Creek.

2.1.3 Charlotte-Mecklenburg Storm Water Services

In January 2002, Watershed Concepts issued the McDowell Creek Watershed Preliminary Engineering Report (Watershed Concepts, 2002). This report described the condition of the stream channel using the Rosgen Stream Classification System. The conclusions from this report are presented in Section 2.2.3.

2.1.4 North Carolina Wetlands Restoration Program

In 2003, CH2MHill completed a planning initiative for the North Carolina Wetlands Restoration Program (CH2Mhill, 2003). The planning initiative focused on several watersheds in the Charlotte, NC region, of which the McDowell Creek Watershed was included. The initiative included analysis and prioritization of restoration needs and opportunities in each watershed. The analysis, which consisted mostly of office level screening, involved the scoring of areas based upon GIS characteristics such as soils, vegetation, air photos, hydrology and land-use. A modeling component was also included in the study. From this study, 13 potential restoration sites were identified in the McDowell Creek Watershed, which are shown in Figure 6. Figure 6 also illustrates that several of the restoration sites lie partially, or fully, within publicly owned land.

Figure 6: Restoration Sites Identified by CH2Mhill (2003).

2.2 Existing Conditions

2.2.1 Water Chemistry

Mecklenburg County collects storm water samples from McDowell Creek at monitoring site MC4, which is located at Beatties Ford Road in Huntersville's jurisdiction (Figure 2). The monitoring site receives runoff from portions of Huntersville and Cornelius. The CMU wastewater treatment plant in the McDowell Creek Watershed is located downstream of MC4 and therefore does not influence the storm water samples collected from the site. Approximately 59% of the samples analyzed for total nitrogen (TN) and 37% of those analyzed for total phosphorus (TP) exceeded the Mecklenburg County action level, which is indicative of a water quality problem. High levels of fecal coliform bacteria were typically detected. Zinc was detected above the action level in approximately 58% of samples collected (Table3). Estimates of total suspended solid (TSS) loads in McDowell Creek have increased steadily since 2000, in spite of several drought years. Likely causes of the increase in estimated TSS loads are increased construction activity and in-stream erosion caused by an increase in storm water runoff volume and velocity. Tetra Tech, Inc. (2004) estimated TN, TP and TSS loading rates for the McDowell Creek watershed at $4.60 \mathrm{lbs} / \mathrm{ac} /$ year, $0.72 \mathrm{lbs} / \mathrm{ac} /$ year and 574 $\mathrm{lbs} / \mathrm{ac} / \mathrm{year}$ respectively. These values are consistent with near-by watersheds. Note that these values are for upland sources only, which includes storm water runoff from the watershed and does not include wastewater treatment plant (WWTP) effluent or other point or in-stream sources.

Table3: Storm Water Chemistry Statistics for MC4.

Monitoring Site: MC4	Total N	Total P	Fecal Coliform	Zinc
Action Level:	1.5 ppm	0.4 ppm	$1000 \mathrm{cfu} / 100 \mathrm{Ml}$	$50 \mathrm{ug} / \mathrm{L}$
Sample size	22	19	5	19
MIN	0.68	0.06	900	0.04
MAX	3.36	1.88	89000	395.00
MEAN	2.10	0.53	21020	81.39
MEDIAN	2.14	0.25	3000	65.00
\% samples over Action Level	59.09	36.8	100	57.89

McDowell Creek baseflow samples are collected from MC3E, MC4, MC2A-1 and MC4A (Figure 2). The data presented includes sample results from site MC4A, which is downstream of the McDowell WWTP. The McDowell Creek WWTP uses advanced technology to control levels of nutrients released from the plant. Most of the watershed drains Huntersville's jurisdiction with a small part of the headwaters draining Cornelius. TN exceedances during baseflow were detected 1% of the time and TP exceedences were detected 32% of the time. Exceedances of TN were below the county average whereas exceedances of TP were above the county average. Fecal coliform concentrations in excess of 1000 c.f.u. $/ 100 \mathrm{ml}$ were detected approximately 22% of the time, which is somewhat less than the countywide average (Table4). The number of exceedances, which has been limited to TN, TP and Fecal Coliform, has decreased steadily since 1988 (Figure 7). The WQI values have also tended to improve since 1988 and have remained in the "Good" range with occasional "Good/Excellent" ratings (Figure 8). The most
notable reason for improved water quality is improved nutrient removal systems at the McDowell Creek WWTP. Construction of the removal systems at the WWTP was completed in November 1998 and the systems were fully operational by March 1999. The nutrient limits placed on the facility were $1.0 \mathrm{mg} / \mathrm{L}$ for TP and $10.0 \mathrm{mg} / \mathrm{L}$ for TN .

Table 4: Baseflow Water Chemistry Statistics.

Monitoring Sites: MC3E, MC4, MC2A-1, MC4A	Total N	Total P	TSS	Fecal Coliform	Zinc
Action Level:	1.5 ppm	0.4 ppm	50	$1000 \mathrm{cfu} / 100 \mathrm{Ml}$	$50 \mathrm{ug} / \mathrm{L}$
Sample size	455	454	55	457	107
MIN	0.06	0.01	1	10	0.01
MAX	5.20	2.60	74	9000	20.00
MEAN	0.44	0.27	6	821	0.46
MEDIAN	0.32	0.06	3	400	0.03
\% samples over Action Level	1.32	32.16	1.82	22.10	0
Countywide \% samples over action level	27.7	18.6	1.3	27.1	

Figure 7: Historical Water Chemistry Data for McDowell Creek.

Figure 8: Historical Baseflow Water Quality Index Values.

2.2.2 Biological

The benthic macroinvertebrates in McDowell Creek are monitored annually by Mecklenburg County at Gilead Road (site MC2A-1) and at Beatties Ford Road (site MC4), and in Torrence Creek at Bradford Hill Drive (site MC3E) (see Figure 2). The EPT taxa richness was generally below 7 species for all samples taken since 1994 in McDowell Creek and was slightly higher in Torrence Creek. Figure 9 presents the benthic macrinvertebrate scores for McDowell Creek since 1994. As can be discerned from the graph, MC3E (Torrence Creek) has exhibited a steady decline in its macroinvertebrate population. None of the sites are ranked "Fully Supporting" for macroinvertebrates. These results are expected in a stream that lacks a stable habitat such as McDowell Creek, which has a shifting sand bottom and lacks riffles and other stable substrate. The McDowell Creek watershed is rapidly changing from a rural watershed to a suburban watershed, as the area is experiencing extensive development.

Figure 9: McDowell Creek Benthic Macroinvertebrate Scores.

Mecklenburg County last monitored the fish in McDowell Creek in 1996 at Gilead Road (site MC2A-1), at Beatties Ford Road (site MC4) and at Neck Road (site MC4A). In Torrence Creek, fish are monitored at Bradford Hill Drive (site MC3E). Based on this monitoring, McDowell and Torrence Creeks were rated as Fully Supporting.

The N.C. Department of Environment and Natural Resources (NCDENR) performs biological monitoring for benthic macroinvertebrates and fish in McDowell Creek. Benthic macroinvertebrate monitoring is performed at Beatties Ford Road and McDowell Creek (same as Mecklenburg County monitoring site MC4). Fish monitoring is performed at Gilead Road and McDowell Creek (same as Mecklenburg County monitoring site MC2A-1). In the N.C. Basinwide Assessment Report prepared by NCDENR in 2003, the results of their biological monitoring activities are summarized. In general, the report describes a substantial decline in fish populations in McDowell Creek. In 1997, the fish community in McDowell Creek was rated as Fair and in 2002 the rating declined to Poor. In five (5) years, the North Carolina Index of Biotic Integrity (NCIBI), which is a measure of total fish species diversity and abundance, dropped 18 points from 40 to 22 . The NCIBI scale ranges from 1 to 60 ; therefore, 18 points represents almost 30% of the scale which is an alarming decline in only five (5) years. The report attributes this decline to substantial decreases in total species diversity (from 15 in 1997 to 5 in 2002) and abundance (from 157 in 1997 to 81 in 2002). The number of fish collected in McDowell Creek by NCDENR was the lowest of any stream monitored in the Catawba River Basin in 2002. McDowell Creek was also the only creek in the Basin where the bluehead chub was not collected. In addition, suckers, a species known to be intolerant of pollutants, and piscivores were absent. Between 1997 and 2002, the report indicates that the percentage of pollution tolerant fish species and insectivores increased substantially from 39 to 63 percent and from 53 to 100 percent, respectively. This decline in pollution intolerant species and increase in pollution tolerant species is indicative of an overall decline in water quality conditions in McDowell Creek.

The 2003 N.C. Basinwide Assessment Report indicates a similar decline in the benthic macroinvertebrate community based on NCDENR's monitoring. In 1990, McDowell Creek rated as Good-Fair for macroinvertebrates. Sampling in 2002 indicated a decline to Fair with a significant decrease in the number of species collected. The creek was reported to be extremely sandy (85 percent) with minimal habitat. Species absent in 2002 that were common or abundant in 1990 included the mayflies. There were also three (3) species of long-lived intolerant stoneflies collected in 1990 that were not collected in 2002. NCDENR data supports McDowell Creek's 303(d) list ranking of "Biologically Impaired" and it is apparent that conditions are getting worse and not better.

2.2.3 Physical

In January 2002, Watershed Concepts issued the McDowell Creek Watershed Preliminary Engineering Report (MCSWS Project No. 28001). The Rosgen stream classification system was utilized to provide an initial assessment of the morphology of McDowell Creek. The Rosgen system uses field measurements of stream features to
describe a stream by morphologic type. An array of stream types is presented under the system that is delineated by slope, channel materials, width/depth ratio, sinuosity and entrenchment ratio. For the assessment of McDowell Creek, the stream type is described at the geomorphic characterization level (Level I) of the hierarchical system of classification. At this level of inventory, the channel pattern, shape and slope are described. Information utilized as a part of this classification included field observations, aerial photography, USGS quadrangle maps, and other digital topographic information for investigation of the channel pattern and valley form. The low sinuosity of the channel is primarily due to the installation of the sewage main line and straight alignment of the stream in many reaches. Generally, the channel displays a low width/depth ratio, low sinuosity and relatively low channel slope. However, after careful examination of the tendencies within the creek, the majority of McDowell Creek was classified as a type G channel with some reaches possibly being classified as type F. Indicators of a new bankfull flow line were observed below the historic top-of-bank, which imply that the channel has incised within the historic floodplain. Channel incision is significant in some areas (see Figure 10). This has most likely resulted from a combination of urbanization of the watershed and manual re-grading of the channel. The historic floodplain, which was formed as an alluvial plain bounded by gentle slopes of upland soils, currently forms a terrace that confines the channel. The channel bank slopes are relatively steep with the slopes ranging from $1: 1$ to vertical. Channel widening is resulting in an evolutionary transition to a type F channel. There are occasional reaches where the channel has developed sufficient belt width to begin to form a meandering pattern with stable point bars. The channel profile appears to be relatively stable and not subject to excessive degradation or aggradation. There is evidence, however, of a significant sediment load that is being transported by the stream (see Figure 11). Depositional features such as mid-channel bars, side bars and embryonic point bars are evident along many reaches of the stream. It is likely that the primary source of this depositional material is from construction activities within the watershed and that this material is being transported though the stream system without significant aggradation of the channel bed.

Figure 10: Significant Channel Incision (Scour) on McDowell Creek.

Figure 11: Sediment Transported Down McDowell Creek into Mountain Island Lake.
Analyses performed of McDowell Creek by Tetra Tech in 2004 as part of the postconstruction ordinance development process demonstrate a significant potential for further stream degradation. Tetra Tech predicted that approximately 14% of McDowell Creek draining greater than one square mile was at risk for morphic instability and habitat degradation. It is important to note that the only portion of McDowell Creek included in the analysis was that portion draining more than a square mile.

2.2.4 Stream Flow

A watershed will generate larger volumes of storm water runoff and discharge this runoff at higher rates as the amount of imperviousness increases as a result of development. The stream channels that receive the additional runoff are exposed to increased hydraulic forces that can lead to morphologic instabilities through erosion - a process that reduces the availability and quality of aquatic habitat. Aquatic species are dependent upon the channel boundary for shelter, foraging, reproduction, and rest. When boundary materials regularly erode, the aquatic habitat is impacted and unlikely to support a diverse, healthy aquatic community. Therefore, addressing the source of the habitat degradation, additional storm water runoff in this case will help reduce impairment to in-stream biological communities (Tetra Tech, 2004)

2.2.5 Land Use/Land Cover

The land-use/land-cover data set used for this Watershed Management Plan was developed by Tetra Tech Inc. (2004) for the post-construction ordinance development process. The data set was developed through interpretation of a combination of parcel information, aerial photographs, and tree canopy data. The process is more thoroughly described in Tetra Tech Inc. (2004). The land-use data set provides a distribution and classification of all land-uses in the McDowell Creek Watershed. The land-use categories represented in the McDowell Creek Watershed are presented in Table 5 and the distribution of the land-uses for the McDowell Creek Watershed is shown in Figure 12.

Table 5: McDowell Creek Land Use Categories.

Land Use Class	Abbreviation
Agriculture	AG
Heavy Commercial	COMM-H
Light Commercial	COMM-L
Forest	FRST
Golf Course	GC
High Density Residential	HDR
High Density Multifamily Residential	HMFR
High Density Mixed Urban	HMX
Heavy Industrial	IND
Institutional	INS
Interstate Corridor	INTERSTATE
Low Density Residential	LDR
Medium Density Residential	MDR
Meadow	MEADOW
Multi Family Residential	MFR
Medium Low Density Residential	MLDR
Mixed Urban	MX
Office/Industrial	OI-H

Light Office/Light Industrial	OI-L
Park	PARK
Rural Residential	RR
Ultra High Density Mixed Urban	UHMX

Figure 12: Distribution of Land Uses in the McDowell Creek Watershed.

2.2.6 Soils

The distribution of soils within the McDowell Creek Watershed was determined through the Soil Survey of Mecklenburg County (USDOA - SCS, 1980). The hydrologic soil types found in the McDowell Creek Watershed are B, C and D. A description of each soil type and distribution within the watershed are shown in Table 6. Figure 13 shows the location of the hydrologic soil groups in the McDowell Creek Watershed.

Table6: Hydrologic Soil Groups Found Within McDowell Creek Watershed.

Hydrologic Soil Group	Description (USDOA -SCS, 1980)	Distribution with McDowell Creek Watershed
B	Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission	11,180 acres (61\% of watershed)
C	Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils that have a layer that impedes the downward movement of water of soils that have moderately fine texture or fine texture. These soils have a slow rate of water transmission.	6830 acres (38\% of watershed)
D	Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clay soils that have a high shrink-swell potential, soils that have a permanent high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.	225 acres (1\% of watershed)

Figure 13: Distribution of Hydrologic Soil Groups in McDowell Creek Watershed.

2.3 Current Watershed Protection Efforts

2.3.1 Watershed Protection Ordinance

In 1992, North Carolina passed a law requiring local governments located in water supply watershed areas (WS classification) to develop regulations aimed at protecting water quality from non-point source pollutants associated with post-construction. Regulatory standards were established by the State and local governments were required to pass regulations which at a minimum complied with these standards. Most jurisdictions in Mecklenburg County adopted more stringent watershed regulations and incorporated them into subdivision, land development and/or zoning ordinances. A majority of these regulations address the following three issues: (1) development density (amount of built upon or impervious area), (2) buffer widths and (3) landuse. The Watershed Protection Ordinance for the McDowell Creek Watershed (as applied to the Mountain Island Lake Watershed) is summarized in Table7. Figure 14 shows the distribution of the Watershed Protection Zones within the McDowell Creek Watershed.

Table7: Watershed Protection Ordinance for the McDowell Creek Watershed.

Zone	Zoning Jurisdiction	Built Upon Area	Lake/Stream Buffer
Protected Area (PA)	Cornelius	$\leq 24 \%$ - Low Density $\leq 50 \%$ - High Density	50 Feet 100 Feet
Protected Area 1 (PA1)	Huntersville	$\leq 24 \%$ - Low Density $\leq 70 \%$ - High Density	50 Feet 100 Feet
Protected Area 2 (PA2)	Huntersville	$\leq 24 \%$ - Low Density $\leq 70 \%$ - High Density	30 Feet 100 Feet
Protected Area - Minimum Requirements	North Carolina - Statewide	$\leq 24 \%$ - Low Density $\leq 70 \%$ - High Density	30 Feet 100 Feet
Critical Area 1 (CA1)	Huntersville	$\leq 6 \%$ - Low Density	lon Feet or 100 yr. Floodplain (whichever is greater)
Critical Area 2 (CA2)	Huntersville	$\leq 12 \%$ - Low Density	100 Feet or 100 yr. Floodplain (whichever is greater)
Critical Area 3 (CA3)	Huntersville	$\leq 12 \%$ - Low Density	100 Feet or 100 yr. Floodplain (whichever is greater)
Critical Area 4 (CA4)	Huntersville	$\leq 24 \%$ - Low Density	100 Feet or 100 yr. Floodplain (whichever is greater)
Critical Area - Minimum Requirements	North Carolina - Statewide	$\leq 24 \%$ - Low Density	
30 Feet			
100 Feet			

Figure 14: Distribution of Watershed Protection Zones Within the McDowell Creek Watershed.

2.3.2 S.W.I.M. Buffer Ordinance

A countywide stream buffer system was established in 1999 as part of the Surface Water Improvement and Management (S.W.I.M.) strategy, otherwise known as S.W.I.M. buffers. According to S.W.I.M., streams have the primary natural function of conveying storm and ground water, storing floodwaters and supporting aquatic and other wildlife. The buffer is the vegetated land adjacent to the stream channel, which functions to protect water quality by filtering pollutants and to provide both storage for floodwaters and suitable habitat for wildlife.

Required stream buffer widths vary from 35 to 100 feet or more based on the size of the upstream drainage basin. In Cornelius and Huntersville, S.W.I.M. buffer requirements begin at a point where the stream drains 50 acres. Approximately 1,686 acres (9.2\%) of the McDowell Creek watershed is S.W.I.M. buffer. Table 8 presents the S.W.I.M. buffer requirements for both Huntersville and Cornelius. Figure 15 shows the extent of the S.W.I.M. buffers in the McDowell Creek Watershed.

Table 8: S.W.I.M. Buffer Requirements for Cornelius and Huntersville.

Jurisdiction	Date Ordinance Adopted	Total Buffer Widths		
		≥ 640 acres	≥ 300 acres	≥ 50 acres
Cornelius(2)	12/6/99	total $=$ entire floodplain but no less than 100 feet	total $=50$ feet no zones	total $=35 \mathrm{ft}$ no zones
Huntersville(1)	10/19/99	total $=$ floodway + 100% of floodfringe but no less than 100 ft streamside $=30 \mathrm{ft}$ managed use $=45 \mathrm{ft}$ upland $=$ remainder	$\begin{aligned} & \text { total }=50 \text { feet } \\ & \text { streamside }=20 \mathrm{ft} \\ & \text { managed use }=20 \mathrm{ft} . \\ & \text { upland }=10 \mathrm{ft} \end{aligned}$	$\begin{aligned} & \hline \text { total }=35 \mathrm{ft} \\ & \text { streamside }=20 \mathrm{ft} \\ & \text { managed }=\text { none } \\ & \text { upland }=15 \mathrm{ft} \end{aligned}$

All buffers are measure horizontally on a line perpendicular to the surface water, landward from the top of the bank on each side of the stream.
(1) Function, vegetative targets and uses for each of the buffer zones correspond to the buffer plan developed by the S.W.I.M. Panel dated April 20, 1999.
(2) No buffer zones have been designated. The entire buffer area is designated in the Ordinance as "UNDISTURBED."

Figure 15: Approximate Extent of McDowell Creek Watershed S.W.I.M. Buffers.

2.3.3 Huntersville Water Quality Ordinance

The Huntersville Water Quality Ordinance was implemented to prevent surface water quality degradation in the streams and lakes within Huntersville and its extraterritorial jurisdiction. The ordinance seeks to limit water quality impacts from new development and re-development through controlling and treating storm water runoff. Specifically, storm water runoff must be treated with water quality BMPs and storm water volumes and rates must be controlled. The ordinance requires the following:

1. All storm water treatment systems used to meet these Performance Criteria shall be designed to achieve average annual 85% Total Suspended Solids (TSS) removal for the developed area of a site. Areas designated as open space that are not developed do not require storm water treatment. All sites must employ LID practices to control and treat runoff from the first inch of rainfall.
2. LID practices or a combination of LID and conventional storm water management practices shall be used to control and treat the increase in storm water runoff volume associated with post-construction conditions as compared with pre-construction (existing) conditions for the 2-year frequency, 24-hour duration storm event in the Rural and Transitional Zoning Districts. For all other Zoning Districts, LID practices or a combination of LID and conventional storm water management practices shall be used to control and treat the increase in storm water runoff volume associated with post-construction conditions as compared with pre-construction (existing) conditions for the 1 -year frequency, 24 -hour duration storm event. This may be achieved by hydrologic abstraction, recycling and/or reuse, or other accepted management practice as described in Section 6 of the Huntersville Water Quality Design Manual.
3. Where any storm water BMP employs the use of a temporary water quality storage pool as a part of its treatment system, the drawdown time shall be a minimum of 48 hours and a maximum of 120 hours.
4. Peak storm water runoff rates shall be controlled for all development above 12% imperviousness. The peak storm water runoff release rates leaving the site during post-construction conditions shall be equal to or less than the pre-development peak storm water runoff release rates for the 2-year frequency, 24-hour duration storm event and 10 -year frequency, 24 -hour duration storm event. The emergency overflow and outlet works for any pond or wetland constructed as a storm water BMP shall be capable of safely passing a discharge with a minimum recurrence frequency of 50 years. For detention basins, the temporary storage capacity shall be restored within 72 hours. Requirements of the Dam Safety Act shall be met when applicable.
5. No one BMP shall receive runoff from an area greater than five (5) acres. However, the total drainage area from BMPs used in series (i.e., integrated) can exceed this five (5) acre maximum.

For the purpose of this Watershed Management Plan, it is assumed that the Huntersville Water Quality Ordinance will mitigate future impacts to water quality from new development. For this reason, the remainder of the Plan and the recommendations listed are focused upon reducing pollution sources from existing development where limited or no water quality mitigation efforts have been required.

2.3.4 BMP Retrofits and Land Acquisition

An aggressive land acquisition initiative has been underway in the Mountain Island Lake Watershed since 1991 resulting in the expenditure of approximately $\$ 29,000,000$ in Mecklenburg County Park Bonds. As of 2005, approximately 1,000 acres have been purchased in the McDowell Creek Watershed as part of this program. Properties are currently still being considered for future acquisitions. These properties will be preserved as open space with passive recreation and could be used as potential BMP locations. They were targeted for acquisition due to their potential water quality benefit or their environmental significance. The County and Towns of Cornelius and Huntersville all own property in the watershed that has various uses such as public works facilities, libraries, parks, recycling centers, schools, etc. These publicly owned properties are also possible locations for future BMP retrofit opportunities. Figure 16 shows the location of funded retrofit and restoration projects.

Figure 16: Currently Funded BMP Retrofit and Stream/Wetland Restoration Projects.

In order to address water quality issues in the McDowell Creek Watershed from previously developed properties, Mecklenburg County is actively pursuing grants and other funding sources to assist in the installation of BMP retrofit projects. There are
currently three (3) active water quality projects in the watershed as described below. All three (3) projects are within the same general vicinity in the upper watershed area near I77 and Sam Furr Rd. This area has been designated as a high priority for future restoration.

Caldwell Station Wetland Restoration

This project involves the restoration of wetlands along Caldwell Station Creek just east of Highway 21. The project is being funded by the North Carolina Ecosystem Enhancement Program (NCEEP) and is currently in the design phase. The Town of Cornelius hopes to provide amenities to the site by making it an outdoor classroom "Eco-Park." No Charlotte- Mecklenburg Storm Water Services' funds will be used to finance this project.

McDowell BMP Retrofit Project

This project involves six different properties totaling 90 acres. The properties involved include the Northcross Shopping Center, Target, Food Lion Shopping Center, Charlotte Hospital Authority, and Monteith Park subdivision. The majority of the project drains to Caldwell Station Creek, with the exception of one property which drains to a tributary of Torrence Creek. The project involves installing up to 70 bioretention BMPs in parking lots and other strategic locations as well as installing two (2) storm water wetlands. The project budget is approximately $\$ 2.1$ million and is being partially funded by grants from the N.C. Clean Water Management Trust Fund and the N.C. 319 Program totaling approximately $\$ 1.1$ million. Charlotte- Mecklenburg Storm Water Services will contribute $\$ 1,030,366$ through its Capital Improvement Program. The project is currently in the design phase with construction planned for the fall of 2006.

McDowell Creek Stream Restoration

The main stem of McDowell Creek near Birkdale Village will be restored from Sam Furr Rd. to Westmoreland Rd. This encompasses approximately $11 / 2$ miles of restoration and habitat improvement. This particular reach of McDowell Creek is severely eroded and aquatic habitat is lacking. The project goals are to improve stream sinuosity and habitat by creating riffles and water quality features for aquatic life. This project is funded primarily by the NCEEP, although $\$ 95,000$ was awarded through a grant by the North Carolina Natural Resources Conservation Service. Charlotte- Mecklenburg Storm Water Services will contribute $\$ 105,000$ through its Capital Improvement Program. The Mecklenburg County Parks and Recreation Department is also planning a greenway along the western side of the stream. Including the greenway, this project will cost approximately $\$ 3.8$ million.

SECTION 3. WATERSHED INDICATORS AND GOALS

3.1 Upland

3.1.1 Upland Water Quality Indicators

Upland water quality is associated with pollutants in storm water runoff from the watershed draining to McDowell Creek. The upland water quality indicators selected for this Watershed Management Plan are Total Suspended Sediment (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). These pollutants are indicative of the impact that contaminated storm water runoff has on water quality. Moreover, they are capable of being accurately simulated with relatively simple methods (unlike temperature or fecal coliform) and are indicators of other parameters of concern.

3.1.2 Upland Water Quality Goals

Tetra Tech (2004) conducted an analysis of watershed scale upland loading rates for existing conditions for all watersheds in Mecklenburg County for TSS, TN and TP. They correlated the loading rates back to biological health and scored each watershed based upon the results. They were able to determine that watersheds capable of sustaining a fully supporting biological community displayed very similar upland pollutant loading rates for TSS, TN and TP. The upland loading rates for these fully supporting watersheds are presented in Table9.

Table 9: Upland Pollutant Loading Rate Goals.

Upland Pollutant Loading Rate Goals
1. $\mathrm{TN} \leq 4 \mathrm{lbs} / \mathrm{ac} /$ year
2. $\mathrm{TP} \leq 0.6 \mathrm{lbs} / \mathrm{ac} /$ year
3. $\mathrm{TSS} \leq 0.22 \mathrm{tons} / \mathrm{ac} /$ year

The goals presented in Table 9 are appropriate to be applied to retrofit BMP projects as a catchment wide design standard. In other words, retrofit BMP projects in a particular catchment should strive to meet the goals in Table 9; however, it is recognized that each individual project may not meet the goals.

3.2 In-Stream

3.2.1 In-Stream Water Quality Indicators

In-stream water quality is associated with pollutants in the stream channel. The in-stream water quality indicator selected for this Watershed Management Plan is TSS. This indicator will provide an indication of the TSS pollutant load conveyed by the channel.

3.2.2 In-Stream Water Quality Goals

Tetra Tech, Inc. (2002) summarized several reports pertaining to sediment production
and biological health. Simmons (1993) summarized sediment characteristics of 152 North Carolina streams and rivers (including 100 within the Piedmont region) from data taken during the 1970s. Crawford and Lenat (1989) provide estimates of annual sediment yield from three (3) Piedmont watersheds near Raleigh, N.C., including 0.13 ton/acre for a predominantly forested watershed, 0.31 ton/acre from an agricultural watershed, and 0.59 ton/acre from an urban watershed. In both studies, sediment yield was estimated from in-stream suspended sediment concentrations, so the annual areal sediment yields reflect not only sediment from the land surface but also in-stream sediment transport and sediment from bank erosion/collapse. Crawford and Lenat (1989) performed extensive biological sampling in the three watersheds they studied and calculated metrics for taxa richness, abundance, and pollution tolerance for invertebrates and fish. In summarizing their biological data, they rated the forested watershed as having high measures of biotic characteristics, the agricultural watershed as having medium to high measures, and the urban watershed as having low measures. Under North Carolina water quality regulations, streams and lakes must be able to support aquatic life. A rating of Fair or Poor for Benthic Invertebrate Bioclassification or Fish Community Structure prevents a water body from being rated as "fully supporting" under Section 305(b) of the Clean Water Act. Based on the two studies investigated by Tetra Tech, Inc., an approximate instream sediment load goal of 0.30 ton/acre/year is recommended as a goal.

Currently, in-stream data allowing assessment of the sediment load goal of 0.30 tons/acre/year is not available in the McDowell Creek Watershed. In order to determine progress toward the goal, it is proposed that three (3) long term sediment monitoring stations be installed in the McDowell Creek Watershed. These sites should coincide with long term monitoring sites established for assessing channel properties (permanent cross sections, etc.). Additionally, these sites should also be monitored for macroinvertebrates and fish. Data collected at these sites will allow the development of a yearly sediment versus flow curve. Each year will be compared against previous years to determine if the sediment carrying characteristics of McDowell Creek (and hence the sediment loads) are improving. Also, the data collected will be used to estimate progress toward attaining the overall goal of 0.30 tons/acre/year. Table 10 presents the in-stream water quality goals.

Table 10: In-Stream Water Quality Goals.

In-Stream Water Quality Goals
1. TSS ≤ 0.3 tons/ac/year
2. Benthic Macroinvertebrates = Fully Supporting
3. Fish $=$ Fully Supporting

Monitoring to determine compliance with these goals is presented in Appendix A.

3.3 Channel

3.3.1 Stream Channel Indicators

Channel stability reflects the ability of the stream, over time, to transport the flows and sediment from its watershed in such a manner that the dimension, pattern and profile of
the stream are maintained. Monitoring bank pins and permanent cross-sections can help quantify stability by evaluating whether the stream is aggrading or degrading and whether changes are occurring in stream bed materials, bank erosion and morphological evolution.

Stream channel stability is assessed by monitoring three categories of indicators:

1. Vertical Stability (aggradation/degradation)

The surveying of permanent cross-sections helps determine whether the stream is downcutting, filling or stable. The rate, magnitude and direction of vertical change can be determined from subsequent monitoring. Specifically, monumented crosssections provide an elevation reference to depict changes. Bank Height Ratio and Entrenchment Ratio are used to express vertical stability (Rosgen, 1996).
2. Lateral Stability

To determine the rate and magnitude of bank erosion, bank pins were installed at representative monitoring reaches. Bank pins are surveyed following runoff events to obtain measured stream bank erosion rates. Measured streambank erosion rates can be expressed in feet/year, cubic yards/year, and tons per acre for a given flow or for a runoff season. BEHI will be performed when bank pins are measured to assess lateral stability.
3. Channel Material

Composition of the stream bed material is a good indicator of changes in stream character, channel form, hydraulics, erosion rates and sediment supply. Pavement and subpavement bulk samples give a quantitative description of the bed material. Samples were collected using methods described by Jessup (2002). Bulk samples and/or a Wolman pebble count (Wolman, 1954) will be performed during subsequent monitoring events.

3.3.2 Stream Channel Goals

Induced change in channel stability can be determined by implementing a quantitative, comparative analysis approach that compares measurements before versus after management activity. Therefore, it is necessary to set quantitative goals so as to determine the success of restoration and enhancement efforts. There are several channel characteristics measured at cross-sections that will be used to determine the impact of upstream enhancement as described below. These measurements are designed to help identify and evaluate existing conditions and to predict the response of the stream to imposed change. The relative stability of the bed, banks, and materials of the stream provide valuable interpretations and assessments.

1. Entrenchment Ratio is used to describe the vertical stability and degree of incision of a stream channel (i.e., width of the flood prone area at an elevation twice the
maximum bankfull depth/bankfull width). Entrenchment describes the relationship of the stream to its valley and landform features. Large entrenchment ratios indicate the presence of a well-developed floodplain (i.e., >2.2). Lower entrenchment ratios indicate channel incision (i.e., <2.2). Goal-Ratio of 2.2 or greater
2. Width/Depth Ratio indicates the shape of the channel cross-section (ratio of bankfull width/mean bankfull depth). The width/depth ratio is key to understanding the distribution of available energy within a channel, and the ability of various discharges occurring within the channel to move sediment. Measurement of the width/depth ratio is also valuable for describing channel cross-section shape. A comparison of ratio values can be used to interpret shifts in channel vertical and lateral stability following disturbances. A stream with a ratio less than 1.0 is actively incising. A continual increase in the ratio is indicative of a stream widening. A stream in equilibrium will exhibit a stable ratio greater than 1.0. Goal - Ratio that exhibits very little change over time and is 1.0 or greater
3. Bank Height Ratio is a measurement of vertical stability. The ratio is the height of the lowest bank divided by the maximum bankfull depth. This parameter identifies changes in streambed elevation caused by aggradation or degradation. Stream reaches of 1.1 and less are considered to be a stable system. Goal - Ratio of 1.1 or less
4. Dominant Channel Materials - a selected particle size index value representing the most prevalent of one of six channel material types or size catergories, as determined from a channel material size distribution analysis. While channel bed and bank materials influence the cross-sectional shape, they also determine the extent sediment transport and provide the means of resistance to hydraulic stress. Additionally, an assessment of the nature and distribution of channel materials is critical for interpreting the biological function and stability of streams. Goal- A coarsening of substrate over time would be an indication of a reduction in sedimentation (i.e., an increase in the D50 particle size).
5. Bank Erosion Rate is determined by re-surveying the stream bank profile following a runoff event. Measured stream bank erosion rates are a measurement of lateral stability and can be expressed in feet/year, cubic yards/year, and total tons/stream reach for a given flow or for a runoff season. In McDowell Creek Watershed, erosion rates exceeding 1.6 cubic feet/linear foot are very unstable. Rates of 1.26 to 1.59 are generally unstable, where as from 0.76 to 1.25 is stable and less that 0.76 is very stable. Goal - Erosion Rate of 1.26 cubic feet/linear foot or less

SECTION 4. WATERSHED ASSESSMENT

4.1 Upland Characterization

In order to prioritize areas of the McDowell Creek Watershed, an upland characterization methodology was developed based upon work completed by Tetra Tech, Inc. (2004) for the post-construction ordinance stakeholder group. The resulting prioritization will be used to guide property acquisition for installation of water quality BMPs and to focus efforts on voluntary retrofitting of existing upland sources of pollution.

The upland characterization was completed through an evaluation of existing levels of pollutant loading, impervious cover and buffer impacts. Specifically, the indicators used were Total Phosphorus (TP), Total Nitrogen (TN), Total Suspended Sediment (TSS), impervious percentage of the catchment and percent of the stream buffer currently unforested. The information presented in this Section of the Watershed Management Plan deals only with existing sources of pollution in the McDowell Creek Watershed. For the purpose of this document, it was assumed that future sources of pollution will be attenuated through implementation of the Huntersville LID Ordinance, which is presented in Section 2.3.3.

4.1.1 Methodology

The basis for the upland characterization presented herein is an existing land-use dataset developed by Tetra Tech Inc. (2004). The land-use data set was developed through interpretation of a combination of parcel information, aerial photographs, and tree canopy data. The process is more thoroughly described in Tetra Tech Inc. (2004). The land-use data set provides a distribution and classification of all land-uses in the McDowell Creek Watershed. The land-use categories represented in the McDowell Creek watershed are presented in Table 11.

Table 11: McDowell Creek Land Use Categories.

Land Use Class	Typical Lot Size	Percent Impervious	Abbreviation
Agriculture	NA	0	AG
Heavy Commercial	Variable	85	COMM-H
Light Commercial	Variable	45	COMM-L
Forest	NA	0	FRST
Golf Course	NA	8	GC
High Density Residential	$0.125-0.25 \mathrm{ac}$	41	HDR
High Density Multifamily Residential	Variable	70	HMFR
High Density Mixed Urban	Variable	70	HMX
Heavy Industrial	Variable	66	IND
Institutional	Variable	40	INS
Interstate Corridor	NA	36	INTERSTATE
Low Density Residential	$2-5$ ac	9	LDR
Medium Density Residential	$0.25-0.5 \mathrm{ac}$	30	MDR
Meadow	NA	0	MEADOW

Land Use Class	Typical Lot Size	Percent Impervious	Abbreviation
Multi Family Residential	<0.125	60	MFR
Medium Low Density Residential	$0.5-2 \mathrm{ac}$	19	MLDR
Mixed Urban	Variable	60	MX
Office/Industrial	Variable	72	OI-H
Light Office/Light Industrial	Variable	30	OI-L
Park	NA	9	PARK
Rural Residential	$>5 \mathrm{ac}$	4	RR
Ultra High Density Mixed Urban	Variable	90	UHMX

The distribution of the land-uses for the McDowell Creek watershed is shown in Figure 17.

Figure 17: Distribution of Land Uses in the McDowell Creek Watershed.
The land-use data for the McDowell Creek Watershed was sub-divided into catchments using GIS software. The catchments were delineated using the Watershed Information System (WISe) with an approximate drainage area of 100 acres per catchment.
Catchments with very small drainage areas (<1 acre) were merged into nearby catchments to reduce the number of reporting units. A total of 131 catchments were delineated for the McDowell Creek Watershed. Figure 18 shows the distribution of the catchments in the McDowell Creek Watershed.

Figure 18: McDowell Creek Watershed Catchments.
The upland pollutant loading rates by land-use were adopted from Tetra Tech Inc. (2004) and are listed in Table 12. Catchment loading rates were determined by multiplying the area of each land-use in the catchment by the appropriate loading rate and summing the total for all land-uses within the catchment.

Table 12: Upland Pollutant Loading Rates by Land-Use.

LAND-USE	TN (lbs/ac/year)	TP (lbs/ac/year)	TSS (tons/ac/year)
AG	5.06	0.32	0.33
COMM-H	19.44	2.85	0.76
COMM-L	12.44	1.88	0.69
FRST	2.5	0.4	0.15
GC	5.17	0.83	0.47
HDR	8.73	1.4	0.47
HMFR	11.67	1.83	0.34
HMX	16.82	2.49	0.71
IND	16.12	2.39	0.71
INS	8.63	1.39	0.48
INTERSTATE	7.81	1.25	0.4
LDR	4.1	0.66	0.28
MDR	7.61	1.24	0.52
MEADOW	2.39	0.38	0.13
MFR	10.65	1.68	0.39

LAND-USE	TN (lbs/ac/year)	TP (lbs/ac/year)	TSS (tons/ac/year)
MHP	9.03	1.45	0.46
MLDR	6.5	1.07	0.57
MX	15.07	2.24	0.71
OI-H	11.87	1.86	0.34
OI-L	7.61	1.24	0.52
PARK	4.18	0.68	0.3
RR	3.59	0.59	0.3
UHMX	20.31	2.97	0.73

Note: See Table 11 for abbreviation descriptions.
The percent of impacted buffer in the McDowell Creek Watershed was also characterized. The characterization was completed using tree canopy data for Mecklenburg County intersected with the FEMA floodplain delineation and the S.W.I.M. and Watershed buffer coverages. The resulting GIS dataset, which depicts the presence or absence of tree canopy within stream buffers, was intersected with the catchment coverage to determine the percent of un-forested buffer within each catchment. Figure 19 shows the distribution of forested and un-forested buffer within the McDowell Creek Watershed.

Figure 19: Distribution of Forested and Un-forested Stream Buffers Within the McDowell Creek Watershed.

Levels of impervious area, which are indicative of level of development, for the McDowell Creek Watershed were characterized by catchment. Impervious percentages by catchment were determined by multiplying the area of each land-use within the catchment by the appropriate impervious percentage (Table 11) and summing the resulting impervious areas for the entire catchment.

4.1.2 Results

Results for each of the catchments for each indicator evaluated were ranked to determine the catchments with the highest level of impairment. For brevity, only the 20 most impaired catchments for each indicator are listed in Table 13, which is presented below.

Table 13: Results of Upland Impairment Characterization. Note: Higher rank indicates increasing level of impairment.

Basin ID	TN	TP	TSS	Overall
MDCS10	131	131	131	131
MDT1-3	128	128	130	130
MDCS13	129	129	129	129
MDCS11	130	130	127	128
MD17	127	127	117	127
MDT1-2	122	121	126	126
MDTC16	126	126	115	125
MD5	125	125	111	124
MDTC14	123	122	109	123
MDCS14	116	116	121	122
MDTC5	117	117	114	121
MDCS12	119	119	106	120
MD2	112	114	120	119
MD1	110	110	123	118
MDTC10	108	107	124	117
MD19	124	124	91	116
MD20	107	108	125	115
MD4	114	113	110	114
MD7	121	120	94	113
MDTC6	120	123	90	112

Figures $20-25$ present the overall ranking based upon the results of the upland characterization for TN, TP, TSS, Imperviousness, Level of Buffer Impact and Overall Pollutant Load respectively. Note that darker colors indicate increased levels of impairment.

Figure 20: TN Ranking.

Figure 21: TP Ranking.

Figure 22: TSS Ranking.

Figure 23: Degree of Impacted Stream Buffer.

Figure 24: Degree of Catchment Imperviousness.

Figure 25: Overall Impairment (based upon upland pollutant load).

4.2 Stream Channel Characterization

In order to prioritize areas of the McDowell Creek Watershed for stream channel restoration, enhancement and preservation, a characterization methodology was developed by Buck Engineering, PA (Buck). The characterization was completed through an evaluation of existing stream channel conditions that allowed reach-level prioritization based on biological integrity and geomorphic stability, as well as predicted bank erosion rates.

4.2.1 Methodology

Mecklenburg County provided base data in GIS format, including recent aerial photography, stream locations, roads and parcel boundaries. Using GIS, the McDowell Creek Watershed was divided into 21 basins and the stream channels were segmented into study reaches (Figure 26). For the purposes of this study, Buck defines a reach as a discrete segment of stream that consistently exhibits a set of physical features that appear to be significantly different from its contiguous upstream and downstream segments. Twelve basins were chosen for assessment that appeared to represent a range of stream conditions and land uses found throughout the watershed. Basins containing the five Retrofit BMP Focus Areas were included. Because only perennial streams were to be assessed, streams receiving 100 acres or greater of drainage were chosen, which resulted in 95 reaches approximating 30 miles of stream for direct assessment.

Stream Classification

Each reach was visually classified according to the Rosgen classification system (Rosgen, 1994). This heirarchial methodology categorizes streams based on geomorphic features that describe channel geometry in the three dimensions of planform, cross-section and longitudinal profile. Most of these parameters are expressed as dimensionless ratios such as width/depth. The use of dimensionless ratios allows categorization and comparison of streams of varying sizes.

Bank Erosion

Streambank erosion rates were determined by measuring the Bank Erosion Hazard Index (BEHI) and Near Bank Stress (NBS) (Rosgen, 2001) throughout each study reach. This semi-quantitative method is widely used in North Carolina and is based on measured values and visual estimates made at discrete sections of streambank. BEHI provides results in adjective ratings, ranging from very low to extreme. BEHI is based on the following:

- bank height/bankfull height
- root depth/bank height
- root density (\%)
- bank angle
- surface protection (\%)
- bank materials and stratification

NBS provides a measurement of the distribution of flow through a cross section. The near bank region is that third of stream cross section nearest a bank being studied. Rosgen (1996) correlated the ratio of shear stress in the near bank region to mean shear stress and developed an adjective rating system for reporting. Reasonably accurate estimates of NBS can be made quickly using professional judgment.

Erosion rates have been associated with the adjective ratings for bank erodibility and near-bank stress based on data collected from Colorado. Data collected at the Mitchell River in North Carolina supports the use of the Colorado data (Rosgen, 2001). The erosion rate was then multiplied by the height and length of the streambank. Rates are expressed as cubic feet of sediment eroded annually per linear foot of streambank. Total tons per year were also calculated for each study reach.

Channel Evolution

Simon's Channel Evolution Model (1989) was used to assign one of the six stages listed below to each reach based on field observations.

- Stage I: The waterway is a stable, undisturbed natural channel.
- Stage II: The channel is disturbed by some drastic change such as forest clearing, urbanization, dam construction, or channel dredging.
- Stage III: Instability sets in with scouring of the bed.
- Stage IV: Destructive bank erosion and channel widening occur by collapse of bank sections.
- Stage V: The banks continue to cave into the stream, widening the channel. The stream also begins to aggrade, or fill in, with sediment from eroding channel sections upstream.
- Stage VI: Aggradation continues to fill the channel, re-equilibrium occurs, and bank erosion ceases. Riparian vegetation once again becomes established.

Channel Evaluation

Buck Channel Evaluation Forms were completed by field staff characterizing biological integrity, geomorphic stability, channel evolution, feasibility, and enhancement recommendations. Scores from 0 to 4 were assigned to the following five indicators with 0 being poor and 4 being excellent:

- habitat
- existing riparian vegetation
- human impacts
- erosion
- incision

An accumulative score was derived from the five indicators and thus provides a Total Channel Evaluation Score per study reach from 0 to 20. Constraints on construction activities were determined initially by field observations and recorded on the form. Feasibility was further addressed through subsequent GIS analyses.

Permanent Cross-Sections

Five permanent cross-sections were installed in the McDowell Creek watershed from which to document changes in vertical and lateral channel dimension over time (Figure 26). Changes in channel dimension made apparent from subsequent surveys can be evaluated to determine a movement toward a more unstable condition (e.g., downcutting or erosion) or a movement toward increased stability (e.g., settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio). Cross-section locations consisted of stream reaches within sub-watersheds having a variety of scenarios based on land use, drainage area, and build-out capacity in order to characterize the existing geomorphic conditions of the entire watershed representatively. Table 1 summarizes the scenario associated with each sub-watershed containing a permanent cross-section.

Table 14. Scenarios of Sub-watersheds Containing Cross-sections

Sub-watershed	Scenario
F	Active/Recent Development
I	Nearing Built-out Capacity
M	Rural Land Use
N	Largest Drainage Area
P	Mixed Land Use \& Intermediate Drainage Area

Each cross-section was established at a riffle cross-section and was classified using the Rosgen Stream Classification System. Each cross-section was marked on both banks with permanent rebar pins set in concrete to establish the exact transect used. The rebar pins were used as common benchmarks from which to originate the survey at each crosssection to facilitate easy comparison of year-to-year data. The cross-section survey includes points measured at all breaks in slope, including top of bank, bankfull, inner berm, edge of water, and thalweg, if the features are present.

Bank Pins

Bank pins were installed at five stream reaches within the McDowell Creek watershed having the highest erosion rates as determined from BEHI field assessments (Figure 26). These pins are three foot sections of rebar driven into the bed and bank from which changes in bank dimension can be documented. They accurately measure streambank erosion or lateral accretion rates and can be used to verify the lateral stability prediction made using BEHI. Data collected from the bank pins, in addition to accurately measuring actual erosion rates, can help determine the usefulness of the Colorado data (used for BEHI) as a prediction tool in North Carolina.

Figure 26: McDowell Creek Stream Characterization Sub-basins.

Channel Materials

Pavement and sub-pavement samples were collected at each of the six permanent riffle cross sections. Samples were collected using methods described by Jessup (2002). The pavement/subpavement samples were returned to the Buck Engineering soils lab, sieved, and a grain size distribution developed. Using these samples, the critical depth for particle sediment transport for the study reaches was calculated and combined with the longitudinal profiles to perform an aggradation/degradation analysis on the study reaches.

4.2.2 Results

A total of 95 study reaches were delineated and assessed. Reach lengths varied from several hundred feet to over 7000 feet. The number of reaches per basin ranged from three to seventeen. Once in the field the predetermined reach lengths (based on drainage) were sometimes broken into smaller reaches or combined into larger reaches based on field observations. For example, if the land use adjacent to the stream channel changed significantly (e.g., forest to industrial) a new reach would begin. Due to the large number of study reaches, data was also compiled and presented per basin (Table 15) to aid in management efforts.

Table 15: Results of Stream Channel Characterization by Basin.

Basin	Total Reaches Per Basin	Average Erosion Rate $(\mathrm{ft} 3 / \mathrm{ft})$	Average Channel Evaluation Score	Total Tons of Sediment
A	10	0.89	11.48	594.35
B	14	1.95	9.45	1280.4
E	3	0.67	9.77	364.87
F	8	0.79	10.57	863.88
I	7	1.81	9.37	870.3
K	4	1.30	9.43	496.3
L	4	1.12	8.76	483.86
M	9	2.35	10.02	1282
N	6	0.88	10.60	1059.1
O	5	0.73	11.11	591.95
P	8	1.13	9.85	1320.08
U	17	1.48	11.93	1528.7

A single erosion rate was calculated for each of the 95 reaches based on BEHI/NBS. The erosion rate per basin is an average erosion rate of the total reaches per basin. In McDowell Creek Watershed, erosion rates exceeding 1.6 cubic feet/linear foot are very unstable. Rates of 1.26 to 1.59 are generally unstable, where as from 0.76 to 1.25 is stable and less that 0.76 is very stable. The total Buck Channel Evaluation score for all of the reaches for a given basin were divided by its total reach number to obtain the Average Channel Evaluation Score. The Average Erosion Rate and Average Channel Evaluation Score are useful for prioritizing the worst basin-wide degradation (Figures 27 \& 28; Tables 16 \& 17).

Table 16: Ranking Based on Average Erosion Rate Per Reach by Basin.

Basin	Average Erosion Per Reach $(\mathrm{ft} 3 / \mathrm{ft})$	Total Erosion Rate $(\mathrm{ft} 3 / \mathrm{ft})$	Total Reaches Per Basin
M	2.35	21.11	9
B	1.95	27.28	14
I	1.81	12.65	7
U	1.48	25.21	17
K	1.30	5.21	4
P	1.13	9.07	8
L	1.12	4.47	4
A	0.89	8.85	10
N	0.88	5.26	6
F	0.79	6.31	8
O	0.73	3.65	5
E	0.67	2.02	3

Figure 27: Basin Ranking based on Predicted Erosion Rates

Table 17: Ranking Based on Average Channel Evaluation Per Reach by Basin.

Basin	Average Channel Evaluation Score	Total Channel Evaluation Score	Total Reaches Per Basin
L	8.76	35.03	4
I	9.37	65.57	7
K	9.43	37.7	4
B	9.45	132.27	14
E	9.77	29.3	3
P	9.85	78.8	8
M	10.02	90.16	9
F	10.57	84.57	8
N	10.60	63.57	6
O	11.11	55.57	5
A	11.48	114.83	10
U	11.93	202.85	17

Figure 28. Basin Ranking based on Channel Evaluation Scores

The six cross sections were surveyed at stable stream locations. This is confirmed by their Rosgen Stream type of E. There is however evidence of departure from stability according to collected data. Sub-basin P cross section (P-XS), Sub-Basin N cross section ($\mathrm{N}-\mathrm{XS}$), Sub-Basin F cross section, and Sub-Basin I cross sections have bank height ratios greater than 1.1. This parameter identifies vertical instability in their streambed elevations most likely caused by aggradation. Stream reaches of 1.1 and less are considered to be a stable system. According to cross-sectional data, none of the six cross sections exhibit entrenchment or lateral instability. Bed material data collected at the six cross sections demonstrate that the dominant channel material is sand. Tables 18 and 19 describe the observed stream types, channel stability parameters, and channel materials for all six permanent cross sections. Full documentation of the results can be found in the Appendices.

Table 18. Summary of Cross-section Data

Geomorphic Parameters	F-XS	I-XS	M-XS	N-XS	P-XS	Gage-XS
Rosgen Stream Type	E	E	E	E / Gc	E	E
Bankfull Width (ft)	12.69	19.32	12.92	35.45	18.49	40.01
Bankfull Mean Depth (ft)	2.54	1.89	1.43	4.76	2.07	5
Width/Depth Ratio	4.99	10.2	9.05	7.45	8.94	8
Bankfull Area (sq ft)	32.29	36.61	18.44	168.72	38.23	200.22
Bankfull Max Depth (ft)	3.37	3.34	1.95	5.72	2.81	6.49
Width of Floodprone Area (ft)	114.31	116.99	43.54	135.02	77.9	119.48
Entrenchment Ratio	9.01	6.05	3.37	3.81	4.21	2.99
Bank Height Ratio	1.49	1.41	1	1.59	1.95	1

Table 19. Summary of Bed Material Analyses

Size Distribution (mm)	F-XS	I-XS	M-XS	N-XS	P-XS	Gage-XS
D16	0.55	0.36	0.3	0.51	0.57	0.53
D35	0.73	0.6	0.45	0.72	0.95	0.65
D50	0.9	0.78	0.58	0.9	1.35	0.78
D84	1.75	1.75	0.97	1.7	2.2	1.5
D95	2.2	3	1.8	1.95	4.5	1.8

SECTION 5. CANDIDATE RESTORATION, RETROFIT AND PRESERVATION SITES

5.1 Upland BMP Retrofit Sites

The intent of this section is two fold:

1. Identify publicly owned parcels that are significant sources of pollution that would benefit from BMP retrofit.
2. Identify catchments for detailed field investigation to identify privately owned parcels that are significant sources of pollution and appropriate for BMP retrofit.

All retrofit BMPs installed in the McDowell Creek Watershed should be designed with the Upland Pollutant Loading Rate Goals (Table 9) as a design standard.

5.1.1 Priority Catchments

Based upon the upland pollutant load analysis, BMP retrofit efforts should be concentrated on or downstream of the most impacted catchments. The 20 most impacted catchments tended to concentrate in five (5) key focus areas of the McDowell Creek Watershed. Figure 29 shows the extent of the focus areas within the McDowell Creek Watershed. The following Section discusses each BMP Focus Area in detail.

Figure 29: Retrofit BMP Focus Areas Within the McDowell Creek Watershed.

Focus Area 1 (Sam Furr Road)

Focus Area 1 has the highest pollutant loads in the entire McDowell Creek Watershed. Figure 30 shows the extent of Focus Area 1 (Note: BMP Retrofits have been funded for the areas outlined in yellow - see Section 2.3.4). The combination of high intensity commercial and residential development on Sam Furr Road at Exit 25 off of I-77 combines to cause the high pollutant loads. The Focus Area is comprised of catchments MD20, MD19, MD17, MDCS14, MDCS11, MDCS13, MDCS10 and MDCS12. There appears to be minimal opportunity for land acquisition in Focus Area 1. Moreover, there are no public properties within the area. There are several restoration and retrofit projects currently underway in Focus Area 1, including the Pizagalli Project, Eco-Park Project, Northcross Raingarden Retrofit and stream restoration (Sam Furr to Westmoreland Road). Retrofit efforts will need to focus on working cooperatively with existing land owners to install BMPs into the existing landscape in a similar way to the Northcross Raingarden Project (See Section 2.3.4).

Figure 30: Focus Area 1 (Note: Northcross Raingarden Project Areas shown in yellow, wetland restoration shown in pink and stream restoration in light blue).

Focus Area 2 (Cornelius)

Figure 31 displays the extent of Focus Area 2 (Note: Publicly owned parcels are shown in green). Focus Area 2 is located entirely within the Town of Cornelius and comprises almost the entire headwater area of McDowell Creek. It is bisected by I-77 North and is just South of the West Catawba Avenue exit. Focus Area 2 is comprised of catchments MD7, MD4, MD5, MD2 and MD1. There is opportunity for land acquisition in this watershed, particularly within catchments MD2 and MD7, moreover there is deeded open space in catchment MD1. Additionally, several parcels are publicly owned and are discussed in the next section.

Figure 31: Focus Area 2 (Note: Publicly owned parcels shown in green).

Focus Area 3 (Old Statesville Road)

Figure 32 shows the extent of Focus Area 3. Focus Area 3 is comprised of catchments MDT1-2 and MDT1.3 and is dominated by the Huntersville Hardwoods facility and the Harvest Pointe subdivision. Focus Area 3 has large tracts of publicly owned property and it is likely the Upland Pollutant Loading Rates (Table 9) can be met through the retrofit of this public property.

Figure 32: Focus Area 3 (Note: Publicly owned property shown in green).

Focus Area 4 (Gilead Road)

Figure 33 shows the distribution of Focus Area 4, which is located to the South of Gilead Road and is bisected by I-77. It is comprised of catchments MDTC16 and MDTC10 and it is dominated by old residential development build in the early 1960's. Focus Area 4 also contains newer warehouse, commercial and business park land uses. There may be opportunity for land acquisition downstream of MDTC10 in catchment MDTC11. Alternately, cooperative retrofit opportunities may exist in catchment MDTC16 among the commercial tenants and businesses. There is no publicly owned property in Focus Area 4.

Figure 33: Focus Area 4.

Focus Area 5 (CPCC North)

Figure 34 depicts the distribution of Focus Area 5, which is comprised of catchments MDTC14 and MDTC5. Focus Area 5 has large sections of publicly owned land, including the CPCC North Campus which can be retrofitted with BMPs. I-77 is the dominant land-use in the Focus Area and is likely a significant contributor of the pollutant load.

Figure 34: Focus Area 5 (Note: Publicly owned parcels shown in green).

5.1.2 Public Parcels

The intent of this Section is to identify publicly owned parcels for BMP retrofit. Specifically, publicly owned parcels that are significant sources of pollution and are located in one of the "Focus" areas have been assigned the highest priority.

There are currently 96 parcels in public ownership in the McDowell Creek Watershed. These parcels are located throughout the watershed, but are mainly focused in areas directly adjacent to McDowell or Torrence Creeks. Where beneficial to water quality, these properties should be further investigated to determine the final suitability for BMP
installation using this report as a guide. Figure 35 shows the distribution of the parcels in public ownership in the McDowell Creek Watershed. The parcels were evaluated and prioritized using the following criteria:

1. Position either on or downstream of a catchment with a high or moderately high overall rank for upland pollutant loading.
2. Proximity to the stream. Parcels directly adjacent to the stream were ranked higher.
3. Parcels with adequate space for installation of reasonably sized BMPs were ranked higher. If there did not appear to be enough space for a BMP, the parcel was disqualified.
4. Parcels receiving runoff from more than two square miles were disqualified.
5. Parcels able to treat high concentrations of impervious area, regardless of size were ranked higher.

Of the 96 public parcels in the McDowell Creek Watershed, 41 meet the criteria listed above. The 41 Priority Parcels are presented in Table 20. Figures $36-41$ are aerial photos of the High Priority Parcels.

Figure 35: McDowell Public Parcels Meeting BMP Criteria and Overall Pollutant Rank.

Table 20: Public Parcels Meeting BMP Criteria and Priority.

Parcel	Owner Info.	Priority
00518302	MECKLENBURG COUNTY	High
00527206	MECKLENBURG COUNTY	High
00911119	MECKLENBURG COUNTY	High
00911130	MECKLENBURG COUNTY	High
01741116	MECKLENBURG COUNTY	High
01720401	MECKLENBURG COUNTY	High
01742110	MECKLENBURG COUNTY	High
00516678	MECKLENBURG COUNTY	High
01720403	MECKLENBURG COUNTY	High
00537162	MECKLENBURG COUNTY	High
00317401	MECKLENBURG COUNTY	High
01706207	CHARLOTTE MECKLENBURG	High
01712113	CHARLOTTE MECKLENBURG BOARD OF EDUCATION	High
00520129	CHARLOTTE MECKLENBURG BOARD OF EDUCATION	High
00918166	MECKLENBURG COUNTY	Medium
00918396	MECKLENBURG COUNTY	Medium
00918456	MECKLENBURG COUNTY	Medium
00918399	MECKLENBURG COUNTY	Medium
01535245	MECKLENBURG COUNTY	Medium
01537148	MECKLENBURG COUNTY	Medium
01538197	MECKLENBURG COUNTY	Medium
01530299	MECKLENBURG COUNTY	Medium
01532132	MECKLENBURG COUNTY	Medium
01529301	MECKLENBURG COUNTY	Medium
01510499	MECKLENBURG COUNTY	Medium
01510498	MECKLENBURG COUNTY	Medium
01510484	MECKLENBURG COUNTY	Medium
01535199	MECKLENBURG COUNTY	Medium
01308105	CHARLOTTE-MECKLENBURG BOARD OF EDUCATION	Medium
00935101	CITY OF CHARLOTTE	Medium
01323105	CITY OF CHARLOTTE	Medium
01325599	MECKLENBURG COUNTY	Low
00507112	MECKLENBURG COUNTY	Low
01529351	MECKLENBURG COUNTY	Low
01510515	MECKLENBURG COUNTY	Low
01509104	MECKLENBURG COUNTY	Low
01510104	MECKLENBURG COUNTY	Low
01325548	MECKLENBURG COUNTY	Low
01747131	MECKLENBURG COUNTY	Low
01741117	MECKLENBURG COUNTY	Low
01715307	CITY OF CHARLOTTE	Low

Figure 36: Aerial Photo of Parcels 017-41-116, 017-42-110, 017-20-401, 017-20-403 and 017-06-207.

Figure 37: Aerial Photo of Parcels 005-18-302 and 005-27-206.

Figure 38: Aerial Photo of Parcel 005-16-678.

Figure 39: Aerial Photo of Parcels 009-11-119 and 009-11-130.

Figure 40: Aerial Photo of Parcel 017-12-113.

Figure 41: Aerial Photo of Parcels 005-20-129 and 003-17-401

Projects on these sites should be designed to meet the Upland Pollutant Loading Rate Goals presented in Table 9.

5.2 Stream Channel Management Opportunities

Three stream channel management opportunities were evaluated from field reconnaissance and GIS: preservation, restoration and enhancement.

For the purposes of mitigation credit, the US Army Corps of Engineers defines restoration and enhancement as follows (USACE, 2003):

Restoration - the process of converting an unstable altered or degraded stream corridor, including adjacent buffers and flood prone areas, to its natural stable condition. Restoration is based on reference conditions and includes restoring the appropriate channel dimension, pattern and profile. For impacts to fair or poor quality waters, the mitigation credit ratio is generally 1.0 (i.e. for every 100 feet of stream impact, 100 feet of stream restoration would be required for mitigation).

Enhancement Level I - mitigation category that includes improvements to the stream channel and riparian zone that restore dimension and profile, but do not address pattern. required for every 100 feet of impact).

Enhancement Level II - mitigation category for measures that improve channel stability, water quality and habitat, but fall short of restoring both dimension and profile. Examples include bank stabilization, vegetating riparian buffers and using in-stream structures to enhance stability and habitat.

The three most degraded basins based on rank (Table 21) are Sub-Basins I, B, and M. In the case of a tie, the sub-basin exhibiting the higher erosion rate was prioritized. Lower scores signify a higher category. Only reaches located in one of the three sub-basins were considered. Reaches were ranked based on erosion rates and Buck Channel Evaluation score. These prioritizations are need based only and do not account for feasibility.

The narrative below identifies potential projects based on recommendations for the three basins ranked highest. In order to create viable projects in scope and size, local reaches with the same recommendations and similar impairments were combined when applicable. Consult the Master Plan located in the Appendix C for complete ranking of reaches based on feasibility and need.

Table 21: Basin Rank for McDowell Creek Watershed.

Basin	Average Erosion Rate	Average Channel Evaluation	Overall Rank
I	3	2	1
B	2	4	2
M	1	7	$3($ Tie $)$
K	5	3	$3($ Tie $)$
L	7	1	$3($ Tie $)$
P	6	6	6
U	4	12	7
E	12	5	8
N	9	9	$9($ Tie $)$
F	10	8	$9($ Tie $)$
A	8	11	11
O	11	10	12

Sub-Basin I

Sub-Basin I is approximately located within the southeastern quadrant of the intersection of Sam Furr Road and Statesville Road (Figure 42). Approximately 938 acres of the subbasin drain to headwater tributaries of Torrence Creek. Streambank erosion rates predict approximately 870 tons of sediment a year erode from Sub-Basin I perennial streams. Majority of the impaired channel is adjacent to single-family residences. Several stable reaches are adjacent to North Mecklenburg Park near Old Statesville Road. Additional residential development is scheduled along Stumptown Road in the southern portions of the sub-basin near. Portions of the existing 100 year floodplain extend into the sub-basin. One permanent cross section is located near the western boundary of the sub-basin.

Figure 42. Sub-Basin I Aerial Map.

Figure 43: Study Reach I12A-I14A-I16A Proposed for Preservation.
Study Reach I12A-I14A-I16A was recommended for preservation (Figure 43). The reach is partially to fully shaded riffle/runs system consisting of stable riffles with less stability further downstream. Good variation in pool depths downstream of bedrock and debris jams. Habitat structures are common and include woody debris, undercut banks, and root mats. Mature forested riparian buffer and floodplain are present. Buffer width exceeds 50 feet on both banks. Banks are well-vegetated within the reach limits with herbaceous species, shrubs, and mature trees. Channel has large substrate such as boulders and bedrock that provide grade control. Rosgen stream types transition from G to F to C in a downstream direction. Bank height ratios are relatively low and range from 1.2 to 1.5 . Bank Height Rations above 1.5 are found to be highly unstable (Rosgen, 2001). The reach appears to be in Stage V (aggradation and widening) of Simon's Evolution Model.

Figure 44: Study Reaches I3a, I4a_I5a, and I7a Proposed for Restoration.

Study Reaches I3a, I4a_I5a, and I7a were proposed for restoration (Figure 44). Specifically, Reach I3a was identified by Buck as an immediate viable project for restoration when taking in account feasibility.

Study Reach I3a is a fully exposed channel consisting of infrequent unstable riffles. Pools are shallow and uniform as a result of filling with excess fine sediment. Stream appears to have been channelized in the past. Vertically unstable due the degradation nature of this sediment "starved" system. The channel is completely disconnected from the floodplain and bank height ratios are greater than 2.0. The Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stage III of Simon's Evolution Model.

Study Reach I4a_I5a is a well-shaded riffle/run system composed of unstable embedded gravel riffles. Pools are present but are typically short and shallow in depth (pocket pools). Stream appears to have been channelized in the past. Channel has moderate floodplain access and exhibits bank height ratios that range from 1.6 to 1.8 . The Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stage V of Simon's Evolution Model.

Figure 45: Study Reach I6a Proposed for Enhancement I.

Study Reach I6a was proposed for Enhancement I (Figure 45). The reach is a partially shaded channel consisting of unstable embedded riffles. Pools are infrequent and typically short and shallow in depth. Channel incision is complete due to multiple grade control structures. Channel has limited floodplain access along alternating flood benches upstream but is primarily disconnected. Bank height ratios range from 1.6 to 1.8. The Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stage V of Simon's Evolution Model.

Sub-Basin B

Sub-Basin B is approximately located within the southeastern quadrant of the intersection of Catawba Avenue and Interstate 77 (Figure 46). Approximately 766 acres of the subbasin drain to headwater tributaries of McDowell Creek. Streambank erosion rates predict approximately 1280 tons of sediment a year erode from Sub-Basin B perennial streams. Majority of the impaired channel is adjacent to single-family residences. The sub-basin is almost exclusively built-out, and, therefore, future development limited. One bank pin cross section is located near the western boundary of the sub-basin. Portions of the existing 100 year floodplain extend into the sub-basin.

Figure 46. Sub-Basin B Aerial Map.

Figure 47: Study Reaches B6a, B11a, B13a, and B14b Proposed for Restoration.
Study Reaches B6a, B11a, B13a, and B14b were proposed for restoration (Figure 47). Study Reach B6a is a partially shaded gravel riffle/run system that has been embedded with fine sediment. Pools are present but are typically short and shallow. Channel has limited floodplain access, but is primarily disconnected. Channel incision is more severe with bank height ratios of 2.0 or greater in the upstream half of the reach. Bank height ratios are less downstream and range from 1.0 to 1.5 . The Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stages III, IV, \& V of Simon's Evolution Model.

Study Reach B11a is a partially to fully shaded riffle/pool system composed of gravel that is highly embedded with sand. Pools are infrequent and shallow due to active filling with sediment. Study reach is a vertically unstable system due to multiple headcuts. The channel is disconnected to its floodplain and exhibits high bank height ratios of >2.0. The Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stages III of Simon's Evolution Model.

Study Reach B13a is a partially shaded upstream but fully exposed further downstream riffle/pool system. Riffles are embedded with fines and pool depths are variable with
large deep pools found along meander bends. Channel has moderate access to the floodplain with bank height ratios ranging from 1.2 to 1.8 . The Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stages III to Stage IV of Simon's Evolution Model.

Study reach B14b is a well-shaded riffle/run system. Pools are shallow and actively filling with excessive sediment. The channel has limited access to its floodplain with bank height ratios that range from 1.0 to 2.0 . The Rosgen stream type exhibited within the study reach is predominantly a G/F. The reach appears to be in Stage IV of Simon's Evolution Model.

Figure 48: Study Reaches B1a and B8a Proposed for Enhancement I.
Study Reaches B1a and B8a were proposed for Enhancement I (Figure 48). Study Reach B1a is a partially shaded channel consisting of a few riffles with long, shallow runs. The majority of pool depths are shallow and filled with sediment. Stream appears to have been channelized in the past. The Rosgen stream type exhibited within the study reach is predominantly a G (incised E). The reach appears to be in Stage IV of Simon's Evolution Model.

Study Reach B8a is a partially shaded riffle/run system composed of cobbles and gravel embedded with fine sediment. Good variation in pool depths with large pools in meander bends. Stream appears to have been channelized in the past. Channel incision is severe with bank height ratios of 1.8 to 2.0 . Channel has limited access to the floodplain at midreach. Numerous log and debris jams provide some grade control. The Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stage IV of Simon's Evolution Model.

Figure 49: Study Reaches B2a, B21a, B9b_B10a, and B18a_B19a Proposed for Enhancement II.

Study Reaches B2a, B21a, B9b_B10a, and B18a_B19a were proposed for Enhancement II (Figure 49). Study Reach B2a contains a stream bed that is well-shaded due to incised banks and an invasive specie understory. Riffles and pools are infrequent with pools concentrated downstream of debris jams. Stream appears to have been channelized in the past. Channel incision is severe with bank height ratios of 1.8 to 2.0 . Channel has limited access to the floodplain at mid-reach but is primarily disconnected throughout the remainder of the reach. Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stage III of Simon's Evolution Model.

Study Reach B21a is a fully shaded riffle/run system with cobble and gravel present. Pools are present and exhibit a variety of pool depths. The channel is generally disconnected with the floodplain and exhibits bank height ratios of 2.0. Bank height ratios were observed to range from 1.6 to 1.8 further downstream. Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stage III of Simon's Evolution Model.

Study Reach B9b_B10a is a partially shaded riffle/pool system composed of primarily cobble and gravel. Channel has moderate floodplain access along alternating flood benches. Bank height ratios ranging from 1.8 to 2.0 were observed. The Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stage V of Simon's Evolution Model.

Study B18a_B19a is a partially to fully shaded channel consisting of a few short, unstable riffles with long shallow runs. Pools are present but are typically short and shallow in depth with the occasional deep plunge pool below debris jams. Channel has limited access along alternating floodplain benches. Bank height ratios range from 1.5 to 1.8.

The Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stage III of Simon's Evolution Model.

Sub-Basin M

Sub-Basin M is approximately located within the northeastern quadrant of the intersection of Beatties Ford Road and McIlwaine Road (Figure 50). Approximately 718 acres of the sub-basin drain to tributaries of McDowell Creek. Streambank erosion rates predict approximately 1282 tons of sediment a year erode from Sub-Basin M perennial streams. Majority of the impaired channel is associated with agriculture. The sub-basin is single-family residential south of Bud Henderson Road. Agriculture is predominant north of Bud Henderson Road, however future single-family residential development has been approved. One permanent cross section is located near the southern boundary of the sub-basin. Portions of the existing 100 year floodplain extend into the sub-basin.

Figure 50. Sub-Basin M Aerial Map.

Figure 51: Study Reaches M1, M8b, and M4_M3a Proposed for Restoration.
Study Reaches M1, M8b, and M4_M3a were proposed for Restoration (Figure 51). Specifically, M1 and M8b were identified by Buck as reaches that represent viable projects for restoration when taking in account feasibility and should be prioritized.

Study Reach M1 is a partially shaded channel consisting of a few riffles with long, shallow runs. The majority of pool depths are shallow and actively filling with sediment. The stream appears to have been channelized in the past. Cattle crossings are present throughout the reach indicating that livestock has total access to the creek. Banks are steep and raw with minimal root mass in outside meander bends and channel constrictions. Mid channel bars are forming and pools are actively filling in with sediment. Channel is disconnected from the floodplain except within the downstream portion of reach where flood access is limited to small bankfull benches. Bank height ratios range from 1.5 to 2.0 . The Rosgen stream type exhibited within the study reach is predominantly a G (incised E). The reach appears to be in Stage IV (degradation and widening) of Simon's Evolution Model.

Study Reach M8b is partially to fully shaded channel consisting of a few riffles with long, shallow runs. The stream appears to have been channelized in the past. Exclusive livestock access to the channel. Upstream and mid-reach the channel is actively downcutting. Limited floodplain access and high bank height ratios are evident. Few log and debris jams provide some grade control. The Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stages IV \& V (aggradation) of Simon's Evolution Model.

Study Reach M4_M3a is a fully shaded gravel riffle/run system with riffles moderately embedded with fine sediment. Pools are present but are actively filling with eroded sediment. Channel is primarily disconnected from its floodplain. Channel incision is more severe with bank height ratios ranging from 1.8 to greater than 2.0. The Rosgen
stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stage III (degradation) of Simon's Evolution Model.

Figure 52: Study Reach M8a Proposed for Enhancement I.
Study Reach M8a is a partially to fully shaded riffle/run system composed of gravel riffles embedded with fine sediment (Figure 52). Pools are shallow and uniform and are actively filling with sediment. Stream appears to have been channelized in the past. The channel is disconnected from the floodplain and exhibits high bank height ratios ranging from 1.8 to greater than 2.0. The Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stages IV and V of Simon's Evolution Model.

Figure 53: Study Reach M3b Proposed for Enhancement II.
Study Reach M3b is well-shaded due to incised banks and a mature woody canopy (Figure 53). Riffles and pools are common with pools concentrated on the outside of meander bends. Riffles are slightly embedded and pools are being filled with fine sediment. Bank height ratios range from 1.3-2.0. Upstream the channel has limited access to the floodplain and alternating floodplain benches. Downstream the channel is more stable but filled with sediment. A depositional wetland system is present before a large box culvert. The Rosgen stream type exhibited within the study reach is predominantly a G. The reach appears to be in Stage VI and V of Simon's Evolution Model.

5.3 Stream Buffer Restoration Areas

The intent of this section is to identify catchments with the highest percentage of impacted (un-forested) stream buffer. Furthermore, this section identifies public parcels most in need of buffer reforestation.

5.3.1 Priority Catchments

The results of the buffer analysis were intersected with the catchments' coverage to determine the areas most in need of S.W.I.M. buffer restoration. Priority was given to the catchments where 50% or more of the stream buffer was un-forested. Seventeen of the 131 catchments meet the criteria. Table 22 lists the 17 catchments and the associated percent of S.W.I.M. Buffer that is un-forested. Figure 54 presents the catchments prioritized for S.W.I.M Buffer Restoration. Figures $55-60$ present air photos for catchments with less than 25% of forested buffer intact. These catchments should be re-
forested as soon as possible with the highest priority given to those catchments in Table 22 with the highest percentage of un-forested S.W.I.M. Buffer.

Table 22. Priority Catchments for S.W.I.M. Buffer Restoration.

Catchment ID	\% of Un-Forested S.W.I.M. Buffer
MD42	50
MD15	51
MD38	52
MD31	52
MD11	54
MD20	55
MDTC17	57
MDM2-4	61
MD5	64
MD17	66
MDCS13	67
MD16	72
MDCS14	74
MD19	77
MDT1-10	79
MD28	81
MDTC28	88

Figure 54: Catchments Prioritized for S.W.I.M. Buffer Enhancement.

Figure 55: Re-Forestation Priority Catchment MD19.

Figure 56: Re-Forestation Priority Catchment MDT1-10.

Figure 57: Re-Forestation Priority Catchment MD28.

Figure 58: Re-Forestation Priority Catchment MDTC28 (Note: Almost all of the un-forested buffer in this catchment is publicly owned).

5.3.2 Public Parcels

The results of the buffer analysis were intersected with publicly owned parcels in McDowell Creek to identify publicly owned property in need of buffer reforestation. A total of 65 acres spread across 13 parcels was identified through this analysis. Figure 59 shows the distribution of the parcels, priority and un-buffered areas in the McDowell Creek Watershed. The parcels were prioritized as High, Medium or Low based upon the following criteria:

- High Priority: Much of the property surrounding the confluence of McDowell and Torrence Creeks is owned by various public entities. In order to shade and stabilize this confluence these parcels have been given the highest priority for buffer reforestation.
- Medium Priority: Public parcels with un-forested buffer areas directly adjacent to McDowell Creek not located at the confluence of McDowell and Torrence Creeks were given medium priority.
- Low Priority: Public parcels not located at the confluence of McDowell and Torrence creek and with forested areas directly adjacent to the creek (i.e. Un-forested areas are located landward) or parcels with minimal area to re-forest were given a low priority.

Table 22 presents a list of the publicly owned parcels in need of buffer restoration and their priority. Figure 59 illustrates the high priority buffer restoration sites.

Figure 59: Public Parcels in Need of S.W.I.M. Buffer Re-Forestation.

Table 22: Public Parcels in Need of Buffer Restoration.

Parcel ID	Owner	Priority
$015-35-245$	MECKLENBURG COUNTY	High
$015-38-197$	MECKLENBURG COUNTY	High
$015-09-104$	MECKLENBURG COUNTY	High
$015-35-199$	MECKLENBURG COUNTY	High
$005-07-112$	MECKLENBURG COUNTY	Medium
$015-09-107$	MECKLENBURG COUNTY	Medium
$005-37-162$	MECKLENBURG COUNTY	Medium
$015-39-198$	MECKLENBURG COUNTY	Medium
$009-35-101$	CITY OF CHARLOTTE	Medium
$009-11-119$	MECKLENBURG COUNTY	Low
$013-18-101$	MECKLENBURG COUNTY	Low
$023-22-111$	MECKLENBURG COUNTY	Low
$017-15-307$	CITY OF CHARLOTTE	Low

Figure 60: High Priority Buffer Restoration Sites.

5.4 Master Planning for Restoration, Retrofit and Preservation Projects

A minimum of two (2) detailed Master Plans will be developed to guide restoration, retrofit and preservation projects in the McDowell Creek Watershed. The goal of these Master Plans is to restore McDowell Creek to a fully functioning and supporting stream ecosystem and ensure a safe and secure water supply downstream in McDowell Creek Cove and Mountain Island Lake. The Master Planning process will start in the Focus Areas identified in Section 5.1.1 where the most impaired catchments are located. The
planning process will begin with a thorough evaluation of all properties (including public and private) located in these Focus Areas to identify specific opportunities for restoration, retrofit and preservation projects, including properties to be recommended for acquisition by the County due to their water quality benefit. Secondly, an evaluation will be conducted of stream segments in McDowell Creek with un-forested S.W.I.M. Buffers at 50% or greater as identified in Table 22. Thirdly, the McDowell Creek Watershed Riparian Zone Management Plan will be completed by July 2006 and the areas identified for stream channel restoration will be identified. The highest priority will be given to potential projects (including BMP retrofits, buffer reforestations and stream channel restorations) located on publicly owned properties. Consideration will be given to the initiation of these projects as soon as possible. Once potential projects have been identified, a draft budget will be developed and funding sources specified. If grants will be included as a funding source, the grants and funding cycles will be specified as well as the necessary local match. At a minimum, the Master Plan will include the following:

- Specific location of all recommended projects (include on map).
- Detailed description of the projects, including type, size, etc. (include preliminary design sketches of the projects)
- Water quality benefit of the projects, including an estimate of pollutant removal capabilities.
- Budgets and funding sources for the projects.
- Individual project prioritization.

The Master Plan for the Focus Areas, property acquisition and preservation, buffer reforestation and channel restoration projects as described above is scheduled to be completed and incorporated into Version 2 of the Watershed Management Plan by December 2006. Implementation of this Master Plan will begin in January 2007 and continue through 2020 with the highest priority given to publicly owned properties.

The second Master Planning effort will be initiated in January 2008 with an evaluation of the medium to high priority public parcels listed in Table 14 that are located outside the Focus Areas. Potential projects will be identified and prioritized and a Master Plan developed by December 2008 (Version 3 of the Watershed Management Plan) with implementation planned for January 2009 and continuing through 2020. Following the development and implementation of the two (2) Master Plans described above, careful consideration will be given as to whether additional projects will be needed and a third Master Plan developed to include the medium to low priority catchments in the McDowell Creek Watershed. This determination will be based on a careful analysis of water quality trend data and whether the goals specified in Table 17 are being fulfilled.

An important component of maintaining water quality conditions in McDowell Creek is ensuring the proper operation and maintenance of BMPs installed to date to mitigate impacts from existing development as well as retrofit BMPs installed through the implementation of the Master Plans. This effort will begin in January 2006 and continue through December 2006 and will include the identification and inspection of all existing BMPs in the watershed. Deficiencies detected will be reported to responsible parties for correction. A regular schedule of BMP inspections in the watershed will be developed and implemented for both public and private BMPs.

SECTION 6. MEASURING SUCCESS AND ADAPTIVE MANAGEMENT

6.1 Establishing an Ongoing Water Quality Monitoring Program

As discussed in Section 2.2, Mecklenburg County has historically collected storm water samples from McDowell Creek at monitoring site MC4, which is located at Beatties Ford Road in Huntersville's jurisdiction (see Figure 61). McDowell Creek baseflow samples are collected from MC3E, MC4, MC2A-1 and MC4A (see Figure 2). Benthic macroinvertebrate and fish samples are collected at all the baseflow monitoring sites with macroinvertebrates collected annually and fish samples collected every five (5) years. Historically there has been one (1) USGS flow gauging station located on McDowell Creek at MC4 at Beatties Ford Road. There has been a continuous automated monitoring station in operation at this location since July 2005. In the spring of 2006, USGS installed two (2) additional gauging stations upstream in the watershed at McCoy Road on Torrence Creek and Gilead Road on McDowell Creek. In October 2006, two (2) additional continuous automated monitoring stations were installed at each of these new USGS gauging stations. A thorough evaluation has been completed of the historical chemical, physical and biological monitoring activities in the watershed and a new "McDowell Creek and Cove Water Quality Monitoring Plan" (see Appendix A) has been developed and implemented to ensure that the effectiveness of restoration efforts is being accurately measured for meeting the goals described in Section 3 and summarized in Table 23 below. In addition, goals and monitoring techniques for assessing the stream channel will be developed and implemented in October 2006.

Table 23: Watershed Restoration Goals.

Upland Pollutant Loading Rate Goals (for BMPs)

1. $\mathrm{TN} \leq 4 \mathrm{lbs} / \mathrm{ac} / \mathrm{yr}$
2. $\mathrm{TP} \leq 0.6 \mathrm{lbs} / \mathrm{ac} / \mathrm{yr}$
3. $\mathrm{TSS} \leq 0.22$ tons $/ \mathrm{ac} / \mathrm{yr}$

In-Stream Water Quality Goals

1. $\mathrm{TSS} \leq 0.3$ tons $/ \mathrm{ac} / \mathrm{yr}$
2. Benthic Macroinvertebrates = Fully Supporting
3. Fish = Fully Supporting

Stream Channel Goals (to be set following completion of channel assessment)

1. Entrenchment Ratio
2. Width/Depth Ratio
3. Dominant Channel Materials
4. Bank Erosion Rate

6.2 Annual Status Report

By December 31 of every year beginning in 2006 and continuing through the completion of the Watershed Management Plan (anticipated for December 31, 2020), the Mecklenburg County Water Quality Program will complete a McDowell Creek Watershed Management Plan Annual Status Report to at a minimum include the following information:

- Status of compliance with goals identified in Table 17.
- Status of compliance with the schedule included in Table 18.
- Status of all projects underway in the watershed.
- Recommended changes to Watershed Management Plan.

This report will be made available to all the key players involved in the implementation of the Watershed Management Plan, including the Director of Water \& Land Resources, Manager of Storm Water Engineering, Manager of the Water Quality Program, Supervisor of the Catawba Section, Modeler for the Water Quality Program and a representative from the Town of Huntersville. This group will serve as the "Watershed Management Evaluation Team."

Figure 61: Water Quality Monitoring Site at MC4 along Beatties Ford Road.

6.3 Adaptive Management

The Watershed Management Evaluation Team described in Section 6.2 above will meet at least annually following the completion of each Watershed Management Plan Annual Status Report to evaluate the effectiveness of the Plan at meeting the goals described in Table 23 above. This evaluation will be based on the data and information contained in the Report as well as other pertinent facts and information provided regarding the
effectiveness of the Plan at meeting established goals. During these meetings, consideration will also be given as to the effectiveness of the goals at measuring the effectiveness of the Plan. It may be necessary that goals be changed or that changes be made to the Plan. These changes will be reflected in the Watershed Management Plan and will become effective immediately.

SECTION 7. PROCESS FORWARD

The three (3) phase process for restoring the McDowell Creek Watershed is described in Table 24 below.

Table 24: McDowell Creek Watershed Restoration Process and Schedule.

$\begin{gathered} \text { Task } \\ \# \\ \hline \end{gathered}$	Task Description	Schedule	Staff Lead
Phase I: Assessment \& Master Planning (2006)			
1.	Install automated turbidity monitoring equipment on Torrence and McDowell Creeks and begin data collection. Implement other enhanced water quality monitoring activities as necessary to fully assess the effectiveness of the Watershed Management Plan and include these enhancements in Appendix A of the Plan. Monitoring activities to continue throughout project.	January 2006 - June 2006	David Caldwell
2.	Conduct intensive survey of the Focus Areas identified in Section 5.1.1.	January 2006 - July 2006	David Kroening
3.	Complete an evaluation of stream segments in catchments with un-forested S.W.I.M. Buffers at 50% or greater as identified in Table 15.	January 2006 - July 2006	Brian Sikes
4.	Conduct in-stream channel assessments and complete the McDowell Creek Watershed Riparian Zone Management Plan (Section 3.3). Integrate this Plan into Appendix B of the Watershed Management Plan, including setting stream channel goals and identifying restoration projects. Monitoring activities to continue throughout project.	$\begin{aligned} & \text { January } 2006 \\ & \text { - October } \\ & 2006 \end{aligned}$	Brian Sikes
5.	Develop a Master Plan for the Focus Areas, buffer enhancements and channel restoration projects based on results from Tasks \#2, \#3 and \#4 above. As a component of the Master Plan, estimate costs and identify funding sources (develop budget). The purpose of the Master Plan is to identify and prioritize mitigation projects. Include the Master Plan into Appendix C of the Watershed Management Plan.	$\begin{aligned} & \text { August } 2006 \\ & \text { - December } \\ & 2006 \end{aligned}$	David Kroening
6.	Conduct watershed-wide mapping of existing BMP structures. Inspect BMPs and require maintenance/repairs as necessary. Develop and implement a routine inspection program for BMPs in the watershed.	$\begin{aligned} & \text { January } 2006 \\ & \text { - December } \\ & 2006 \end{aligned}$	David Caldwell \& Heather Davis

$\begin{gathered} \text { Task } \\ \# \end{gathered}$	Task Description	Schedule	Staff Lead
Phase II: High Priority Mitigation \& Restoration (2007-2020)			
1.	Implement findings of the Master Plan developed in Phase I, Task \#5 above by mitigating existing upland pollution sources on public properties identified in Section 5.1.1.	$\begin{aligned} & \text { January } 2007 \\ & \text { - December } \\ & 31,2015 \end{aligned}$	David Kroening
2.	Implement findings of the Master Plan developed in Phase I, Task \#5 above by replanting impacted buffers on public properties identified in Table 15.	January 2007 - December 31, 2015	David Kroening
3.	Implement findings of the Master Plan developed in Phase I, Task \#5 above by implementing channel restoration projects.	$\begin{aligned} & \text { January } 2007 \\ & \text { - December } \\ & 2015 \end{aligned}$	David Kroening
4.	Implement findings of the Master Plan developed in Phase I, Task \#4 above by completing Phase II tasks \#1, \#2 and \#3 on private property.	$\begin{aligned} & \text { January } 2007 \\ & \text { - December } \\ & 2020 \end{aligned}$	David Kroening
Phase III: Medium-High Priority Assessment \& Mitigation (2008-2020)			
1.	Conduct intensive survey of the medium to high priority public parcels listed in Table 14 that are located outside the Focus Areas.	January 2008 - July 2008	David Kroening
2.	Develop a Master Plan for the medium to high priority catchments based on survey results to identify and prioritize mitigation projects. As a component of the Master Plan, estimate costs and identify funding sources (develop budget). Integrate the Master Plan into Appendix D of the McDowell Creek Watershed Management Plan.	August 2008 - December 2008	David Kroening
3.	Implement Master Plan developed in Phase III, Task \#2 above on public and private property.	$\begin{array}{\|l\|} \hline \text { January } 2009 \\ \text { - December } \\ 2020 \\ \hline \end{array}$	David Kroening
Ongoing Efforts for all Phases			
1.	Continue monitoring efforts and assess progress toward meeting the upland, instream and channel goals described in Table 17. The establishment of a turbidity/sediment relationship will need to occur following at least one (1) year of flow data from the new USGS flow gaging sites to be installed on McDowell Creek in 2006.	$\begin{aligned} & \text { January } 2006 \\ & \text { - December } \\ & 2020 \end{aligned}$	David Caldwell

Task $\#$	Task Description	Schedule	Staff Lead
2.	Continue the inspection of BMPs in the McDowell Creek Watershed. New BMPs installed as a component of the implementation of Master Plans will also need to be maintained and inspected on a regular basis.	January 2006 - December 2020	David Heather Davis
3.	Produce written annual progress reports on the implementation of McDowell Creek Watershed Management Plan, including at a minimum the mitigation projects completed and a summary of the upland, in-stream and channel monitoring results as well as a trend analysis to assess compliance with goals (Table 17).	January 2006 - December 2020	David Kroening
4.	Conduct annual adaptive management sessions with key Plan participants. Review data contained in the annual reports and adapt the McDowell Creek Watershed Management Plan as necessary to enhance effectiveness.	January 2006 - December 2020	Droening Kavid
5.	Continue to work with Real Estate \& Property Management to acquire important parcels in the McDowell Creek Watershed. These parcels will be identified as part of the Master Planning process.	January 2006 - December 2020	David Kroening

SECTION 8. CONCLUSION

The McDowell Creek Watershed is biologically impaired and McDowell Creek Cove is impacted from storm water runoff and wastewater treatment plant effluent. Historical watershed protection efforts, such as the adoption of the water supply watershed protection regulations, were ineffective at protecting stream and cove water quality. Implementation of the Huntersville Water Quality Ordinance is designed to prevent continued degradation of stream and lake water quality from new development; however, pre-existing sources of pollution remain partially or completely un-mitigated. In order to restore the water quality in McDowell Creek and McDowell Creek Cove, pre-existing sources of pollution will need to be mitigated and in-stream stressors to benthic macroinvertebrate life removed. In this way Mecklenburg County can achieve its ultimate goal for McDowell Creek of improving water quality conditions such that designated uses are met and the creek and cove are no longer impaired. The effective implementation of this Watershed Management Plan will enable this to be accomplished but it will take time. It is currently anticipated that this process will take a minimum of 15 years between 2006 and 2020. Protecting our downstream drinking water supply in Mountain Island Lake and restoring an important natural resource in McDowell Creek will be the end result, which is well worth the effort.

Appendix A McDowell Creek and Cove Water Quality Monitoring Plan

Background

A comprehensive management plan has been developed for the McDowell Creek Watershed to restore water quality conditions throughout the watershed. The McDowell Watershed encompasses approximately 30 square miles in northwestern Mecklenburg County. The majority of the watershed is within the Town of Huntersville jurisdiction, while the upper portion is within Cornelius. The two named tributaries of McDowell Creek are Torrence Creek and Caldwell Station Creek. The watershed has approximately 80 miles of streams. McDowell Creek drains into Mountain Island Lake upstream of Charlotte Mecklenburg's primary drinking water intake. The majority of the McDowell Creek watershed is classified as WS-IV waters. In 2000, numerous portions of McDowell Creek were listed on the State's 303d list of impaired waters. The current DRAFT 2006 303d list still includes McDowell Creek as being impaired due to biological integrity. Data collected by Mecklenburg County supports the listing due to the loss of biological habitat which has occurred from increased sediment loads in the stream. Sediment sources are attributed to upland loads from increased development and construction, as well as in-stream loads from unstable stream banks which are also related to increased flow caused by increased impervious area throughout the watershed.

Purpose

The purpose of this monitoring plan is to specify the activities and methods that will be implemented for monitoring the watershed in a way that will be supportive to the overall McDowell Creek Watershed Management Plan. The monitoring of the watershed will support the Management Plan by providing data and information to assess the Plan's overall effectiveness at obtaining the water quality goals.

Water Quality Goals

Section 3 of the McDowell Creek Watershed Management Plan outlines the watershed indicators and goals. The following summarizes these goals.

Upland Goals

These goals are appropriate to be applied to retrofit BMP projects as a catchment wide design standard. Monitoring to achieve these goals will be achieved through individual project monitoring plans. Table 1 lists the upland goals.

Table 1: Upland Pollutant Loading Rate Goals.

Parameter	Goal
Total Nitrogen	≤ 4 pounds/acre/year
Total Phosphorus	≤ 0.6 pounds/acre/year
Total Suspended Solids	≤ 0.22 tons/acre/year

In-Stream Goals

These goals reflect the desired water quality in the stream itself. Monitoring for compliance with these goals will be achieved through numerous strategies discussed later in this plan. Table 2 contains the in-stream water quality goals

Table 2: In-Stream Water Quality Goals.

Parameter	Goal
Total Suspended Solids	≤ 0.3 tons/acre/year
Benthic Macroinvertebrates	Fully Supporting
Fish	Fully Supporting

Stream Channel Goals

These goals will relate to the physical condition of the stream channel. These goals have not yet been established since data is still being collected through the assessment of the stream channels. The goals will likely be based upon various geomorphic channel measurements such as Entrenchment Ratios, Width/Depth Ratios, Dominant Channel Matrix, and Bank Erosion Rates.

Monitoring Strategy

As mentioned above, this plan does not address monitoring for adherence to the upland loading rates. This will be accomplished through the monitoring of specific projects on a case by case basis. The purpose of this plan is to outline the monitoring necessary to measure adherence to the In-Stream Water Quality Goals and the Stream Channel Goals (when they are established). This will be accomplished through various monitoring techniques such as Continuous Flow Monitoring, Continuous Rainfall Monitoring, Continuous Monitoring \& Alert Notification Network (CMANN), TSS Monitoring, Fixed Interval Grab Sampling, Bacteria Monitoring, Benthic Macroinvertebrate / Fish Monitoring and Habitat Assessment, Geomorphic Stream Channel Assessments, and Lake Monitoring. Since the stream is impaired due to biological integrity, the monitoring program is geared towards providing routine checks on the diversity and abundance of aquatic organisms, as well as thoroughly assessing the primary pollutant (sediment) which is the primary cause of the aquatic habitat loss throughout the watershed. A table summarizing all of the monitoring is provided in Table 8, along with a site map (Map 1) at the end of this document.

Continuous Flow Monitoring

The monitoring of stream flow throughout the watershed is critical to the success of the monitoring program. Without flow data, an accurate assessment of pollutant loads cannot be obtained. Pollutant concentration data only provides a snap shot of the pollution in the stream at that particular location. Flow data accompanying concentration data provides a more thorough evaluation of watershed conditions.

In order to adequately assess flow throughout the watershed, three (3) flow gauges are located in the watershed. These gauges are owned and maintained by the United States Geological Survey (USGS). Mecklenburg County will continue to contract with the USGS to provide the necessary maintenance and data collection at these gauges. The gauges collect flow data 24 hours a day, 7 days a week and real-time data is available via the USGS web site. Table 3 below indicates the location of the flow gauges within the McDowell Watershed. The gauges at Gilead Road and McCoy Road were recently added in 2006.

The addition of a new gauge at McDowell Creek at Sam Furr Road is proposed during FY 07-08. This will allow a more accurate evaluation of stream conditions in the upper watershed, below the area identified as Focus Area 2 in the Watershed Management Plan.

Table 3: Flow Gauges.

USGS Site ID	Location	Coordinates	MCWQP Site ID
02142654	McDowell Creek at	35.24 .26	MC2A-1
	Gilead Road	80.53 .26	
0214266000	McDowell Creek at	35.23 .23	MC4
(CSW10)	Beatties Ford Road	80.55 .16	
02142658	Torrence Creek at	35.24 .04	MC3E-1
	McCoy Road	80.52 .12	
	McDowell Creek at		MC2 (**)
	Sam Furr Road		
$(* *)$ Indicates proposed new site for 2007			

Continuous Rainfall Monitoring

Rainfall is an important component of assessing the water quality in the watershed since most of the pollution originates from non-point sources. More rainfall has historically meant higher pollutant loads in the streams from upland sources, more bank full stream events and more stream bank erosion.

Rainfall data is collected through the USGS rain gauge network which collects continuous rainfall data 24 hours a day and 7 days a week. The USGS maintains the rain gauge network. Data is available through the USGS web site. Mecklenburg County will continue to contract with the USGS to provide this data. Table 2 provides the location of the rain gauges within the McDowell Watershed.

Table 4: Rain Gauges

USGS Site ID	Location	Coordinates	MCWQP Site ID
02142651 (CSW09)	McDowell Creek at	35.27 .50	n / a
	Westmoreland Road	80.52 .35	
0214266000	McDowell Creek at	35.23 .23	MC 4
(CSW10)	Beatties Ford Road	80.55 .16	
352523080535545	Cooks Dairy Farm	35.25 .23	n / a
(CRN62)		80.53 .55	

USGS Site ID	Location	Coordinates	MCWQP Site ID
352440080505045	Huntersville Elementary	35.24 .40	n / a
(CRN43)	School	80.50 .47	

Continuous Monitoring \& Alert Notification Network (CMANN)

The CMANN network is a custom monitoring program developed by the Mecklenburg County Water Quality Program. The McDowell Watershed has three (3) CMANN sites as indicated in Table 5 below. Each site is equipped with a YSI multi probe sonde which constantly measures Temperature, Dissolved Oxygen, Conductivity, pH and Turbidity. The sites are powered with batteries accompanied by solar panels and include a data logger and dial out system. The CMANN sites collect data at 15 minute increments. Real time and historical data is available at a secure web site. USGS flow gauge sites are located at all CMANN sites in order to provide correlation of data. The CMANN program provides a critical component to the monitoring program through the use of its turbidity data. This turbidity data (collected at 15 minute increments) will be correlated with Total Suspended Solids (TSS) concentrations at various flows. This correlation provides the necessary data to measure success as compared to overall in-stream TSS goals discussed earlier. In addition, the CMANN sites are programmed to alert Water Quality staff in case of exceedances of predetermined action levels so that potential pollution sources can be identified and eliminated.

A new CMANN site is proposed for FY 07-08 at Site MC2. This site will allow a more accurate evaluation of stream conditions in the upper watershed, below the area identified as Focus Area 2 in the Watershed Management Plan.

Table 5: CMANN Sites.

Location	Coordinates	MCWQP Site ID
McDowell Creek at Gilead Road	35.24 .26	MC2A-1 $\left(^{*}\right)$
	80.53 .26	MC4
McDowell Creek at Beatties Ford Road	35.23 .23	MC3E-1 $\left(^{*}\right)$
	80.55 .16	MC2 $\left(^{* *}\right)$
Torrence Creek at McCoy Road	35.24 .04	
	80.52 .12	
McDowell Creek at Sam Furr Road		
$\left({ }^{*}\right)$ Indicates new site for 2006		
$\left({ }^{* *}\right)$ Indicates proposed new site for 2007		

Total Suspended Solids (TSS) \& Turbidity Monitoring

A critical component of being able to accurately assess the current TSS loading values in the watershed is the ability to maintain an accurate Turbidity / TSS relationship. Since the CMANN sites will collect field turbidity data throughout a given flow regime, TSS grab samples will also be routinely collected at all CMANN sites at a range of turbidity levels. In FY06-07 a total of 24 grab samples will be collected at each site, one grab sample at various increments between 100 NTU and up to 1500 NTUs (as measured by
the CMANN turbidity probe). These samples will also be analyzed for turbidity by the lab in order to evaluate the CMANN field turbidity accuracy. The frequency of sampling will be evaluated as monitoring occurs and the turbidity/TSS relationship is developed, and modified if necessary to maintain an accurate relationship.

Fixed Interval Grab Sampling

The Fixed Interval Grab Sampling program is designed to assess water quality by collecting grab samples at a fixed date each month, regardless of the flow conditions. Fixed Interval Grab Samples will be collected only at Site MC4. Samples are analyzed for a full suite of parameters, as listed in Table 6 below.

Table 6: Fixed Interval Grab Sampling Parameters.

Temperature (field)	Total Phosphorus
Dissolved Oxygen (field)	Total Suspended Solids (TSS)
Conductivity (field)	USGS Suspended Sediment Test (SSC)
pH (field)	PSD- Particle Size Distribution
Fecal Coliform Bacteria	Turbidity
E-Coli Bacteria	Copper
Ammonia Nitrogen	Zinc
Total Nitrogen	Chromium
Total Kjeldahl Nitrogen	Lead

Bacteria Monitoring

Bacteria in streams is a significant concern from a public health standpoint. The purpose of the Bacteria Monitoring Program is to quickly identify potential health related issues and eliminate them. The majority of the McDowell Creek Watershed is served by the Charlotte Mecklenburg Utilities sanitary sewer system. Although the Utilities Department has a preventive maintenance program, sewer lines often become clogged with grease and debris and can overflow into nearby streams. Failing septic systems can also be sources of bacteria. Monthly grab samples for fecal coliform bacteria and E-Coli are collected at the sites indicated in Table 7. This sampling occurs during base flow (dry weather) conditions.

Table 7: Bacteria Monitoring Sites

Location	Coordinates	MCWQP Site ID
McDowell Creek at Gilead Road	35.24 .26	MC2A-1
	80.53 .26	
McDowell Creek at Beatties Ford Road	35.23 .23	MC4
	80.55 .16	MC3E-1 $\left(^{*}\right)$
Torrence Creek at McCoy Road	35.24 .04	
	80.52 .12	MC2
McDowell Creek at Sam Furr Road		MC4A
McDowell Creek at Neck Road		
Indicates new site for 2006		

Benthic Macroinvertebrate / Fish Monitoring / Habitat Assessment

Since McDowell Creek is listed on the State's 303d list due to biological integrity, macroinvertebrate monitoring is an important component of the monitoring plan. The presence of a diverse, pollution intolerant macroinvertebrate community is a sign of a healthy stream. Available habitat, as well as water chemistry is a key to maintaining a macroinvertebrate community. Excess sediment has jeopardized aquatic habitat in the majority of the McDowell Watershed.

The monitoring of fish populations and diversity are also an important indicator of a stream's health. The presence of a diverse population of fish is also influenced by water chemistry and available habitat and food. Like benthic macroinvertebrates, fish are sensitive to changes in water quality and will reflect the impacts of pollution on a water body. Fish are also extremely mobile and able to quickly vacate an area if conditions are not suitable.

In order to assess aquatic habitat, the Mecklenburg County Habitat Assessment Protocol is used to evaluate aquatic habitat and riparian zones at the benthic macroinvertebrate sampling sites. Habitat information is important for evaluating the physical and chemical effects on a stream. It is also a critical factor to consider when evaluating the benthic macroinvertebrate community at a site. Habitat is evaluated and scored annually at each site using the protocol.

In order to adequately assess macroinvertebrates in the McDowell Watershed, samples will be collected and processed annually at the sites indicated in Table 8 below. Fish samples will be collected once every five years at the same sites.

Table 8: Benthic Macroinvertebrate and Fish Sampling Sites

Location	Coordinates	MCWQP Site ID
McDowell Creek at Gilead Road	35.24 .26	MC2A-1
	80.53 .26	
McDowell Creek at Beatties Ford Road	35.23 .23	MC4
	80.55 .16	
Torrence Creek at McCoy Road	35.24 .04	MC3E-1 (*)
	80.52 .12	
McDowell Creek at Sam Furr Road (below	MC2 (*)	
Caldwell Station)		
$\left(^{*}\right)$ Indicates new site for 2006		

Geomorphic Stream Channel Assessments

Stream channel stability reflects the ability of the stream, over time, to transport the flows and sediment from its watershed in such a manner that the dimension, pattern and profile of the stream is maintained. By monitoring the stream channel, we can quantify stability by evaluating whether the stream is aggrading or degrading and whether changes are
occurring in stream bed materials, bank erosion and morphological evolution. Channel stability will be assessed by the following three monitoring indicators.

1. Vertical or Bed Stability (aggradation/degradation)

Cross-sections and scour chains are used to determine if the stream is downcutting, filling or is stable. The rate, magnitude and direction of vertical change will be determined. Specifically, monumented cross-sections are helpful in providing an elevation reference to depict changes. Scour chains installed vertically in the stream bed will provide scour depths for various storm events. Often the stream bed will scour, then if the channel is stable, it will return to the pre-flooded elevation. Using a combination of scour chains and cross-sections can provide key data not only for vertical stability but also for sediment transport relations and biological interpretations.
2. Lateral Stability

To determine the rate and magnitude of bank erosion, bank pins will be installed at representative stream sites to provide a profile of the stream. Pins will be re-surveyed following runoff events to obtain measured stream bank erosion rates. Measured stream bank erosion rates can be expressed in feet/year, cubic yards/year, and total tons/stream reach for a given flow or for a runoff season. Rosgen's Bank Erodibility Hazard Index (BEHI) will be used to assign a score for each bank at the cross-section.
3. Bed Material Size Distribution

Composition of the stream bed is a good indicator of changes in stream character, channel form, hydraulics, erosion rates and sediment supply. A pebble count gives a quantitative description of the bed material. Pebble counts will be performed at the permanent cross sections.

The above monitoring will be conducted annually at the sites indicated in Table 9 below.
Table 9: Stream Channel Assessment Sites

Sites	Coordinates	Location
M1		Unnamed Tributary McDowell downstream of Bud Henderson Road
N1		McDowell Creek downstream of Gilead Road
B1		McDowell Creek upstream of Hwy 21 (Cornelius)
F1	Caldwell Station upstream of Hwy 21 (Exit 25 area)	
P1	Torrence Creek upstream of Huntersville Business Park (Exit 23 area)	
R1 (MC4)	35.23 .23	McDowell Creek @ Beatties Ford Road

Lake Monitoring (McDowell Creek Cove on Mountain Island Lake)

Although not addressed in the McDowell Creek Watershed Management Plan and not listed on the State's 303d list of impaired waters, McDowell Creek Cove on Mountain Island Lake has shown significant signs of impairment over the last 15 years. The cove, which is relatively shallow and wide routinely reflects the impacts from the watershed in the form of elevated nutrients and chlorophyll-a levels. An improvement has been observed since 1998 due to nutrient removal systems being installed at Charlotte Mecklenburg Utilities McDowell Creek Wastewater Treatment Plant, which discharges into McDowell Creek just above the cove. Chlorophyll-a continues to be the parameter of concern in the cove.

Water chemistry samples are collected in McDowell Creek Cove on a monthly basis from May through September and every other month during the fall and winter. Samples are collected in the cove at two sites, MC3B (middle cove) and MC3 (rear cove). See Map 2 on page 76. Parameters analyzed are listed below in Table 10. Algal Densities are also analyzed and identified.

Table 10: Lake Sampling Parameters

Temperature (field)	Total Phosphorus
Dissolved Oxygen (field)	Total Suspended Solids (TSS)
Conductivity (field)	Orthophosphorus
pH (field)	Chlorophyll-a
Secchi (field)	Alkalinity
Fecal Coliform Bacteria	Turbidity
E-Coli Bacteria	Toxic and Mineral Metals(annually)
Ammonia Nitrogen	VOCs (annually)
Total Nitrogen	Algal Density
Total Kjeldahl Nitrogen	

Additions to Lake Monitoring Program

In FY 07-08, a CMANN site will be added to the rear of McDowell Creek Cove to monitor constant Chlorophyll-a levels, along with other field parameters. This will allow a closer look at algal changes throughout the year which will help to better understand the dynamics of the changing watershed.

Sediment traps in McDowell Creek Cove will be utilized to better evaluate cumulative sediment deposition from the watershed.

In FY 07-08, Mecklenburg County will investigate the use of the CE-Qual2 reservoir model recently developed by Duke Power for Mountain Island Lake. This model includes a predictor for chlorophyll-a, among other things, and was designed for Mountain Island Lake. It may be helpful for predicting future impacts to the lake.

Quality Assurance / Quality Control

All data discussed above will be collected by Mecklenburg County Water Quality Program staff, with the exception of Flow and Rainfall data which is collected by the USGS. All sample and data collected by Mecklenburg County staff is collected in strict adherence to the following documents:

Charlotte-Mecklenburg Surface Water Quality Sampling Procedures Manual, 2005
Mecklenburg County Stream Bioassessment Operating Procedures, 2003
Mecklenburg County Stream Habitat Assessment Protocols, 2000
CMANN Policy and Procedure Manual, 2005
Mecklenburg County Water Quality Program QA/QC Data Tracking, 2006
Mecklenburg County holds the following permits associated with monitoring:
NC Division of Water Quality Laboratory Certification Program - 5235
This permit is associated with the collection of samples, field parameters and instrumentation.

NC Division of Water Quality Biological Certification Program - 036
This permit is associated with the collection and identification of benthic macroinvertebrates.

Reporting \& Adaptive Management

Any exceedance of an Action Level by any parameter will be immediately reported to the supervisor who will assign the necessary follow up action to identify and eliminate the pollution source(s). In addition, at the end of each fiscal year, all monitoring data collected throughout the watershed will be reviewed and compiled into a yearly report. The report will summarize all data and indicate the program's current position as it relates to the watershed goals.

Adaptive management meetings will be held as needed and at least annually to discuss yearly reports, progress and goal status. Modifications will be made as necessary.

Conclusion

The McDowell Watershed Monitoring Plan is a key component in the implementation of the McDowell Watershed Management Plan. The management plan outlines specific instream water quality goals that must be measured accurately in order to gauge success. The monitoring plan uses a combination of physical, chemical and biological strategies to adequately assess the watershed. The monitoring plan is meant to be a living document and will be revised as needed when new information is obtained. At a minimum, the plan will be reviewed annually prior to the adoption of the new Water Quality Program Work Plan.
McDowell Creek Watershed Monitoring Plan August 2006

SITES	Flow	Rainfall	CMANN	TSS	Fixed Interval	Bacteria	Macroinvertebrate/ Fish/Habitat	Stream Morphology	Lake Monitoring
MC2	X (2)		X (2)	X (2)		X	X (1)		
MC2A-1	X		X (1)	$\mathrm{X}_{(1)}$		X	X		
MC3E-1 (1)	$\mathrm{X}_{(1)}$		$\mathrm{X}_{(1)}$	$\mathrm{X}_{(1)}$		X (1)	$\mathrm{X}(1)$		
MC4	X	X	X	$\mathrm{X}_{(1)}$	X	X	X	X (1)	
MC4A						X			
CSW09		X							
CRN43		X							
CRN62		X							
M1								X (1)	
N1								X (1)	
B1								$\mathrm{X}(1)$	
F1								X (1)	
P1								X (1)	
MC3			X (2)						X
MC3B									X
(1) Indicate (2) Indicate	$\begin{aligned} & \text { new } \mathrm{m} \\ & \text { new pr } \end{aligned}$	itoring fo posed mon	$\begin{aligned} & 2006 \\ & \text { toring for } 2 \end{aligned}$						

Map 2. McDowell Creek Watershed
Lake Monitoring Sites

Appendix B
 References

Bales, J.D., J.C. Weaver, and J.B. Robinson. 1999. Relation of Land Use to Streamflow and Water Quality at Selected Sites in the City of Charlotte and Mecklenburg County, North Carolina, 1993-98. USGS Water-Resources Investigations Report 99-4180. Raleigh, NC.

CH2MHill, 2003, Charlotte Area Local Watershed Plan. Prepared for North Carolina Wetlands Restoration Program, Raleigh, North Carolina.

Charlotte-Mecklenburg Storm Water Services, 1997, Mecklenburg County Floodplain Management Guidance Document. Charlotte, NC
U.S. Department of Agriculture - Soil Conservation Service, 1980, Soil Survey of Mecklenburg County, North Carolina. U.S. Government Printing Office: 1979-273-222/11.

Ferrell, G.M., 2001, Effects of Land Use on Water Quality and Transport of Selected Constituents in Streams in Mecklenburg County, North Carolina, 1994-98. USGS Water-Resources Investigations Report 01-4118. Raleigh, North Carolina.

North Carolina, 2004, North Carolina Water Quality Assessment and Impaired Waters List (2004 Integrated 305(b) and 303(d) Report) - Public Review Draft, accessed August 15, 2005, at URL http://h2o.enr.state.nc.us/tmdl/documents/ 2004IntegratedReporttext_001.pdf

Robinson, J.B., W.F. Hazell, and R.G. Garrett. 1996. Precipitation, Streamflow, and Water-Quality Data from Selected Sites in the City of Charlotte and Mecklenburg County, North Carolina, 1993-95. USGS Open-File Report 96-150. Raleigh, NC.

Robinson, J.B., W.F. Hazell, and R.G. Garrett. 1998. Precipitation, Streamflow, and Water-Quality Data from Selected Sites in the City of Charlotte and Mecklenburg County, North Carolina, 1995-97. USGS Open-File Report 98-67. Raleigh, NC.

Sarver, K.M. and B.C. Steiner. 1998. Hydrologic and Water-Quality Data from Mountain Island Lake, North Carolina, 1994-97. USGS Open-File Report 98-549. Raleigh, NC.

Sarver, K.M., W.F. Hazell, and J.B. Robinson. 1999. Precipitation, Atmospheric Deposition, Streamflow, and Water-Quality Data from Selected Sites in the City of Charlotte and Mecklenburg County, North Carolina, 1997-98. USGS Open-File Report 99-273. Raleigh, NC.

Tetra Tech, Inc., 2002, Baseline Assessment Report for McDowell Creek, Mecklenburg County, North Carolina - Final - December 2002. Prepared for: Mecklenburg County Land Use Environmental Services Agency, Mecklenburg County, North Carolina.

Tetra Tech Inc., 2004, Post Construction Ordinance Development Phase I Report - Draft. Prepared for Mecklenburg County Water Quality Program and Charlotte Storm Water Services, Mecklenburg County, North Carolina.

Watershed Concepts, 2002, Watershed Study No. 6 McDowell Creek Watershed Preliminary Engineering Report MCSWS Project No. 28001. Prepared for: Charlotte Mecklenburg Storm Water Services, Mecklenburg County, North Carolina.

Appendix C McDowell Creek Retrofit and Restoration Master Plan

The purpose of this BMP Master Plan for the McDowell Creek Watershed is to present retrofit and restoration opportunities throughout the watershed targeted at existing sources of pollution. Complete implementation of this plan is designed to remediate the existing sources of pollution resulting in removal of the watershed from the North Carolina State 303(d) list. This document, in combination with the stream assessment and prioritization portion of the McDowell Watershed Management Plan, will guide future restoration efforts within the Watershed. This document is intended to be modified and amended as new projects are created and current projects are completed. The basic structure of this document presents each focus area and, subsequently, each catchment within the focus area. Each BMP recommendation within the catchment is then documented. At the beginning of each section the 2 highest priority projects are listed and any existing projects are presented.

This BMP Master Plan was prepared through intensive windshield surveys of each of the focus areas. The focus areas were a result of the modeling exercise presented in the McDowell Creek Watershed Management Plan. The focus areas were the most polluted areas as predicted by the model.

I. Load Comparison

The relative contribution of sediment to McDowell Creek was able to be estimated through evaluation of the results of the Buck Stream Assessment and the calculated upland load (presented in the McDowell Creek Watershed Management Plan). The following table presents the estimated annual sediment production by category:

System	Total Length (miles)	Estimated Annual Sediment Load (tons)	Percent Breakdown
Major Stream System	30.4	14568.7	29%
Minor Stream System	93.0	30060.0	59%
Upland	NA	6162.61	12%
Total		50791.3	100%

The following chart shows the relative contributions graphically:

The In-Stream Water Quality goal for TSS is 0.3 tons/acre/year. If this goal is multiplied by the area of the watershed (18,283 acres) the goal can be expressed as an overall annual load of 5485 tons. Comparison of this goal with the existing conditions presented above is presented in the following table:

Existing TSS Load in tons/year (from above)	50,791
In-Stream TSS Goal Expressed in tons/year	5,485
Load Reduction Required (tons)	45,306
Load Reduction Required in percent	89%

II. Cost Analysis

A detailed cost analysis comparing BMP installation, minor system stream enhancement and major system stream enhancement was prepared to guide budgetary and planning decisions. The analysis compared typical installation costs for various types of BMPs with rule of thumb estimates for stream restoration. The results were distilled down to cost per pound of sediment removed in order to compare stream restoration with BMP installation. Not included in the cost estimates was the cost of land or easement acquisition however, design and planning are included.

A. Stream Restoration

A cost of $\$ 300$ per linear foot (LF) for stream restoration was used to estimate the overall stream restoration project cost. To estimate the amount of stream to be restored the results of the Buck investigation were used. Sediment loading per reach was obtained from the BEHI sediment load estimates and divided by the length of reach to obtain sediment loading per LF for both major and minor system. It was also assumed that upon
restoration the sediment load from the stream bank would approach zero. These values were assumed to be typical of the entire McDowell Creek Watershed. The results of the evaluation are as follows:

System	Assessed Length (feet)	Assessed Sediment Load (tons)	Assessed Sediment Load (tons/LF)	Cost of Stream Restoration/LF	Cost per pound of sediment removed
Major	62811.6	5704.8	0.0908	$\$ 300$	$\$ 1.65$
Minor	93083.5	8458.0	0.0909	$\$ 300$	$\$ 1.65$

The resulting cost (\$1.65/pound removed) is likely a very conservative estimate. Not all assessed reaches will require full stream restoration to eliminate bank erosion, which will reduce cost significantly (stream maintenance is estimated at \$50/LF). Surprisingly, the calculated assed sediment load per LF was almost identical for both the major and minor system. This may be an indicator of very similar levels of degradation in both systems.

B. BMP Retrofits

In order to estimate the relative cost/benefit of BMP retrofits several typical BMPs were analyzed along with several typical land uses in the McDowell Creek Watershed. For the analysis, commercial, high density residential, medium density residential and institutional land-uses were analyzed. BMP cost per acre of land treated and TSS removal efficiencies were obtained from research prepared for Mecklenburg County's Post Construction process. Sediment loading per acre of land-use values were obtained from Tetra Tech reports prepared for the Post Construction Ordinance Process. The results of the analysis are as follows:

BMP Type	Cost/ac Treated	TSS Removal Efficency	Average \$/lb TSS removed
Sand Filter	$\$ 20,000$	85%	$\$ 24.43$
Wet Pond	$\$ 22,000$	65%	$\$ 35.15$
Wetland	$\$ 31,500$	65%	$\$ 50.33$
Rain Garden	$\$ 16,000$	85%	$\$ 19.55$
Extended Detention	$\$ 31,500$	47%	$\$ 69.60$
WQ Swale	$\$ 3,000$	80%	$\$ 3.89$
Filter Strip	$\$ 3,000$	50%	$\$ 6.23$
Pond Retrofit	$\$ 6,700$	35%	$\$ 19.88$

C. Conclusions of the Cost/Benefit Analysis

From the aforementioned analysis it is evident that stream restoration is the most cost effective method of removing sediment from the McDowell. It is more than 2 times cheaper to remove a pound of sediment through stream restoration than from the most cost effective BMP (WQ Swale), which may not be appropriate in many situations. Stream restoration appears to be the most expedient method of removing sediment from McDowell Creek, however BMPs will continue to play a role in attenuating temperature and removing hydrocarbons from built upon areas.

III. Approach

Review of Sections I and II of this document reveal that stream restoration is the most cost effective means of controlling sediment in the McDowell Creek Watershed. Moreover, unstable reaches also appear to be the largest source of sediment in the watershed (almost 90%). Therefore, reduction of TSS load in the McDowell Creek Watershed will focus upon stream restoration and enhancement. However, sediment is not the only reason for the impaired macroinvertebrate population in the watershed. Habitat, water temperature and toxic pollutants (such as hydrocarbons) are also likely causes of the impairment. For this reason, BMP retrofits listed in subsequent sections will focus upon reducing runoff and stream temperature and sources of toxic pollutants. This will be accomplished as follows:

1. Conduct stream restoration and enhancement in the major and minor systems.
2. Retrofit currently untreated concentrations of impervious cover with BMPs designed to reduce temperature and toxic pollutants. BMP type will be determined on a site by site basis with the purpose of the device being to attenuate first flush temperature and hydrocarbon runoff. Because the BMPs are focused on the first flush of runoff, they only need to be designed to treat 0.25 inches of rainfall and not the 1 inch of rainfall currently specified in design manuals.
3. Reforest buffers as needed to attenuate temperature spikes through providing additional shade for the stream corridor. An ancillary and unaccounted for benefit from buffer restoration may be further reduction of sediment load from the near stream environment.
4. Design stream restoration and enhancements to focus upon improving habitat in addition to limiting sediment load.
5. When possible and cost effective, retrofit existing ponds to provide additional TSS removal and, if possible, temperature attenuation. Each project should be evaluated prior to design for the possible improvements in TSS loading, runoff volume and velocity and temperature.

IV. Stream Restoration

Stream reaches assessed by Buck within the McDowell Creek watershed were prioritized based on need and feasibility for restoration using the data matrix. Using the SWIM buffer GIS layer, assessed reaches were coded by drainage system type so minor system and major system reaches could be prioritized independently. Reaches coinciding with a SWIM buffer width of 100 feet were coded as major system reaches and all other reaches were considered to be part of the minor system.

The need for restoration alone was represented by the total score from the data matrix (channel evaluation sheet) with lower scores signifying a higher need. However, such a ranking scheme completely neglected a feasibility component. Therefore, feasibility levels from the data matrix were assigned weights (Table below) which were multiplied by the data matrix total score per reach to arrive at a prioritized list of reaches incorporating both the feasibility component with the need for restoration. Once again, lower scores signify a higher priority. This methodology generally enabled reaches having a higher cost/benefit ratio to be promoted to higher priorities ahead of reaches where vast improvements are hindered by constraints and constructability issues.

Feasibility Weights per Level

Feasibility Level	Weight
Minimal Constraints	0.50
Moderate Constraints	0.75
Significant Constraints	1.00

After carefully reviewing the results of prioritized reaches from the major and minor systems, at least five reaches were selected from each system that represent the most viable projects in terms of restoration implementation based on our best professional judgment. Results from the prioritization of major and minor system reaches are presented in Table 1.1 and 1.2 respectively. Highlighted reaches indicate those that Buck has recommended as the highest priority. Description of each column header in the subsequent tables is as follows:

RANK (NEED \& FEASIBILITY): Describes the priority of the project (or reach). Complete description can be found above.

REACH: Corresponds to the Buck reach nomenclature found in the McDowell Creek Watershed Management Plan

RECOMMENDATION: Corresponds to the type of activity need for the reach. A detailed description of each activity can be found in Section 5.2 of the McDowell Creek Watershed Management Plan.

FEASIBILITY: Described above.
ASSESSED LENGTH: Stream Length of particular reach.
RANK: Described above.

BASIN: Corresponds to the Buck sub-basin nomenclature described in the McDowell Creek Watershed Management Plan.

SEDIMENT LOAD REMOVED: Describes the anticipated annual sediment load in tons that will be removed from McDowell Creek after completion of the project.

APPROXIMATE COST: Project cost estimate associated with either maintenance or restoration of the stream reach. Wetland restoration costs, where noted, are assumed to be incidental and included in the cost of stream restoration or maintenance. Rates for stream maintenance and restoration are as follows:

Enhancement I = \$150/linear foot
Enhancement II = \$50/linear foot
Restoration $=\$ 300 /$ linear foot

Property owners for each of the reaches listed below are included with this document as Attachment 1.
McDowell Creek Watershed Management Plan Version 4......................March 2, 2008
Major System Stream Restoration Prioritization List

RANK (NEED \& FEASIBILITY)	REACH	RECOMMENDATION	FEASIBILITY	ASSESSED LENGTH (ft)	RANK (NEED)	BASIN	Sediment Load Removed (tons/year)	Approximate Cost
1	B1a	Enhancement I	Minimal	433	5	B	54.7	\$64,950
2	P14b	Restoration	Minimal	2,137	7	P	2.73	\$641,100
3	14a_15a	Restoration	Minimal	1,132	8	1	115.7	\$339,600
4	O47a	Restoration	Minimal	7,395	9	0	371.1	\$2,218,500
5	P14a	Restoration	Minimal	1,663	11	P	97.73	\$498,900
6	17a	Restoration - Wetland Enhancement	Minimal	680	12	1	53.9	\$204,000
7	K7a	Restoration	Moderate	2,795	2	K	240.07	\$838,500
8	M3c	Enhancement II	Minimal	1,710	18	M	110.7	\$85,500
9	O44	Enhancement II	Minimal	1,228	19	O	55.1	\$61,400
10	K7d	Restoration	Moderate	1,171	3	K	100.7	\$351,300
11	U28a	Restoration	Moderate	2,017	4	U	132.1	\$605,100
12	B7a	Restoration	Significant	2,101	1	B	84.6	\$630,300
13	N29a	Restoration	Moderate	8,843	10	N	905.5	\$2,652,900
14	K7b	Restoration	Moderate	2,122	13	K	109.97	\$636,600
15	P13a	Restoration	Moderate	1,373	14	P	90.3	\$411,900
16	F30a	Enhancement I	Moderate	4,150	15	F	167.92	\$622,500
17	K7c	Restoration	Moderate	1,688	16	K	45.56	\$506,400
18	U14	Restoration	Moderate	1,955	17	U	147.3	\$586,500
19	E18a	Enhancement II	Significant	4,766	6	E	247.58	\$238,300
20	F13a	Restoration upstream / Enhancement II downstream	Moderate	2,521	20	F	83.98	\$756,300

McDowell Creek Watershed Management Plan Version 4.....................March 2, 2008
Minor System Stream Prioritization List

$\begin{gathered} \text { RANK (NEED } \\ \text { \& } \\ \text { FEASIBILITY) } \\ \hline \end{gathered}$	REACH	RECOMMENDATION	FEASIBILITY	ASSESSED LENGTH (ft)	RANK (NEED)	BASIN	Sediment Load Removed (tons/year)	Approximate Cost
1	13a	Restoration	Minimal	1,200	1	I	115.3	\$360,000
2	M1	Restoration / Fence out cattle	Minimal	1,430	10	M	153	\$429,000
3	N13d	Restoration	Minimal	654	13	N	32	\$196,200
4	111a	Restoration	Minimal	844	14	I	62.1	\$253,200
5	M8b	Restoration / Fence out cattle	Minimal	1,006	16	M	162.8	\$301,800
6	B18a_B19a	Enhancement II	Minimal	603	18	B	48.6	\$30,150
7	E15a	Restoration	Minimal	2,655	30	E	110.48	\$796,500
8	P15b	Restoration	Minimal	707	31	P	707.6	\$212,100
9	B21a	Enhancement II	Minimal	1,020	35	B	92	\$51,000
10	B11a	Restoration	Minimal	680	37	B	64.3	\$204,000
11	P17a	Restoration	Minimal	1,196	38	P	83.11	\$358,800
12	M9	Enhancement II	Minimal	2,029	41	M	142.7	\$101,450
13	N13b	Restoration	Minimal	577	46	N	10.1	\$173,100
14	A8a	Enhancement II	Minimal	820	48	A	14.46	\$41,000
15	U10	Restoration	Minimal	1,196	51	U	72.4	\$358,800
16	M6	Restoration / Fence out cattle	Moderate	1,617	5	M	117.3	\$485,100
17	A5b	Enhancement II	Minimal	844	52	A	46.42	\$42,200
18	B9b_B10a	Enhancement II	Minimal	1,034	55	B	95.3	\$51,700
19	A13b_A16a	Bank Stabilization	Minimal	348	56	A	21.22	

$\begin{gathered} \text { RANK (NEED } \\ \& \\ \text { FEASIBILITY) } \end{gathered}$	REACH	RECOMMENDATION	FEASIBILITY	ASSESSED LENGTH (ft)	$\begin{aligned} & \text { RANK } \\ & \text { (NEED) } \end{aligned}$	BASIN	Sediment Load Removed (tons/year)	Approximate Cost
20	P23a	Enhancement II / Improvement to culverts at sanitary sewer crossings to accommodate bankfull flows and sediment transport	Minimal	1,800	57	P	36.26	\$90,000
21	B13a	Restoration	Moderate	1,293	9	B	92.1	\$387,900
22	U8b	Enhancement II	Minimal	722	61	U	50.2	\$36,100
23	A21a	Restoration	Moderate	2,296	11	A	194.06	\$688,800
24	F11b	Enhancement I	Moderate	2,001	12	F	109.11	
25	A5a_A18a	Enhancement II	Significant	1,720	2	A	137.24	\$86,000
26	U17a	Restoration	Moderate	1,206	17	U	81.8	\$361,800
27	U20	Enhancement II	Minimal	225	65	U	11.8	\$11,250
28	F8a	Buffer Enhancement	Minimal	4,198	66	F	135.39	
29	F28b	Enhancement I	Significant	2,208	3	F	120.27	\$331,200
30	B8a	Enhancement I	Moderate	1,604	19	B	226.2	\$240,600
31	L3a	Bank Stabilization upstream of Statesville Rd. I Restoration downstream	Moderate	2,220	20	L	145.8	
32	A13a	Enhancement II	Minimal	807	67	A	21.2	\$40,350
33	F5a	Enhancement I	Moderate	3,920	22	F	119.74	
34	B6a	Restoration	Moderate	1,332	23	B	157.3	\$399,600
35	N13c	Enhancement II	Moderate	431	24	N	7.9	\$21,550
36	B2a	Enhancement II	Significant	407	4	B	43.9	\$20,350

McDowell Creek Watershed Management Plan Version 4.....................March 2, 2008

 FEASIBILITY)	REACH	RECOMMENDATION	FEASIBILITY	ASSESSED LENGTH (ft)	RANK (NEED)	BASIN	Sediment Load Removed (tons/year)	Approximate Cost
37	16a	Enhancement I	Moderate	2,548	25	I	237.6	\$382,200
38	M8a	Enhancement I	Moderate	1,072	26	M	151	\$160,800
39	U9a	Removal of large CMPs deposited in the channel	Moderate	691	28	U	40.4	
40	B17a	Enhancement II	Moderate	581	29	B	40.4	\$29,050
41	A1b	Buffer Enhancement	Moderate	465	33	A	6.92	\$23,250
42	N8a	Restoration	Moderate	1,317	34	N	72.4	\$395,100
43	B5a_B9a	Enhancement II	Moderate	1,479	36	B	110.4	\$73,950
44	N13a	Enhancement II	Minimal	648	69	N	31.2	\$32,400
45	M4_M3a	Restoration	Moderate	769	39	M	112.9	\$230,700
46	L2a	Enhancement I	Significant	1,322	6	L	34.07	\$198,300
47	O30b	Enhancement II	Moderate	886	43	O	21.6	\$44,300
48	P18a	Restoration	Significant	2,948	7	P	254.45	\$884,400
49	M12	Restoration	Moderate	1,177	44	M	181	\$353,100
50	O30c	Enhancement I	Significant	2,643	8	O	143.55	\$396,450
51	B14a	Restoration	Moderate	474	45	B	13.7	\$142,200
52	U15	Enhancement I	Moderate	490	47	U	60.4	\$73,500
53	L7a	Restoration upstream of Sherwood Drive / Improvement to Sherwood Drive culvert / Bank Stabilization downstream of Sherwood Drive	Significant	1,369	15	L	52.16	\$410,700
54	B14b	Restoration	Moderate	1,479	50	B	156.9	\$443,700
55	U29a	Enhancement II	Moderate	1,443	53	U	166.7	\$72,150

 FEASIBILITY)	REACH	RECOMMENDATION	FEASIBILITY	ASSESSED LENGTH (ft)	RANK (NEED)	BASIN	Sediment Load Removed (tons/year)	Approximate Cost
56	U9b	Enhancement I	Moderate	1,097	54	U	125.3	\$164,550
57	P15a	Enhancement II	Significant	1,357	21	P	47.9	\$67,850
58	U3	Enhancement I	Moderate	1,639	58	U	74.7	\$245,850
59	F11a	Enhancement II	Moderate	1,908	59	F	55.38	\$95,400
60	M3b	Enhancement II	Moderate	1,513	62	M	150.6	\$75,650
61	U5b	Enhancement I	Moderate	1,477	63	U	184.7	\$221,550
62	L5a	Enhancement I upstream / Restoration downstream	Significant	3,004	27	L	251.83	\$450,600
63	U6	Enhancement I	Moderate	2,085	64	U	202	\$312,750
64	A20a	Bank Stabilization	Significant	2,232	32	A	135.58	\$111,600
65	E8a	Enhancement II	Significant	1,864	40	E	6.81	\$93,200
66	U16a	Restoration	Moderate	1,730	68	U	126	\$519,000
67	19a	Enhancement I	Significant	1,090	42	I	55.7	\$163,500
68	F28a	Enhancement II	Significant	2,434	49	F	72.09	\$121,700
69	U5a	Buffer Enhancement	Significant	538	60	U	29.5	\$26,900

V. BMP Retrofits

Preparation of the Focus Area 1 portion of the McDowell Retrofit and Restoration plan has been delayed until an accurate accounting of all existing BMPs in the focus area. This is scheduled to be completed by June 30, 2007.

A. Focus Area 2

Priorities for Focus Area 2 centered around retrofitting existing impervious area not currently treated by BMPs. BMPs proposed are to be designed to mitigate temperature impacts to the stream as well as chronic pollutants and sediment. At a minimum, BMPs should be designed to treat the "first flush" and safely bypass larger flows.

Priority and Existing Projects in Focus Area 2:

Priority 1 Project: Willow Pond at Lake Norman
Parcel \# 005-17-178
Priority 2 Project: \quad Silicon Drive Partners LLC and Beacon Partners LLC Parcel \# 005-27-302
Existing Project: Ange Project

Focus Area 1

1. Catchment MD1

Catchment MD1 is located in the Town of Cornelius. It is comprised of older single family residential, multifamily residential and some commercial land use. The Ange project, which is just downstream of the catchment, will be designed to treat the runoff from catchment MD1.

Catchment MD1, Focus Area2
2. Catchment MD2

Catchment MD2, Focus Area 2
Parcel: $\quad 005-20-129$
Owner: Charlotte/Mecklenburg Board of Education
Description: Site excellent candidate for treating surface and downspout drainage via rain-gardens and grass swales. Several open/grassed areas that can be converted to WQ treatment devices directly adjacent to buildings and parking lots.
Cost: $\quad \$ 128,000$
Priority: Medium
Parcel: 005-25-599
Owner: Mecklenburg County
Description: Ainge project site. This project is essential for treating both catchments MD1 and MD2 effectively. Conceptual designs prepared by Mecklenburg County indicate proposed storm water wetlands will be capable of achieving necessary pollutant removal from runoff from upstream areas. Project site is also ideally situated for stream restoration.
Cost: \quad Grant obtained Fall, 2006; David Woodie - Project Manager
Priority: High
3. Catchment MD4

Catchment MD4 drains south from Catawba avenue and contains a portion of I-77 in its drainage area. The catchment also contains a portion of Statesville Road and built-up areas at I-77 and Statesville road. The catchment is primarily residential with some commercial/retail along Statesville Road. Critical retrofit elements in this watershed include water quality grass swales in the DOT ROW along Statesville Road and enhancement of an existing on-line pond.

Catchment MD4, Focus Area 2
Parcel: 005-18-306
Owner: Amend DMC Properties, Inc.
Description: Commercial site draining to Statesville Road. Excellent opportunity for enhanced grass swale in DOT ROW along Statesville Road. The area in the ROW should be evaluated for treatment of upstream parcels as well. A more intensive evaluation of the immediate upstream areas is required to properly determine the size of device.
Priority: Medium
Cost: $\quad \$ 32,000$
Parcel: 005-18-307
Owner: Amend DMC Properties, Inc.

Description:	Commercial site draining to Statesville Road. Excellent opportunity for enhanced grass swale in DOT ROW along Statesville Road.
Priority:	Medium
Cost:	\$32,000
Parcel:	005-18-309
Owner:	Lake Norman Hotel, Inc.
Description:	Commercial site draining to Statesville Road. Excellent opportunity for enhanced grass swale or rain garden in DOT ROW along Statesville Road.
Priority:	Medium
Cost:	\$6,000
Parcel:	005-18-302
Owner:	ABC Board of Mecklenburg County
Description:	Commercial site draining to Statesville Road. Excellent opportunity for enhanced grass swale or rain garden in DOT ROW and ABC property along Statesville Road.
Priority:	Medium
Cost:	\$6,000

Parcel: 005-17-178
Owner: Willow Pond at Lake Norman Homeowners Association
Description: PRIORITY 1 PROJECT. On-line pond. This pond is essential to overall strategy for Catchment MD4. Upstream of pond is a possible natural wetland area (may be a result of pond construction), downstream spillway is undercut and maintenance of downstream corridor has been heavily rip-rapped in the past. This may be an indication of severe instream erosion. Pond does not appear to have any detention component as outlet structure is simply a spill way. Pond does not currently have any specific water quality benefit and appears to be an excellent opportunity for pond enhancement to include a water quality and detention component.
Priority: Medium
Cost: $\quad \$ 500,000$

4. Catchment MD5

Catchment MD5 drain a portion of I-77 near Catawba Avenue in Cornelius as well as a portion of Statesville Road in Cornelius. The catchment is dominated by I-77 and commercial property along I-77. The catchment is highly impervious and apart from the grass swales along I-77 no water quality treatment is present. Runoff entering the catchment from other areas will be treated by upstream BMPs, therefore, treatment in this catchment can be focused upon local sources.

Catchment MD5, Focus Area 2
Parcel: 005-13-201
Owner: William and Sara Talley
Description: Commercial site draining to Statesville Road. Excellent opportunity for enhanced grass swale or rain garden in DOT ROW along Statesville Road.
Priority: Medium
Cost: $\quad \$ 6,000$
Parcel: 005-41-209
Owner: Lakeside Automotive, Inc
Description: Commercial site draining to Statesville Road. Excellent opportunity for enhanced grass swale or rain garden in DOT ROW along Statesville Road. Site also drains South to McDowell Creek directly. There is minimal buffer on the site. Linear treatment, such as a rain garden or WQ swale is critical to overall Catchment health.
Priority: Medium
Cost: $\quad \$ 18,000$

Parcel: 005-41-238
Owner: Thomas Archer and Martha Cashion

Description: Commercial site draining to Statesville Road and directly to McDowell Creek. Potential opportunity to treat on site runoff with rain garden or water quality swale.
Priority: Medium
Cost: $\quad \$ 18,000$
Parcel: 005-41-245
Owner: MNLN LLC
Description: Commercial site draining to I-77 ROW. Opportunity for installation of rain garden at back corner of property.
Priority: Low
Cost: $\quad \$ 16,000$

5. Catchment MD7

Catchment MD7 drains the portion of the Town of Cornelius West of I-77 and South of Catawba Avenue. The catchment is typified by intensive commercial and some light industrial development. This development nearly 100% impervious and opportunity for retrofitting this watershed is largely situated in the DOT ROW along I-77 service road on the West side of I-77. The undeveloped portion of the watershed is largely undergoing active development and these parcels will be treated by BMPs. There are BMPs on two of the developed parcels, however, enhancement and/or maintenance of these devices should be a priority. Moreover, the storm water infrastructure in this catchment needs to be accurately mapped. Particularly, the piped infrastructure along Liverpool Parkway needs to be accurately documented (drop inlets, pipes, outfalls and surface swales). After the infrastructure is properly documented, there may be additional BMPs requirements to treat runoff from Liverpool Parkway.

Catchment MD7, Focus Area 2
Parcel: 005-27-201
Owner: BB\&T
Description: Commercial site draining to drop inlet in center of property. Good opportunity for rain garden at drop inlet.
Priority: Medium
Cost: $\quad \$ 16,000$

Parcel: 005-27-202
Owner: \quad South Central Oil Company, Inc.
Description: Commercial/retail/strip mall site. Front parking lot drains to grassed swale at North-west corner of property. Excellent opportunity for rain garden and/or water quality grassed swale in parking lot and DOT ROW. Back side of strip mall is all impervious with no opportunity for retrofit. Treatment of these areas will have to occur downstream.
Priority: Medium
Cost: $\quad \$ 16,000$

Parcel: 005-27-206

Owner:	Mecklenburg County - EMS Station
Description:	Commercial site draining to I-77 service road. Excellent opportunity for small rain garden at front of property, which would also treat some of the back side of 005-27-202.
Priority:	Medium
Cost:	\$3,000
Parcel:	005-27-205
Owner:	TT of Cornelius Automotive Management Services Inc.
Description:	Highly impervious car dealership. Excellent opportunity for enhanced grass swale or rain garden in DOT ROW along I-77 Service Road.
Priority:	Medium
Cost:	\$48,000
Parcel:	005-27-211
Owner:	TT of Cornelius Automotive Management Services Inc.
Description:	Highly impervious car dealership. Excellent opportunity for enhanced grass swale or rain garden in DOT ROW along I-77 Service Road.
Priority:	Medium
Cost:	\$48,000
Parcel:	005-13-127
Owner:	TT of Cornelius Automotive Management Services Inc.
Description:	Highly impervious car dealership. Excellent opportunity for enhanced grass swale or rain garden in DOT ROW along I-77 Service Road.
Parcel:	005-13-128
Owner:	Geehoon Investment LLC
Description:	Highly impervious restaurant site. Good opportunity at this site for rain garden along southern property line.
Priority:	Medium
Cost:	\$32,000
Parcel:	005-27-302
Owner:	Silicon Drive Partners LLC and Beacon Partners LLC
Description:	PRIORITY 2 PROJECT. Highly impervious office/light industrial site (Lake Norman Commerce Center). Excellent opportunity for rain gardens at this site. Existing dry detention appears to be failing, heavily eroded on down stream side of spillway. All drainage is to perimeter of parcel thru curb cuts and drop inlets with short pipe sections to drainage swale. Drainage swale could easily be converted to a water quality swale. This is a high priority site.

Priority:	High Cost:
\$148,800	
Parcel:	$005-27-313$ Owner:
Mescription:	Highly impervious automotive repair shop (NASCAR shop?). Good opportunity for linear BMP at downstream end of parking lot. Water quality swale or linear rain garden are the best option. Northwest corner of site is currently under construction. This area of the site should be evaluated for rain garden when construction is completed.
Priority:	Medium \$6,000
Cost:	$005-27-107$
Parcel:	Karpenisi Associates LLC
Owner:	
Description:	Highly impervious restaurant site. Grass swale at front of property should be converted to rain garden or water quality swale. Opportunity exists to treat some of upstream drainage.
Priority:	Medium Cost:
\$6700	

B. Focus Area 3

Focus Area 3 is located within Huntersville's jurisdiction and is roughly split by Old Statesville Road. The land use within the focus area contains industrial, commercial, institutional (park and church properties) and single family residential. Fortunately, there is a great deal of public property in the watershed downstream of the highly developed properties.

Priority 1 Project: Mecklenburg County Park Property
Parcel \# 009-11-119

Focus Area 3

1. Catchment MDT1-2

Catchment MDT1-2 is dominated by industrial land uses. There appears to be space within most of the industrial parcels to treat runoff at the source, however, downstream from them is park property, which may be able to be used to locate a semi-regional BMP.

Catchment MDT1-2, Focus Area 3

Parcel: 011-02-115
Owner: Huntersville Hardwoods, Inc.
Description: Large industrial site. Entire site drains to the railroad spur on the Western edge of the property. Good opportunity for the installation of water quality swale and rain garden or pocket wetland. Treatment of the runoff from this site and the downstream concrete site are critical to the restoration of this catchment.
Priority: Medium
Cost: \$54,000

Parcel: 011-02-111
Owner: CCC Building Supply LLC
Description: Highly impervious concrete mixing facility. BMP location at downstream edge of property appears feasible. Pocket wetland would be the best solution in this situation.
Priority: High
Cost: $\quad \$ 33,500$

Parcel: 009-11-119
Owner: Mecklenburg County
Description: PRIORITY 1 PROJECT. Park. Excellent opportunity to treat runoff from Parking lots at the source with the installation of rain gardens. Moreover, the park site may be suitable for the installation of a semiregional BMP to treat the runoff from the upstream industrial sites.
Priority: High
Cost: $\quad \$ 40,000$

2. Catchment MDT1-3

Catchment MDT1-3 is comprised primarily of institutional and residential land uses. The main water quality concern for this catchment is the runoff from the residential areas and the runoff from the church site along with runoff from the impervious areas of the park. Much of the watershed is in public ownership, which provides a great deal of flexibility in treating the runoff.

Catchment MDT1-3, Focus Area 3
Parcel: 009-11-119

Owner:	Mecklenburg County
Description:	PRIORITY 1 PROJECT. Park. Excellent opportunity to treat runoff from Parking lots at the source with the installation of rain gardens. Moreover, the park site appears to have a wetland downstream of the baseball fields. This should be investigated by staff with wetland delineation training.
Priority:	High
Cost:	\$40,000
Parcel:	009-11-130
Owner:	Mecklenburg County
Description:	Currently undeveloped parcel. Parcel is well situated for the treatment of runoff from residential development on the southern end of catchment. Installation of pocket wetlands or rain gardens at end of pipe from neighborhood is the most viable solution as there does not appear to be enough room in the neighborhood for the installation of BMPs.
Priority:	Low
Cost:	\$472,500

C. Focus Area 4

Focus Area 4 is located in the Town of Huntersville and drains the older portion of the town. It is dominated by older residential land as well as retail/commercial land use. There is intensive commercial land use bracketing I-77, however, these parcels were developed with water quantity (quality?) treatment ponds. Because of this, retrofit efforts are focused upon areas to the east of Statesville Road, South of Gilead Road and west of Old Statesville Road. Because of the age of the development and the absents of public property, this focus area will be the most challenging to retrofit with BMPs.

Priority 1 Project: 017-11-402
Huntersville Methodist Church

Focus Area 4

1. Catchment MDTC10

Catchment MDTC10 is largely older single family residential with commercial/retail development at the perimeter of the catchment. There is no public property within the catchment. All projects will need to be done on private property or land will have to be acquired for the installation of BMPs.

Catchment MDTC10, Focus Area 4

Parcel: 017-11-615
Owner: Cross Chevrolet Co.
Description: Currently a Subaru Dealership. Parcel is well situated for the treatment of runoff generated by the site with the installation of a linear water quality BMP along the back of the property. This type of device would capture the downspouts as well as the surface runoff from the back of the parcel.
Priority: Low
Cost: $\quad \$ 20,000$
Parcel: 019-04-303
Owner: Huntersville Presbyterian
Description: Church site. Highly impervious parcel with limited opportunity for the installation of rain gardens to treat downspout and parking lot runoff.
Priority: Low
Cost: $\quad \$ 20,000$

Parcel: 017-11-402

Owner: Huntersville Methodist Church
Description: Church site. This site is very important to the overall strategy for the catchment. Piped drainage is "daylighted" on this parcel, which provides an opportunity to direct upstream runoff into a treatment device on site. A rain garden may be overwhelmed by the drainage area, however the landowners will probably not agree to installation of a larger device.
Priority: High
Cost: $\$ 32,000$

2. Catchment MDTC16

Catchment MDTC16 is largely comprised of commercial development along both sides of I-77. Much of the development is already treated by some sort of BMP, however there are several opportunities to enhance the existing structures. Moreover, the DOT ROW along Statesville Road provides and excellent opportunity to treat runoff from the adjacent parcels. There may also be opportunities along the I-77 corridor to treat runoff generated by the roadbed itself.

Catchment MDTC16, Focus Area 4
Parcel: 017-44-108
Owner: Hallmark of Statesville, Inc.

Description: Hotel site. Existing dry detention (?) on hotel property. Does not appear to be functioning properly. Excellent opportunity to retrofit dry detention with water quality components.
Priority: Medium
Cost: $\quad \$ 16,000$
Parcel: \quad DOT ROW along Statesville Road
Owner: \quad Several - NC DOT owns ROW
Details: \quad Critical aspect of treating water quality in this catchment is working cooperatively with NC DOT to install water quality treatment devices along Statesville Road. Currently drainage is thru swales, which could be converted to water quality swales or stepped rain gardens.
Priority: High
Cost: $\quad \$ 3,000 /$ acre treated

D. Focus Area 5

Focus Area 5 is the least impacted of the 5 focus areas. Work within this catchment will focus upon working with NC DOT to treat runoff from the I-77 and Statesville Road corridors in combination with focused efforts to treat runoff from specific sites.

Priority 1 Project: The Bowman Group Property
Parcel \# 017-45-101
Priority 2 Project: Mecklenburg County Park Property
Parcel \#017-42-110

Focus Area 5

1. Catchment MDTC14

Catchment MDTC14 is dominated by I-77 and a transportation firm.

Catchment MDTC14, Focus Area 5
Parcel: 017-45-101
Owner: The Bowman Group
Description: PRIORITY 1 PROJECT. Transportation site. Good opportunity for the installation of a rain garden at the downstream end of the site. Site is dominated by overland drainage from a gravel lot. Swales will need to channel runoff into the rain garden cell.
Priority: High
Cost: $\quad \$ 64,000$
2. Catchment MDTC10

Catchment MDTC10 is dominated by the I-77 corridor and multiple commercial/institutional sites. Runoff should be treated on-site.

Catchment MDTC5, Focus Area 5

Parcel:	017-42-110
Owner:	Mecklenburg County
Description:	PRIORITY 2 PROJECT. Park site. Good opportunity for the installation of a rain garden at the downstream end of the parking lot perpendicular to flow.
Priority:	High
Cost:	\$32,000
Parcel:	017-41-115
Owner:	Mecklenburg County
Description:	Institutional Site. Good opportunity for the installation of a rain garden at the downstream end of the parking lot perpendicular to flow.
Priority:	High
Cost:	\$32,000
Parcel:	017-41-115
Owner:	Pal-A-Roo's Properties LLC

Description: Commercial Property. Good opportunity for the installation of a rain garden at the downstream end of the parking lot perpendicular to flow.
Priority: Medium
Cost: $\quad \$ 16,000$

VI. Buffer Re-Forestation

Buffer reforestation in the McDowell Creek watershed is a critical component of returning McDowell Creek to a condition of fully supporting its designated uses. Specifically, a forested buffer provides shade for the creek, which limits heating of the stream during summer months. Also, a forested buffer provides treatment of direct runoff to the stream as well as organic material in the form of leaf litter during the fall. There are 320 different parcels with un-forested buffer area in excess of 0.1 acres totaling 438 acres. Ownership of these areas is spread across 229 land owners. The top 20 land owners of un-forested buffer are presented below:

Owner	Un-forested Area
MECKLENBURG COUNTY	52.016
BIRKDALE GOLF ASSOCIATES LLC	27.918
CARRINGTON RIDGE LLC	26.524
ARVIDA MID-ATLANTIC HOMES INC	16.943
CLARK REGINALD L	15.940
MCAULAY FARMS LLC	15.681
COOK E H JR	15.490
PIZZAGALLI PROPERTIES LLC	15.137
BANK OF AMERICA	14.874
BANKS RICHARD TORRANCE	13.681
BROWN WILLIAM VERNON	13.190
CITY OF CHARLOTTE	11.591
HORTON D R INC-TORREY	9.614
HUNTERSVILLE BUSINESS PROPERTY	8.680
HENDERSON PARK HOMEOWNER`S	7.158
HUNTERSVILLE DEVELOPMENT LLC	6.855
DOUGLAS HELEN KIDD \quad B/E	5.313
HILLS COMMUNITIES OF CHARLOTTE	5.123
BELLINGHAUSEN CARL	4.788
COOK INVESTMENTS L P U/A	

For the purpose of this plan, only publicly owned property with at least 0.5 acres of unforested buffer will be targeted for reforestation. For all cost calculations re-forestation of buffers is estimated to cost $\$ 1430 /$ acre. This value was developed assuming mixed
hardwood trees (seedlings) would be planted on eight-foot grid. Specific parcel information on publicly owned parcels to be reforested is as follows:

Priority	PID	Parcel Area	Un-forested Area (ac)	OWNER	Cost
1	01538197	14.804	13.115	MECKLENBURG COUNTY	\$18,754
2	01509104	24.893	8.144	$\begin{gathered} \text { MECKLENBURG } \\ \text { COUNTY } \\ \hline \end{gathered}$	\$11,646
3	01535199	13.081	7.881	MECKLENBURG COUNTY	\$11,270
4	00935101	151.300	7.332	CITY OF CHARLOTTE	\$10,485
5	01509107	13.000	7.068	MECKLENBURG COUNTY	\$10,107
6	01323105	111.930	3.727	CITY OF CHARLOTTE	\$5,330
7	00507112	100.596	3.556	MECKLENBURG COUNTY	\$5,085
8	01318101	0.000	2.775	MECKLENBURG COUNTY	\$3,968
9	01535245	11.709	1.770	MECKLENBURG COUNTY	\$2,531
10	00504219	1.520	1.754	TOWN OF CORNELIUS	\$2,508
11	01325599	13.520	1.530	MECKLENBURG COUNTY	\$2,188
12	01325548	7.530	1.495	MECKLENBURG COUNTY	\$2,138
13	01505199	17.652	1.319	MECKLENBURG COUNTY	\$1,886
14	01543103	19.127	0.608	MECKLENBURG COUNTY	\$869

McDowell Creek Watershed Management Plan Version 4.

parcelid	Restoration	$\underset{\substack{\text { OWNER, FIRST } \\ \text { NAME }}}{\text { N }}$	COWNER, FIRST NAME	COWNER, LAST NAME											
PARCELID	OWNER, LAST NAME	NAME	FIRST NAME	NAME	Houseno	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MALADDR2	CITY	State	ZIPCODE
00910126	$\underset{\text { MONTEITH HOLDINGS }}{\text { LLC }}$					N	STATESVILLE	RD		HUNTERSVILLE	$\underset{310}{\substack{\text { AMITY RTE STE } \\ \hline}}$		CHARLOTTE	NC	28211
00910127	MONTEITH HOLDINGS LLC						BANKSIDE	DR		HUNTERSVILLE	13777 BALLANTYNE CORP PLZA\#32		CHARLOTTE	NC	28277
00910593	MONTEITH HOLDINGS LLC						SHINNER	DR		HUNTERSVILLE	310 501 S. SHARON AMITY RD STE 310		CHARLOTTE	NC	28211
00924398	FIVE-H LAND COINC						dELANCEY	LN		HUNTERSVILLE	6805 FAIRVIEW RD STEC		CHARLOTTE	NC	28210- 270
00934104	MONTEITH HOLDINGS LLC						STUMPTOWN	RD		HUNTERSVILLE	501 S. SHARON AMITY RD	STE 310	CHARLOTTE	NC	28211
00934198	$\underset{\text { LLC }}{\text { MONTEITH HOLDING }}$						STUMPTOWN	RD		HUNTERSVILLE	501 SHHARON AMITY RD \#310		CHARLOTTE	NC	28211
00934687	MONTEITH HOLDINGS LLC						WATERFRONT	DR		HUNTERSVILLE	501 SOUTH SHARON AMITY RD \#310		CHARLOTtE	NC	28211

REACH RAAK (INED \& FEASIBIITY)

 REACH REACH (NED \&RRANK (NEE
FEAIIILITY)
 REACH
RANK (NEED \&
FEASIUTHTY

PARCELId	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	houseno	STDIR	stname	STTYPE	stsuffix	mUNICIPALITY	MAILADDR1	MALLADDR2	CITY	STATE	ZIPCODE
01504101	ARVIDA MID ATLANTIC										7900 GLADES				
01504101	HOMES INC		ATE	\% HANKE	7300		GLEAD	RD		HUNTERSVILLE	RD \#200		boca raton	FL	33434
01504135	ARVIDAMID-AILANTIC HOMES INC		BEATE	\% HANKE			DARBLAY	ST		HUNTERSVILLE	${ }_{\text {la }}^{\text {7900 GLADES }}$ R200		boca raton	FL	434
01504136	HIRACH	KATHRYN			8009		BAY	DR		HUNTERSVILLE	8009 BAYLIS DRIVE		HUNTERSVILLE	NC	28078
01543103	MECKLENBURG COUNTY			\% REAL ESTATE /FINANCE DEPT	8147		MCILWAINE	RD		HUNTERSVILLE	600 EAST 4TH ST 11TH FLOOR		CHARLOTTE	NC	28202

REACH I11a
REACH
RAN (NEED \&
FEASIBLITY)

RECOMMENDATION
PARCEL ID
00911105
00911119

REACH
RANK (NEED \&
FEASIBLITY)
recommendation
McDowell Creek Watershed Management Plan Version 4....................March 2, 2008

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01502113	BARNETTE	AGNES B		(ET-AL)	7107		$\begin{gathered} \text { BUD } \\ \text { HENDERSON } \end{gathered}$	RD		HUNTERSVILLE	$\begin{gathered} 7107 \text { BUD } \\ \text { HENDERSON } \\ \text { RD } \end{gathered}$		HUNTERSVILLE	NC	28078
01502124	FREENEY	STEPHEN P	KARRIS	FREENEY	14442		BEATTIES FORD	RD		HUNTERSVILLE	$\begin{gathered} \text { 16735-A } \\ \text { CRANLYN RD } \\ \# 124 \end{gathered}$		HUNTERSVILLE	NC	28078
REACH RANK (NEED \& FEASIBILITY) RECOMMENDA	B18a_B19a 6 Enhancement II														
PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
00514402	RAYMER	$\begin{gathered} \text { JOHN MCLAIN } \\ \text { JR } \\ \hline \end{gathered}$	EVELYN K	RAYMER	18628		STATESVILLE	RD		CORNELIUS	PO BOX 588		HUNTERSVILLE	NC	$\begin{gathered} 28070- \\ 0588 \end{gathered}$
00516678	$\underset{\substack{\text { MECKLENBURG } \\ \text { COUNTY }}}{\text { R }}$			\% REAL ESTATE /FINANCE DEPT	20243		FLORAL	LN		CORNELIUS	$\begin{aligned} & 600 \text { E 4TH ST } \\ & 11 \mathrm{TH} \text { FLOOR } \\ & \hline \end{aligned}$		CHARLOTTE	NC	$\begin{gathered} 28202- \\ 2816 \end{gathered}$
00529170	LOPARDI	JOSEPH A	ERIN	MCELROY	20110		COACHMANS WOOD	LN		CORNELIUS	TRACE LN		CORNELIUS	NC	28031
00529171	HOWEY	RANDOLPH E	ELEANOR Y	HOWEY	20106		$\begin{aligned} & \text { COACHMANS } \\ & \text { WOOD } \\ & \hline \end{aligned}$	LN		CORNELIUS	$\begin{gathered} 20106 \\ \text { COACHMANS } \\ \text { WOOD LN } \\ \hline \end{gathered}$		CORNELIUS	NC	28031
00529172	KALOS	ARTHUR C	CHRISTINE L	KALOS	20102		COACHMANS WOOD	LN		CORNELIUS	$\begin{gathered} 20102 \\ \text { COACHMANS } \\ \text { WOOD LN } \end{gathered}$		CORNELIUS	NC	28031
00529173	$\underset{\text { THE }}{\text { TOWN OF CORNELIUS }}$				20100		$\begin{aligned} & \text { COACHMANS } \\ & \text { WOOD } \end{aligned}$	LN		CORNELIUS	PO BOX 399		CORNELIUS	NC	28031

E15a
7

	$\begin{aligned} & \text { O} \\ & \underset{\sim}{0} \end{aligned}$	$$	$\stackrel{\infty}{\stackrel{\infty}{0}}$	$\begin{gathered} \stackrel{\circ}{0} \\ \underset{N}{2} \end{gathered}$	$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\infty}} \underset{\sim}{\infty}$	$\begin{aligned} & \stackrel{\infty}{\stackrel{\circ}{\sim}} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{0}} \stackrel{0}{\sim}$		N
$\stackrel{\underset{4}{6}}{\stackrel{4}{6}}$	2	2	2	2	2	0	2	2	2	2	2	2
$\frac{\grave{y}}{\bar{u}}$												$\underset{\sim}{\text { ¢ }}$

\times												

00930114	HUGHES PLUMBING SUPPLY LTD				16235	NORTHCROSS	DR	HUNTERSVILLE	ONE HUGHES WAY	ORLANDO	FL	32805
00930C99	CHERRY	JOHN R	JUNE B	CHERRY	16501	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 16501 \\ \text { NORTHCROSS } \\ \text { DR STE A1 } \\ \hline \end{gathered}$	HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 5086 \end{gathered}$
00930C99	COOL BROKERS	LLC			16315A	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 16315 A \\ \text { NORTHCROSS } \\ \text { DR } \end{gathered}$	HUNTERSVILLE	NC	28078
00930C99	DIAGNOSTIC SERVICES INC				16507	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 16507 \\ \text { NORTHCROSS } \\ \text { DR \#C } \end{gathered}$	HUNTERSVILLE	NC	28078
00930C99	DIXON 2 INC				16507	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 16507 \\ \text { NORTHCROSS } \\ \text { DR STE D } \\ \hline \end{gathered}$	HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 5082 \\ \hline \end{gathered}$
00930C99	ENGEL	WILLIAM J			16405	NORTHCROSS	DR	HUNTERSVILLE	16405 NORTHCROSS DR STE D	HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 5006 \\ \hline \end{gathered}$
00930C99	FOURNIER	DUANE K	VICKIE L	FOURNIER	16419E	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 10321 \\ \text { CLUBHOUSE } \\ \text { VIEW LN } \end{gathered}$	CHARLOTTE	NC	28277
00930C99	FOX	RUSSELL			16507	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 16507-G \\ \text { NORTHCROSS } \\ \text { DR } \end{gathered}$	HUNTERSVILLE	NC	28078
00930C99	GOODMAN A				16419F	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 13000 \\ \text { MOORESVILLE } \\ \text { RD } \\ \hline \end{gathered}$	DAVIDSON	NC	28036
00930C99	HOUCK	M E	CATHY G	HOUCK	16419	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 119 \text { SAILVIEW } \\ \text { RD } \end{gathered}$	MOORESVILLE	NC	28117
00930C99	$\underset{\text { KLC }}{\text { KALEY PROPERTIES }}$				16405	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 20617 \\ \text { BETHELWOOD } \\ \text { LN } \\ \hline \end{gathered}$	CORNELIUS	NC	28031
00930C99	KELLAM	W J JR		W CHRIS PARNELL	16419	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 2901 \\ \hline \text { COLTSGATE RD } \\ \text { STE } 102 \\ \hline \end{gathered}$	CHARLOTTE	NC	$\begin{gathered} 28211- \\ 3572 \end{gathered}$
00930C99	KILKO PROPERTIES INC				16405	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 20617 \\ \text { BETHELWOOD } \\ \text { LN } \end{gathered}$	CORNELIUS	NC	28031
00930C99	LE	MARK M		LE NORTH RECTION, LLC	16415F	NORTHCROSS	DR	HUNTERSVILLE	17705 SPRING WINDS DRIVE	CORNELIUS	NC	$\begin{gathered} 28031- \\ 7591 \\ \hline \end{gathered}$
00930C99	LE FAMILY ENTERPRISES II LLC				16511	NORTHCROSS	DR	HUNTERSVILLE	17705 SPRINGWIND DR	CORNELIUS	NC	28031
00930C99	LE FAMILY ENTERPRISES III LLC				16501	NORTHCROSS	DR	HUNTERSVILLE	17705 SPRINGWOOD DR	CORNELIUS	NC	28031
00930C99	LE FAMILY ENTERPRISES IV LLC				16501	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 17705 \\ \text { SPRINGWIND } \\ \text { DR } \end{gathered}$	CORNELIUS	NC	28031
00930C99	LE FAMILY ENTERPRISES VILLC				16419C	NORTHCROSS	DR	HUNTERSVILLE	17705 SPRINGWIND DR	CORNELIUS	NC	28031
00930C99	MARQUIS HOME BUILDERS, INC				16419D	NORTHCROSS	DR	HUNTERSVILLE	16419 NORTHCROSS DRIVE D	HUNTERSVILLE	NC	28078
00930C99	$\begin{gathered} \text { MOCK PROPERTIES } \\ \text { LLC } \\ \hline \end{gathered}$				16325	NORTHCROSS	DR	HUNTERSVILLE	19529 MARY ARDREY CR	CORNELIUS	NC	28031
00930C99	PIFER	DOROTHY T			16409	NORTHCROSS	DR	HUNTERSVILLE	16409-A NORTHCROSS DR	HUNTERSVILLE	NC	28078
00930C99	TRIPLE H REAL ESTATE LLC				16507	NORTHCROSS	DR	HUNTERSVILLE	16507 NORTHCROSS DR \#E	HUNTERSVILLE	NC	28078
00930C99	VPC CAPITAL LLC				16409	NORTHCROSS	DR	HUNTERSVILLE	PO BOX 36938	CHARLOTTE	NC	28236
00930C99	WACHOVIA SBA LENDING INC				16405	NORTHCROSS	DR	HUNTERSVILLE	$\begin{gathered} 1620 \mathrm{E} \\ \text { ROSEVILLE PKY } \\ \hline \end{gathered}$	ROSEVILLE	CA	95661
00930C99	WALTERS	JAMES L	ENEIDA	WALTERS	16507	NORTHCROSS	DR	HUNTERSVILLE	16507-A NORTHCROSS DR	HUNTERSVILLE	NC	28078
00930C99	WASKIN	JOHN A	CHERYLL	WASKIN	16507	NORTHCROSS	DR	HUNTERSVILLE	18435 PENINSULA COVE LN	CORNELIUS	NC	28031

McDowell Creek Watershed Management Plan Version 4.....................March 2, 2008

McDowell Creek Watershed Management Plan Version 4....................March 2, 2008

PARENDAT	Enhancement II	OWNER, FIRST NAME	COWNER,	COWNER, LAST NAME	houseno	STDIR	stanm	STTYPE	STSUFFIX	MUNICIPALITY	MALLADDR1	MALLADDR2	CITY	STATE	ZIPCODE
01501114	baRnette	BERTRAM A III	JULIEP	BARNETTE			BEATTES FORD	RD	stsumx	HUNTERSVILLE	14700 BEATTIES FORD RD	MALADDR2	huntersvile	NC	28078
01501198	barnette	BERTRAM Alll	JULE P	barnette			BEATTES FORD	RD		HUNTERSVILLE	14700 BEATTIES FORD RD		huntersvilie	nc	28078
01502113	baRnette	Agnes b		(ET-AL)	7107		BUD HENDERSON	RD		HUNTERSVILLE	$\begin{gathered} \text { T107 BUD } \\ \text { HENERSON } \\ \text { RD } \end{gathered}$		HUNTERSVILLE	NC	28078
01502128	QUAN	WILLIAM SHANE	TERESAF	QUAN			BEATTIES FORD	RD		HUNTERSVILLE	14422 BEATTIES FORD RD		HUNTERSVILLE	NC	28078
01540102	LINDERMAN	CLIFTON EARL		ROGERC LINDERMAN (B/W)	14520		BEATTIES FORD	RD		HUNTERSVILLE	242 MEADOW OAKS DR		STATESVILLLE	NC	28625
01541111	COOK FARMS LLC						GILEAD	RD		HUNTERSVILLE	7602 OLIVER HAGER RD		HuNTERSVILLE	NC	28078
REACH RANK (NEED \& FEASIBILITY) RECOMMENDATION															
PARCELID	OWNER, LASt NAME	OWNER, FIRST NAME	COWNER,	COWNER LAST	houseno	STDIR	stname	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MALLADDR2	CITY	State	ZIPCODE
01503101	STEPHENS RIDGE LLC	\% NEW SOTH						RD		HUNTERSVILLE	15188AST 3RD ST\#200		CHARLOTTE	NC	28204
01504106	ARVIDA MID-ATLANTIC HOMES INC		beate	\% HANKE	7930		BUD HENDERSON	RD		HUNTERSVILLE	$\underset{\substack{7900 \text { glades } \\ \text { RD } \# 200}}{ }$		boca raton	FL	33434
01504111	ARVIDA MID-AALANTIC HOMESINC		beate	\% HANKE	7926		BUD HENDERSON	RD		HUNTERSVILLE	${ }_{\text {7900 GLADES }}^{\text {RD \#20 }}$		boca raton	FL	33434
01504112	ARVIDA MID-ALLANTIC HOMESINC		beate	\% HANKE			DARBLAY	ST		huntersville	7900 GLADES RD \#200		bocaraton	FL	33434

$$
\begin{gathered}
\text { A8a } \\
14
\end{gathered}
$$

Enhancement II

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
00512111	kNOX	WALTER LEE	SUSAN	KNOX	19610		WEST CATAWBA	AV		CORNELIUS	9718 OLD GATE		MATTHEWS	NC	28105
00512149	ONE NORMAN SQUARE IP	ATTN: HARRIS HASTON			19400		ONE NORMAN	BV		CORNELIUS	3301 WEST END		NASHVILLE	TN	37203
00527301	CORNELIUS DEVELOPMENT LLC				19425		LIVERPOOL	PY		CORNELIUS	1050 EAGLES LANDING PARKWAY	SUITE 300	STOCKBRIDGE	GA	30281

U 10
15
Restoration

STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	State	ZIPCODE
BV	EAST	HUNTERSVILLE	$\begin{gathered} \text { REIS NCL } 00211 \\ 07 \end{gathered}$	BANK OF AMERICA PLAZA \#11	CHARLOTTE	NC	$\begin{gathered} 28255- \\ 0131 \\ \hline \end{gathered}$
BV		HUNTERSVILLE	REIS NCL 07 00211	BANK OF AMERICA PLAZA \#11	CHARLOTTE	NC	$\begin{array}{r} 28255- \\ 0131 \\ \hline \end{array}$

McDowell Creek Watershed Management Plan Version 4.....................March 2, 2008

COMMENDAT	cattle														
PARCEL ID	OWNER, LAST NAME	NAER, FIRST	$\xrightarrow{\text { COWNER, }}$	COWNER, LAST NAME	Houseno	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MALLADDR2	CITY	State	ZIPCODE
01502113	BARNETTE	AGNES B		(ET-AL)	7107		$\begin{aligned} & \text { BUD } \\ & \text { HENDERSON } \end{aligned}$	RD		HUNTERSVILLE	7107 BUD HENDERSON RD		HUNTERSVILLE	NC	28078
01502128	QUAN	WILLIAM SHANE	TERESAF	QUAN			BEATTIES FORD	RD		HUNTERSVILLE	14422 BEATTIES FORD RD		HUNTERSVILLE	NC	28078
01540101	LINDERMAN	AMARYLIIS V			14532		BEATTIES FORD	RD		HUNTERSVILLE	14512 BEATTIES FORD RD		HUNTERSVILLE	NC	28078
01540102		CLIFTONEARL		ROGER C LINDERMAN (B/W)	14520		BEATTIES FORD	RD		HUNTERSVILLE	242 MEADOW OAKS DR		STATESVILLLE	NC	28625
01540104	GORDON LAND- NASSAR INVESTMENTS	JOINT VENTURE					BEATTIES FORD	RD		HUNTERSVILLE	10100 PARK CEDAR DR\#180		CHARLOTTE	NC	28031

A5b
17

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
00512149	ONE NORMAN SQUARE LP	ATTN: HARRIS HASTON			19400		ONE NORMAN	BV		CORNELIUS	$\begin{gathered} 3301 \text { WEST END } \\ \text { AV \#200 } \\ \hline \end{gathered}$		NASHVILLE	TN	37203
00526108	YOUNG	DONNA W			19211		DUTCH IRIS	LN		CORNELIUS	$\begin{gathered} 19211 \text { DUTCH } \\ \text { IRIS LN } \\ \hline \end{gathered}$		CORNELIUS	NC	28031
00526109	KILLIAN	JAMES E	CYNTHIA B	KILLIAN	19219		DUTCH IRIS	LN		CORNELIUS	PO BOX 1218		NEWTON	NC	28652
00526309	GARRICK	JONATHAN G			19230		DUTCH IRIS	LN		CORNELIUS	$\begin{gathered} 19230 \text { DUTCH } \\ \text { IRIS LN } \end{gathered}$		CORNELIUS	NC	28031
00526310	PARK	FAMILY TRUST			8851		MAGNOLIA ESTATES	DR		CORNELIUS	8851 MAGNOLIA ESTATES DR		CORNELIUS	NC	$\begin{gathered} 28031- \\ 7847 \\ \hline \end{gathered}$
00527301	CORNELIUS DEVELOPMENT LLC				19425		LIVERPOOL	PY		CORNELIUS	1050 EAGLES LANDING PARKWAY	SUITE 300	STOCKBRIDGE	GA	30281

REACH
RANK (NEED \&
FEASIBILITY) RECOMMENDATION
B9b_B10a
Enhancement II

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
00514101	RNA INVESTMENT				18820		STATESVILLE	RD		CORNELIUS	$\begin{gathered} 11343 \text { FOX HILL } \\ \text { DR } \end{gathered}$		CHARLOTTE	NC	$28269-$
00514114	LACKEY	NANCY L					STATESVILLE	RD		CORNELIUS	103 PIER 33 DR UNIT 216		MOORESVILLE	NC	$\begin{gathered} 28117-1 \\ 5533 \\ \hline \end{gathered}$
00516679	TOWN OF CORNELIUS				20300		FLORAL	LN		CORNELIUS	PO BOX 399		CORNELIUS	NC	28031
00517106	OUTDOORS REAL ESTATE LLC				19020		STATESVILLE	RD		CORNELIUS	$\begin{gathered} 19020 \\ \text { STATESVILLE } \\ \text { RD } \end{gathered}$		CORNELIUS	NC	$\begin{array}{r} 28031- \\ 6847 \\ \hline \end{array}$
00517147	FLETCHER	FRANK S	PEGGY A	FLETCHER	20301		WILLOW POND	RD		CORNELIUS	$\begin{gathered} 20301 \text { WILLOW } \\ \text { POND RD } \\ \hline \end{gathered}$		CORNELIUS	NC	28031
00517148	MALINOVSKY	HOLLIE M			20303		WILLOW POND	RD		CORNELIUS	$\begin{gathered} 20303 \text { WILLOW } \\ \text { POND RD } \\ \hline \end{gathered}$		CORNELIUS	NC	28031
00517149	ZIMMERMAN	JEFFREY GLEN	CAROL J	ZIMMERMAN	20307		WILLOW POND	RD		CORNELIUS	$\begin{gathered} 20307 \text { WILLOW } \\ \text { POND RD } \\ \hline \end{gathered}$		CORNELIUS	NC	28031
00517178	$\underset{\text { LAKE }}{\text { WILLOW POND AT }}$	$\begin{aligned} & \text { NORMAN } \\ & \text { HOMEOWNERS } \\ & \text { ASSOC } \end{aligned}$					WILLOW POND	RD		CORNELIUS	GENERAL DELIVERY		CORNELIUS	NC	28031
00517182	JJF ENTERPRISES LLC				19010		STATESVILLE	RD		CORNELIUS	215 LAWTON RD		CHARLOTTE	NC	28216
00517183	BLUEWATER INVESTMENT LLC						STATESVILLE	RD		CORNELIUS	21320 BLAKNEY		CORNELIUS	NC	28031
00529173	$\underset{\text { THE }}{\text { TOWN OF CORNELIUS }}$				20100		$\begin{aligned} & \text { COACHMANS } \\ & \text { WOOD } \end{aligned}$	LN		CORNELIUS	PO BOX 399		CORNELIUS	NC	28031

RANK (NEED \&
FEASIBILITY)
recommendation
McDowell Creek Watershed Management Plan Version 4....................March 2, 2008
McDowell Creek Watershed Management Plan Version $4 .$.
FEASIBLITY)
FEASIBLLTY)
RECOMMEND

REACH FEASIBILITY)	P23a
RECOMMENDATION	20 Enhancement II/ / Improvement to culverts at sanitary sewer crossings to alommodate bankfull flows and sediment transport
PARCEL ID	OWNER, LAST NAME
01707201	BEAZER HOMES CORP
01707226	RANSON
01707227	SANDERS
01707242	GOOD
01707501	BEAZER HOMES CORP

B13a
21
FEASIBILITY)
RECOMMENDATION
REACH
RRANK (NEED \&
FEASIBLITIT)
PARCELID
00516661 ©
$\stackrel{0}{\circ}$
$\stackrel{0}{8}$ 00525513
00525514
00525515
00525517
0052518
00525519
둥웅
00525599
REACH
RANK (NEED \&
FEASIBILITY)
McDowell Creek Watershed Management Plan Version 4......................March 2, 2008

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01719102	BANK OF AMERICA	(BY MERGER)		\% SUSAN MELTON	13620		REESE	BV	EAST	HUNTERSVILLE	$\begin{gathered} \text { REIS NCL } 00211 \\ 07 \end{gathered}$	BANK OF AMERICA PLAZA \#11	CHARLOTTE	NC	$\begin{gathered} 28255- \\ 0131 \\ \hline \end{gathered}$
01719301	N C STATE HIGHWAY	\& PUBLIC WKS COMMISSION			12101		MT HOLLYHUNTERSVILLE	RD		HUNTERSVILLE	$\begin{gathered} 1119 \text { E SUGAR } \\ \text { CREEK RD } \\ \hline \end{gathered}$		CHARLOTTE	NC	$\begin{gathered} 28205- \\ 1448 \\ \hline \end{gathered}$
01719302	BANK OF AMERICA	(BY MERGER)		\% SUSAN MELTON			REESE	BV		HUNTERSVILLE	REIS NCL 00211	BANK OF AMERICA PLAZA \#11	CHARLOTTE	NC	$\begin{gathered} 28255- \\ 0131 \\ \hline \end{gathered}$

```
A21a
23
```


F11b

$\begin{array}{lc}\text { FEASIBILITY) } & 24 \\ \text { Enhancement I }\end{array}$
REACH
RANK (NEED \&
FEASIBILITY)

PARCEL Restoration | PARCEL ID | OWNER, LAST NAME |
| :---: | :---: |
| 00511103 | WESTMORELAND |
| COMMUNITIES LLC | |

00541105	CAR SON LNB SHOP

REACH
RANK (NEED \&
FEASIBILITY)
RECOMMENDATION

PARCEL ID	OWNER, LAST NAME
00535103	BROTHERTON T L INC DR HORTON INC - TORREY
00535106	DR HORTON INC- TORREY
00535295	DR HORTON INC- TORREY
00535601	DR HORTON INC- TORREY
00535602	DR HORTON INC- TORREY
00535603	CALDWELL STATION HOMEOWNERS
00535609	ILER
00535622	BONE
00535623	HARTEL
00535624	CRESPI
00535625	PANN
00535626	MCINTOSH
00535627	PIERCE
00535628	HUSKEY
00535629	LILJA
00535630	SCHNEIDER
00535631	

DR HORTON INC -				323
TORREY D R HORTON INC -				17327
PERKINSON	suzannek	Anthony P	thompson	9850
CALDWELL STATION HOMEOWNERS	ASSOCIATION INC			
CALDWELL STATION HOMEOWNERS	ASSOCIATION			
	CHRISTOPHER	Istina		
PHILIPS		christina	PHILIPS	16926
hampton ridge	charlotte			

A5a_A18a
Enhancement II OWNER, LAST NAME
WESTMORELAND
COMMUNITIES LLC BLAKELY
BLAKELY
YOUNG KILLIAN

STEPHENSON
GARRICK PARK CRIFASI NOAN3Y ERDT DIETRICH REYNOLDS

 ISAKSON BELK BELK
FOURNET

RANK (NEED \&
FEASIBIIITY)
RECOMMENDATIO

RECOMMENDATION PARCEL ID 00511103 90LEIS00 00513121 00526108 6019ZS00 8089ZG00 $60 \varepsilon 9 Z 900$ 01E9ZG00 | $\stackrel{\rightharpoonup}{0}$ |
| :---: |
| $\stackrel{0}{6}$ |
| 8 | Z1E9ZG00

 tlE9ZS00 SIE9ZS00 9lE9Z900 숭 00526318 00526319 00526320
00526321

00535632
00535633
00535646
00535647
00535805
00544415
00544420

\qquad
ведсн
REACH
RANK (NEE
FEASIBIITM

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
00511103	WESTMORELAND COMMUNITIES LLC				18644		ROSALYN GLEN	RD		CORNELIUS	$\begin{gathered} 6707 \text { FAIRVIEW } \\ \text { RD \#B } \\ \hline \end{gathered}$		CHARLOTTE	NC	$\begin{gathered} 28210- \\ 3354 \\ \hline \end{gathered}$
00513106	BLAKELY	ANNIE L				N	1-77	HY		UNINC	$\begin{gathered} 21132 \\ \text { BRINKLEY ST } \end{gathered}$		CORNELIUS	NC	28031
00513121	BLAKELY	JAMES R	ANNIE L	BLAKELY		N	1-77	HY		UNINC	$\begin{gathered} 21132 \\ \text { BRINKLEY ST } \\ \hline \end{gathered}$		CORNELIUS	NC	28031
00526108	YOUNG	DONNA W			19211		DUTCH IRIS	LN		CORNELIUS	$\begin{aligned} & 19211 \text { DUTCH } \\ & \text { IRIS LN } \\ & \hline \end{aligned}$		CORNELIUS	NC	28031
00526109	KILLIAN	JAMES E	CYNTHIA B	KILLIAN	19219		DUTCH IRIS	LN		CORNELIUS	PO BOX 1218		NEWTON	NC	28652
00526308	STEPHENSON	$\begin{aligned} & \text { RANDOLPHE } \\ & \hline \end{aligned}$			19238		DUTCH IRIS	LN		CORNELIUS	$\begin{aligned} & 19238 \text { DUTCH } \\ & \text { IRIS LN } \\ & \hline \end{aligned}$		CORNELIUS	NC	28031
00526309	GARRICK	JONATHAN G			19230		DUTCH IRIS	LN		CORNELIUS	$\begin{gathered} 19230 \text { DUTCH } \\ \text { IRIS LN } \\ \hline \end{gathered}$		CORNELIUS	NC	28031
00526310	PARK	FAMILY TRUST			8851		MAGNOLIA ESTATES	DR		CORNELIUS	8851 MAGNOLIA ESTATES DR		CORNELIUS	NC	$\begin{gathered} 28031- \\ 7847 \\ \hline \end{gathered}$
00526311	CRIFASI	RICHARD P		GERALDINE CRIFASI (H/W)	8861		MAGNOLIA ESTATES	DR		CORNELIUS	8861 MAGNOLIA ESTATES DR		CORNELIUS	NC	28031
00526312	KENYON	BRIAN R	MARIE E	KENYON	8907		MAGNOLIA ESTATES	DR		CORNELIUS	8907 MAGNOLIA ESTATES DR		CORNELIUS	NC	28031
00526313	ERDT	MICHAEL J			8915		MAGNOLIA ESTATES	DR		CORNELIUS	8915 MAGNOLIA ESTATES DR		CORNELIUS	NC	28031
00526314	DIETRICH	CHRISTINE L			8923		MAGNOLIA ESTATES	DR		CORNELIUS	8923 MAGNOLIA ESTATES DR		CORNELIUS	NC	28031
00526315	REYNOLDS	LISETTE N	ROBERT	REYNOLDS	8931		MAGNOLIA ESTATES	DR		CORNELIUS	8931 MAGNOLIA ESTATES DR		CORNELIUS	NC	28031
00526316	HARRISON	$\underset{\mathrm{R}}{\text { CHRISTOPHER }}$	GRETCHEN M	YOUNG	8939		MAGNOLIA ESTATES	DR		CORNELIUS	8939 MAGNOLIA ESTATES DR		CORNELIUS	NC	28031
00526317	LAMBERT	ALLEN MICHAEL			8947		MAGNOLIA ESTATES	DR		CORNELIUS	8947 MAGNOLIA ESTATES DR		CORNELIUS	NC	$\begin{gathered} 28031- \\ 7849 \\ \hline \end{gathered}$
00526318	ISAKSON	KARL R			19201		ENGLISH DAISY	DR		CORNELIUS	19201 ENGLISH DAISEY DR		CORNELIUS	NC	28031
00526319	BELK	B V JR			19205		ENGLISH DAISY	DR		CORNELIUS	4508 E INDEPENDENCE BV	\#207	CHARLOTTE	NC	28205
00526320	BELK	B V JR			19207		ENGLISH DAISY	DR		CORNELIUS	4508 E INDEPENDENCE BV	\#207	CHARLOTTE	NC	28205
00526321	FOURNET	WILLIAM D	TERRI H	FOURNET	19206		ENGLISH DAISY	DR		CORNELIUS	$\begin{gathered} 19206 \text { ENGLISH } \\ \text { DAISY CT } \\ \hline \end{gathered}$		CORNELIUS	NC	$\begin{gathered} 28031- \\ 7875 \\ \hline \end{gathered}$

[^0]McDowell Creek Watershed Management Plan Version 4....................March 2, 2008
McDowell Creek Watershed Management Plan Version 4.......................March 2, 2008

01742108	CPCC	(TRUSTEES)			11930		VERHOEFF	DR		HUNTERSVILLE	PO BOX 35009		Charlotte	NC	28235
01742109	CENTRAL PIEDMONT	COMMUNITY COLLEGE		\%TRUSTEES			VERHOEFF	DR		HUNTERSVILLE	PO BOX 35009		CHARLOTTE	NC	28235
01742110	MECKLENBURG	CHRONIC DISEASE		\% REAL ESTATE IFINANCE DEPT			VERHOEFF	DR		HUNTERSVILLE	600 E ${ }_{11}$ TH ST FL		CHARLOTTE	NC	$\begin{gathered} 28202- \\ 2816 \end{gathered}$
REACH RANK (NEED \& FEASIBILITY) RECOMMENDATIO	U20 27 Enhancement II														
PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01736102	STANCIL	$\begin{gathered} \text { SYDNEY } \\ \text { WHITENER } \end{gathered}$					OLD STATESVILLE	RD		HUNTERSVILLE	PO BOX 1576		HUNTERSVILLE	NC	$\begin{gathered} 28070 \\ 1576 \\ \hline \end{gathered}$
01742109	CENTRAL PIEDMONT	COMMUNITY COLLEGE		\%TRUSTEES			VERHOEFF	DR		HUNTERSVILLE	PO BOX 35009		CHARLOTTE	NC	28235
01742110	MECKLENBURG COUNTY	CHRONIC DISEASE		\% REAL ESTATE /FINANCE DEPT			VERHOEFF	DR		HUNTERSVILLE	$\begin{aligned} & 600 \text { E 4TH ST FL } \\ & \hline 11 \end{aligned}$		CHARLOTTE	NC	$\begin{gathered} 28202- \\ 2816 \\ \hline \end{gathered}$

F8a
RANK (NEED \&
RANK (NEED \&
FEASIBILITY)
RECOMMENDAT

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
00502109	FREEMAN	J SMITH		$\begin{gathered} \hline \text { COTTON'S COVE } \\ \text { LLC } \\ \hline \end{gathered}$	18121		$\begin{gathered} \text { OLD } \\ \text { STATESVILLE } \end{gathered}$	RD		UNINC	5326 ROBINHOOD RD		CHARLOTTE	NC	28211
00502114	GULBRANSON	ROBERTE		KIMBERLY M MUELLER	18045		$\begin{gathered} \text { OLD } \\ \text { STATESVILLE } \end{gathered}$	RD		UNINC	$\begin{gathered} 18045 \text { OLD } \\ \text { STATESVILLE } \\ \text { RD } \end{gathered}$		CORNELIUS	NC	28031
00502116	HOWARD	$\begin{gathered} \hline \text { JOHN CLARK } \\ \text { JR } \\ \hline \end{gathered}$		BETTY BAKER			$\begin{gathered} \text { OLD } \\ \text { STATESVILLE } \\ \hline \end{gathered}$	RD		UNINC	PO BOX 1056		CORNELIUS	NC	28031
00502117	HOWARD	$\begin{gathered} \hline \text { JOHN CLARK } \\ \text { JR } \end{gathered}$		BETTY BAKER	18021		$\begin{gathered} \text { OLD } \\ \text { STATESVILLE } \end{gathered}$	RD		UNINC	PO BOX 1056		CORNELIUS	NC	28031
00502118	BAKER	HOWARD H JR	JOYCE P	BAKER	18009		OLD STATESVILLE	RD		UNINC	$\begin{gathered} 18009 \text { OLD } \\ \text { STATESVILLE } \\ \text { RD } \\ \hline \end{gathered}$		CORNELIUS	NC	28031
00502125	CRESCENT ELECTRIC MEMBERSHIP	CORP			18019		$\begin{gathered} \text { OLD } \\ \text { STATESVILLE } \end{gathered}$	RD		UNINC	PO BOX 1150		STATESVILLE	NC	$\begin{gathered} 28687- \\ 1150 \\ \hline \end{gathered}$
00502202	TORREY D R HORTON INC-				18004		CALDWELL TRACK	DR		CORNELIUS	$\begin{gathered} 1100 \text { S TRYON } \\ \text { ST \#100 } \end{gathered}$		CHARLOTTE	NC	28203
00502210	D R HORTON INCTORREY						CALDWELL TRACK	DR		CORNELIUS	1100 S TRYON ST SUITE 100		CHARLOTTE	NC	28203
00535103	BROTHERTONTLINC			\%SHEILA KERR, SECRETARY	10350		BAILEY	RD		UNINC	$\begin{aligned} & 13223 \text { WILLOW } \\ & \text { BREEZE LN } \end{aligned}$		HUNTERSVILLE	NC	28078
00535201	D R HORTON INC- TORREY				18411		TRAIN STATION	DR		CORNELIUS	$\begin{gathered} 1100 \text { S TRYON } \\ \text { ST \#100 } \\ \hline \end{gathered}$		CHARLOTTE	NC	28203
00535202	D R HORTON INC- TORREY				18417		TRAIN STATION	DR		CORNELIUS	$\begin{gathered} 1100 \text { S TRYON } \\ \text { ST \#100 } \\ \hline \end{gathered}$		CHARLOTTE	NC	28203
00535203	D R HORTON INC- TORREY				18421		TRAIN STATION	DR		CORNELIUS	$\begin{gathered} 1100 \text { S TRYON } \\ \text { ST \#100 } \\ \hline \end{gathered}$		CHARLOTTE	NC	28203
00535204	D R HORTON INC- TORREY				18427		TRAIN STATION	DR		CORNELIUS	$\begin{gathered} 1100 \text { S TRYON } \\ \text { ST \#100 } \\ \hline \end{gathered}$		CHARLOTTE	NC	28203
00535205	D R HORTON INC- TORREY				18431		TRAIN STATION	DR		CORNELIUS	$\begin{gathered} 1100 \text { S TRYON } \\ \text { ST \#100 } \end{gathered}$		CHARLOTTE	NC	28203
00535275	D R HORTON INC- TORREY						CALDWELL TRACK	DR		CORNELIUS	1100 S TRYON ST SUITE 100		CHARLOTTE	NC	28203
00535295	D R HORTON INC- TORREY				11000		BAILEY	RD		CORNELIUS	1100 S TRYON ST SUITE 100		CHARLOTTE	NC	28203
00535709	D R HORTON INC- TORREY				18115		TRAIN STATION	DR		CORNELIUS	$\begin{gathered} 1100 \text { S TRYON } \\ \text { ST \#100 } \\ \hline \end{gathered}$		CHARLOTTE	NC	28203
00535710	D R HORTON INC- TORREY				18119		TRAIN STATION	DR		CORNELIUS	$\begin{gathered} 1100 \text { S TRYON } \\ \text { ST \#100 } \end{gathered}$		CHARLOTTE	NC	28203

$\begin{array}{lc}\text { REACH } & \text { F28b } \\ \text { RANK (NEED \& } & 29 \\ \text { FEASIBILITY) } & \text { Enhancement I }\end{array}$
McDowell Creek Watershed Management Plan Version 4..........................arch 2, 2008

PARCELID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	$\underset{\substack{\text { COWNER, LAST } \\ \text { NAME }}}{ }$	Houseno	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MALADDR2	CITY	STATE	ZIPCODE
00503219	TOWN OF CORNELUS					N	STATESVILLE	RD		HUNTERSVILLE	ро вох 339		CORNELIUS	NC	28031
00503219	$\underset{\text { THE }}{\text { TOWN OLIUS }}$						STATESVILLE	RD		UNINC	ро Box 399		CORNELIUS	NC	28031
00532123	STANDISH	том			17642		CAMBRIDGE GROVE	DR		HUNTERSVILLE	$\begin{aligned} & 17742 \\ & \text { CAMBRIDGE } \\ & \text { GROVE DR } \end{aligned}$		HUNTERSVILLE	NC	28078
00532124	WOHLLEBER	EMILY S	EDWARD P	WOHLLEBER	17640		CAMbridge GROVE	DR		HUNTERSVILLE	$\begin{aligned} & 17640 \\ & \text { CAMBRDGE } \\ & \text { GROVE DR } \end{aligned}$		HUNTERSVILLE	NC	28078
00532125	MARCELA	MICHAEL R	$\underset{H}{\text { MARSALENE }}$	marcela	17634		CAMBRIDGE GROVE	DR		HUNTERSVILLE	$\begin{aligned} & 17634 \\ & \text { CAMBIDGE } \\ & \text { GROVE DR } \end{aligned}$		HUNTERSVILLE	NC	28078
00532126	BIAS	mark R		ANNE CLAGG BIAS (HM)	17628		CAMbRIDGE GROVE	DR		HUNTERSVILLE	$\begin{gathered} 17628 \\ \text { CAMBRIDGE } \\ \text { GROVE DR } \end{gathered}$		HUNTERSVILLE	NC	28078
00532127	SHULTZ	MATTHEW A		MELISSA L SHULTZ (H/W)	17622		CAMBRIDGE GROVE	DR		HUNTERSVILLE	$\stackrel{17622}{\text { CAMBIDGE }}$ GROVE DR		HUNTERSVILLE	NC	28078
00532128	BEAL	CLYDER JR		$\begin{gathered} \text { SHELBY M BEAL } \\ (H / W) \end{gathered}$	17616		CAMBRIDGE GROVE	DR		HUNTERSVILLE	CAMBRIDGE GROVE DR		HUNTERSVILLE	NC	28078
00532129	GIGNAC	fred	JLL	GIGNaC	17610		CAMbridge GROVE	DR		huntersvilie	$\begin{aligned} & 17610 \\ & \text { CAMBRIDGE } \\ & \text { GROVE DR } \end{aligned}$		HUNTERSVILLE	NC	28078
00532130	NASIFE	SAMUEL NJR	JOSIE L	NASIFE	17604		CAMBRIDGE GROVE	DR		HUNTERSVILLE	GROVE DR		HUNTERSVILLE	NC	28078
00532131	RISLEY	DEREKL	kAREN S	RISLEY	17526		CAMBRIDGE GROVE	DR		HUNTERSVILLE	17526 CAMBRIDGE GROVE DR		HUNTERSVILLE	NC	28078
00532132	bates	$\underset{R}{\text { CHRISTOPHER }}$	KRISTIA	martin	17520		CAMBRIDGE GROVE	DR		HUNTERSVILLE	17520 CAMBRIDGE GROVE GROVE DR		HUNTERSVILLE	NC	28078
00532133	PASOLA	DANIEL	CHRISTINA	PASOLA	17514		CAMbridge GROVE	DR		HUNTERSVILLE	17514 CAMBRIDGE GROVE DR		HUNTERSVILLE	NC	28078
00532134	Lang	dianaw			17508		CAMBRIDGE GROVE	DR		HUNTERSVILLE	${ }_{\substack{828 \text { CATHEY } \\ \text { ROAD }}}$		Charlotte	NC	28214
00532135	TALBOYS	MICHAEL W	marilyna	TALBOYS	17502		CAMBRIDGE GROVE	DR		HUNTERSVILLE	17502 CAMBRIDGE GROVE GROVE DR		HUNTERSVILLE	NC	28078
00532136	HLL	RICHARDE			17440		CAMbRIDGE GROVE	DR		HUNTERSVILLE	$\begin{aligned} & 17400 \\ & \text { CAMBRIDGE } \\ & \text { GROVE DR } \end{aligned}$		HUNTERSVILLE	NC	28078
00532137	MURPHEY	JAMES N		ELIZABETHA MURPHEY (HW)	17434		CAMBRIDGE GROVE	DR		HUNTERSVILLE	17434 CAMBIDGE GROVE DR		HUNTERSVILLE	NC	28078
00532138	PAUL	Roger	LORETTA A	PAUL	17428		CAmbridge GROVE	DR		HUNTERSVILLE	$\begin{aligned} & 17428 \\ & \text { CAMBRIDGE } \\ & \text { GROVE DR } \end{aligned}$		HUNTERSVILLE	NC	28078
00532139	mostert	BRENT ROSS	Lorettaa	SUSAN Jane	17422		CAMBRIDGE GROVE	DR		huntersvilie	CAMBRIDGE GROVE DR		HUNTERSVILLE	NC	28078
00532140	SMITH	JEFFREY W II			17414		CAMBRIDGE GROVE	DR		HUNTERSVILLE	GROVE DR 17414 CAMBRIDGE		HUNTERSVILLE	NC	28078
00532141	HYLTON	DIANE	RoNald	HYLTON	17406		CAMBRIDGE GROVE	DR		HUNTERSVILLE	${ }_{\text {GLASSFIELD DR }}^{17326}$		HUNTERSVILLE	NC	28078
00532170	BORCICH	MEREDITH	CHRISTOPHER L \% V FISHER	BORCICH	17259		GLASSFIELD	DR		HUNTERSVILLE	4534 ICARD RIDGE RD		HICKORY	NC	28601
00532171	Herold	ERIC C	ANN $\mathrm{E}^{\text {e }}$	HEROLD	17301		GLASSFIELD	DR		HUNTERSVILLE	${ }_{\text {GLASSFIELD DR }} 17301$		HUNTERSVILLE	NC	28078
00532172	KIM	John J	JULET		17307		GLASSFIELD	DR		HUNTERSVILLE	GLASSFFIELD DR		HUNTERSVILLE	NC	28078
00532173	DORN	VERNONFJR		THERESAA	17313		GLASSFIELD	DR		HUNTERSVILLE	$\begin{aligned} & 17313 \\ & \text { GLASSFIELD DR } \end{aligned}$		HUNTERSVILLE	NC	28078
00532174	BREUNIG	CHAD O	ERINL	BREUNIG	17319		GLASSFIELD	DR		HUNTERSVILLE			huntersvilue	NC	28078
00532175	RUTZINSKI	JASONL	SUSANNE G	RUTZINSKI	17409		GLASSFIELD	DR		HUNTERSVILLE	17409		HUNTERSVILLE	NC	28078

McDowell Creek Watershed Management Plan Version 4.......................March 2, 2008

®
30 OWNER, LAST NAME ROBERTSON
WOJTOWICZ NASH
DIXON ESTRIDGE
 PAUK
COUNTENBURG
COUNTY

 $\stackrel{\sim}{\sim}$

 REACH
RANK (NEED \& RECOMMENDATION PARCEL ID 00516661 00516663 00516664 $\stackrel{4}{8}$
$\stackrel{!}{\circ}$
$\stackrel{t}{8}$ 00516666
00516667 00516668 00525510 00525511長 00525513
 00525515 00529162 00529163 00529173 00529174
 00529177
McDowell Creek Watershed Management Plan Version 4.....................March 2, 2008

00529178	GANDY PROPERTIES				20125		COACHMANS	LN		cornelus	PO BOX 2326		CORNELIUS	NC	28031
00529179	MIKE JOCOY CUSTOM HOMES LLC				19842		$\underset{\text { TRACE }}{\text { COACHMAN'S }}$			CORNELIUS	19135 RUFFNER DR		CORNELIUS	NC	28031
00529197	WEATHERSTONE MANOR OWNERS	$\begin{gathered} \text { ASSOCIATION } \\ \text { INC } \end{gathered}$		$\begin{gathered} \text { C/O WILLOW } \\ \text { CREEK OF NC } \\ \text { LLC } \\ \hline \end{gathered}$			COACHMANS WOOD	LN		CORNELIUS	$\begin{gathered} 8508 \text { PARK RD } \\ \# 188 \end{gathered}$		CHARLOTTE	NC	28210
00529198	AMERICAN LUMBER CO LLC						COACHMAN'S TRACE			CORNELUS	5914 HANNA CT		CHARLOTTE	NC	28212
REACH	L3a														
FEASIBLITY)	$\begin{gathered} 31 \\ \begin{array}{c} \text { Bank Stabilization } \\ \text { upstream off Statesville } \\ \text { Rd./ Restoration } \end{array} \end{gathered}$ Rd./ Restoration downstream														
PARCEL ID	OWNER, LASt Name	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	houseno	STDIR	stiame	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MALADDR2	CITY	State	ZIPCODE
01712105	triangle real ESTATE OF	gastonia inc		\% HEATHER INGRAM	10604		HUNTERSVILLE COMMONS	DR		HUNTERSVILLE	3500 AMERICAN BOULEVARD WEST	SUITE 500	bloomington	MN	55431
01712141	ARAHOVA LLC					N	STATESVILLE	RD		HUNTERSVILLE	TURNERSBURG HWY		STATESVILLE	NC	28625
01714402	PATEL	dinesh AMBALA	LEENA D	PATEL	14601		MARUTI	AV		HUNTERSVILLE	$\begin{gathered} \text { 4526 } \\ \text { WILKINSON } \\ \text { BLVD } \end{gathered}$		CHARLOTTE	NC	$\begin{gathered} 28208 \\ 5531 \end{gathered}$
01714410	PATEL	DINESH AMBALA		$\underset{(\text { HW })}{\text { LEENAD PATEL }}$			MARUTI	AV		HUNTERSVILLE	$\begin{gathered} 4526 \\ \text { WILKINSO } \\ \text { BLVD } \\ \hline \end{gathered}$		CHARLOTTE	NC	$\begin{aligned} & 28208 \\ & 5531 \\ & \hline 50 \end{aligned}$
01715307	CITY OF CHARLOTTE					N	STATESVILLE	RD		HUNTERSVILLE	${ }^{600 \text { EAST 4TH }}$ ST		CHARLOtTE	NC	28202
01715308	ENCAR REALTY LLC				531		HUNTERSVILLE GATEWAY	BV		HUNTERSVILLE	$\begin{gathered} 11145 \\ \text { METROMONT } \\ \text { PKWY } \end{gathered}$		Charlotte	NC	28269
01735109	ZYK	PETER F			111		CAMBRIDGE	RD		HUNTERSVILLE	111 CAMBRIDGE RD		HUNTERSVILLE	NC	$\begin{gathered} 28078 \\ 9007 \end{gathered}$
REACH FEASIBILITY) RECOMMENDATIO	$\begin{gathered} \text { A13a } \\ 32 \end{gathered}$ Enhancement II														
PARCEL ID	owner, LASt Name	OWNER, FIRST NAME	COWNER, FIRST NAME	$\underset{\text { NAME }}{\substack{\text { COWNER } \\ \text { NAST }}}$	houseno	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MALADDR2	CITY	State	ZIPCODE
00511103	WESTMORELAND COMTUNITIES LLC				18644		ROSALYN GLEN	RD		CORNELIUS			charlotte	NC	${ }_{\substack{28310-}}^{\text {334 }}$
	WESTMORELAND						rosalkolen				RD\#B		Charlote		
00511319	COMMUNITIES LLC						Rosaly glen	RD		UNINC	RD\#B		charlotte	NC	3354
REACH RANK (NEED \& FEASIBILITY) RECOMMENDATIO	$\begin{gathered} \text { F5a } \\ 33 \\ \text { Enhancement } \mathrm{I} \end{gathered}$														
PARCELID	owner, LASt name	OWNER, FIRST NAME	COWNER, FIRST NAME	$\underset{\substack{\text { COWNER, LAST } \\ \text { NAME }}}{ }$	houseno	STDIR	stanme	STTYPE	STSUFFIX	MUNICIPALITY		MALADDR2	CITY	State	ZIPCODE
00522207	AUTEN	JAMES L JR	KAREN Z	AUTEN	10436		BALLEY	RD		UNINC	10436 BAILEY		CORNELIUS	NC	28031
00522208	BROTHERTON	THOMASLJR	MARIAN J	BROTHERTON	10416		BAILEY	RD		UNINC	10416 BAILEY RD		CORNELUS	NC	28031
00522213	DMC PROPERTIES INC				18624		NORTHLINE	DR		Cornelius	PO BOX 1629		BELMONT	NC	28012
00522214	PADGETT	JAMES W		PHILIPW SAFRIET	18612		NORTHLINE	DR		cornelus	PO BOX 1480		CORNELUS	NC	28031
00522217	LANCTO	JoN A	GAYLE C	LANCTO	18623		NORTHLINE	DR		CORNELIUS	$\begin{aligned} & \text { P05 STATIT80 } 12 \\ & \hline \text { ST } \\ & \hline \end{aligned}$		SULLIVANS	sc	
00533110	P\&M ASPLAND LLC				18626		STARCREEK	DR		CORNELIUS	PO BOX 31457		CORNELIUS	NC	$\begin{gathered} 28831-1 \\ 9203 \\ 920 \end{gathered}$
00533111	Qкт LLC				18610		Starcreek	DR		CORNELIUS	18610		CORNELUS	NC	28031

McDowell Creek Watershed Management Plan Version 4．．．．．．．．．．．．．．．．．．．．．．．．．．arch 2， 2008

¢	응	응	$\stackrel{\text { ¢ }}{0}$	앙 응	잉 응	앙				¢	잉			응 응	$\stackrel{\text { ¢ }}{\circ}$	응 응	\％¢ ¢	¢ ¢ ¢ ¢	응 응	응	$\stackrel{\text { r }}{\sim}$	$\stackrel{\text { ¢ }}{\sim}$				）	¢
								$\begin{aligned} & \stackrel{1}{2} \\ & \frac{1}{2} \\ & \stackrel{1}{0} \\ & \frac{1}{2} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \sum_{1}^{1} \\ & \frac{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \sum_{2}^{u} \\ & \stackrel{1}{2} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{2}{2} \end{aligned}$								$\begin{aligned} & \text { 岂 } \\ & 2 y_{2}^{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \stackrel{u}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \stackrel{u}{2} \\ & \sum_{1}^{2} \\ & \stackrel{1}{2} \\ & \frac{0}{2} \end{aligned}$				
$\begin{aligned} & \stackrel{\circ}{\otimes} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\text { ® }}{\substack{1 \\ \hline}}$	$\stackrel{\bullet}{\otimes}$	$\begin{aligned} & \stackrel{\bullet}{\mathbf{D}} \\ & \stackrel{0}{2} \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{\mathbf{O}} \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\ddot{8}}{\stackrel{\otimes}{\sim}} \end{aligned}$		$\begin{array}{r} \stackrel{\bullet}{8} \\ \stackrel{\otimes}{~} \end{array}$	$\stackrel{\stackrel{\rightharpoonup}{\mathbf{e}}}{\stackrel{\circ}{2}}$				$\begin{aligned} & \stackrel{\bullet}{\mathbf{Q}} \\ & \stackrel{\rightharpoonup}{+} \end{aligned}$	$\begin{aligned} & \stackrel{\ddot{\circ}}{\stackrel{\rightharpoonup}{\bullet}} \\ & \hline \end{aligned}$				$\begin{aligned} & \stackrel{\ddot{8}}{\stackrel{\rightharpoonup}{\bullet}} \end{aligned}$	$\begin{array}{r} \stackrel{\bullet}{0} \\ \stackrel{\otimes}{-} \end{array}$	$\begin{array}{r} \stackrel{\bullet}{0} \\ \stackrel{\otimes}{-} \end{array}$	$\begin{aligned} & \stackrel{\circ}{\mathbf{o}} \\ & \stackrel{y}{2} \end{aligned}$			$\begin{array}{\|} \stackrel{\ddot{\otimes}}{\stackrel{\otimes}{6}} \end{array}$	$\stackrel{\text { ® }}{\text { ¢ }}$
																											¢
	$\begin{aligned} & \text { 咅 } \\ & \text { 空 } \end{aligned}$					¢								㡲				－	¢			$\underset{\substack{I \\ \hline \\ \hline}}{ }$	$\begin{aligned} & \substack { 1 \\ \sum_{0}^{\mathbf{O}} \\ \begin{subarray}{c}{x{ 1 \\ \sum _ { 0 } ^ { \mathbf { O } } \\ \begin{subarray} { c } { x } } \end{aligned}$			岃	
	容				3 2 2 2 2	$\stackrel{\substack{x \\ \frac{x}{4}}}{\substack{4}}$																$\stackrel{0}{\Delta}$	$\stackrel{3}{3}$			$\sum_{i}^{\text {en }}$	$\stackrel{\text { 2 }}{\text { ¢ }}$
		0 0 0 0 0 0 1						$\begin{aligned} & 0 \\ & \underset{y}{9} \\ & \text { y } \end{aligned}$		$\sum_{\underset{4}{\infty}}^{\substack{0}}$									$\begin{aligned} & \text { 山己 } \\ & \vdots \end{aligned}$							N	\％
	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\tilde{y y}}{0} \\ & \stackrel{y}{8} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\tilde{\overleftarrow{H}}}{\mathbf{\circ}} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline 8 \end{aligned}$										$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{\text { ®̈og}}{o} \end{aligned}$	然	Bix		$\stackrel{\circ}{\circ}$	$\left\lvert\, \begin{gathered} \stackrel{\circ}{0} \\ \stackrel{\tilde{\theta}}{8} \\ \mid \end{gathered}\right.$		유웅		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\tilde{y}}{\circ} \end{aligned}$			\％	\％

뭄 商

 －
－

	$\begin{aligned} & \ddot{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$		$\stackrel{\ddot{\circ}}{\stackrel{\otimes}{\bullet}}$	$\begin{array}{\|l\|l} \hline \stackrel{\circ}{8} \\ \stackrel{\rightharpoonup}{0} \end{array}$	$\stackrel{\bullet}{\otimes}$	$\begin{aligned} & \stackrel{\leftrightarrow}{0} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$		$\stackrel{\bullet}{0}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{0}$	$\stackrel{\circ}{\stackrel{\circ}{\circ}}$	$\stackrel{\circ}{\circ}$		$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\stackrel{\circ}{\circ}}$
	$\begin{gathered} \stackrel{a}{4} \\ \stackrel{\rightharpoonup}{x} \end{gathered}$			$\begin{array}{r} w \\ 0 \\ \stackrel{u}{8} \\ \hline \end{array}$									$\stackrel{0}{0}$	
				$\begin{aligned} & \underset{\sim}{z} \\ & \stackrel{\rightharpoonup}{s} \\ & \hline \end{aligned}$									辱	
			$\stackrel{\text { 最 }}{\text { E }}$	$\begin{aligned} & \text { ò } \\ & \stackrel{\text { on }}{ } \end{aligned}$	$\begin{gathered} \substack { 8 \\ \begin{subarray}{c}{6{ 8 \\ \begin{subarray} { c } { 6 } } \\ {\hline} \end{gathered}$			B			$\begin{aligned} & \text { 寀 } \\ & \stackrel{4}{4} \end{aligned}$		$\underset{0}{2}$	
				$\begin{gathered} \stackrel{u}{0} \\ \underset{y}{*} \end{gathered}$	$\begin{array}{r} \stackrel{\rightharpoonup}{\omega} \\ \stackrel{\rightharpoonup}{3} \\ \hline \end{array}$	$\begin{aligned} & \frac{3}{3} \\ & \stackrel{y}{3} \\ & \stackrel{\omega}{3} \end{aligned}$	$\begin{aligned} & \stackrel{0}{6} \\ & \stackrel{0}{6} \\ & \frac{0}{3} \end{aligned}$			鬲	主		$\stackrel{\circ}{0}$	
$\begin{aligned} & \stackrel{\otimes}{0} \\ & \stackrel{\tilde{y y}}{\circ} \end{aligned}$	© $\stackrel{\text { N్0 }}{0}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\tilde{W}}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty 0_{6}^{2} \\ & \stackrel{\tilde{y}}{8} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\otimes}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$				Bicc:	$\begin{aligned} & \stackrel{\otimes}{0} \\ & \stackrel{\text { 犬̈d }}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline 8 \end{aligned}$		$\begin{aligned} & \stackrel{\otimes}{0} \\ & \stackrel{\tilde{H}}{8} \end{aligned}$	$\begin{aligned} & \stackrel{8}{0} \\ & \underset{\tilde{y}}{0} \end{aligned}$

Restoration Restoration RECOMMENDATION

REACH RANK（NEED \＆ FEASIBLIITY）

RECOMMENDATION
PARCEL ID
00515423
00515424
00515425
00515426
00515427
00515428
00521263
00521 C95
00521 C95
$00521 C 95$
00521 C95
00521 c95

00521 C95	NEAL	JAMES TJR			19735		FERIBA	PL		CORNELIUS	$\begin{gathered} 19735 \mathrm{FERIBA} \\ \hline 1072 \mathrm{PL}_{2} \mathrm{LDIIDA} \end{gathered}$		CORNELIUS	NC	28031
00521 C95	TAYLOR	TAMMY L			19733		FERIBA	PL		CORNELUS	$\begin{gathered} 19733 \text { FERIBA } \\ \hline \end{gathered}$		CORNELIUS	NC	28031
REACH RANK (NEED \& FEASIBILITY) RECOMMENDATIO	$\begin{gathered} \mathrm{N} 13 \mathrm{c} \\ 35 \\ \text { Enhancement II } \end{gathered}$														
PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	houseno	STDIR	StNAME	STTYPE	stsuffix	MUNICIPALITY	MAILADDR1	MALLADDR2	CITY	STATE	ZIPCODE
01503101	STEPHENS RIDGE LLC	$\underset{\substack{\text { \% NEW SOTH } \\ \text { PROP }}}{\substack{\text { n }}}$					$\begin{gathered} \text { BUD } \\ \text { BENERSON } \end{gathered}$	RD		HUNTERSVILLE	1518 EAST 3RD ST \#200		CHARLOTTE	NC	28204
01504101	ARVIDA MID ATLANTIC HOMES INC		beate	\% HANKE	7300		GILEAD	RD		HUNTERSVILLE	${ }_{\substack{\text { 7900 GLADES } \\ \text { RD \#20 }}}^{\text {des }}$		bocaraton	FL	33434
01504106	ARVIDA MID-ATLANTIC HOMES INC		beate	\% HANKE	7930		$\begin{gathered} \text { BUD } \\ \text { HENDERSON } \end{gathered}$	RD		HUNTERSVILLE			bocaraton	FL	33434
01504111	ARVIDA MID-ATLANTIC HOMES INC OMES INC		BEATE	\% HANKE	7926		BUD HENDERSON	RD		huntersville	7900 GLADES R \#20		bocaraton	FL	33434
01504112	ARVIDA MID-ATLANTIC HOMES INC		BEATE	\% HANKE			darblay	ST		HUNTERSVILLE			bocaraton	FL	33434
01504113	ARVIDA MID-ATLANTIC		BEATE	\% HANKE			DARBLAY	ST		HUNTERSVILLE			bocaraton	FL	33434
01504114	ARVIDA MID-ATLANTIC HOMESINC		beate	\% HANKE	6811		dUNTON	ST		HUNTERSVILLE	7900 GLADES RD \#20		boca raton	FL	33434
01504133	CULLER	MIRINDA			6904		DUNTON	ST		HUNTERSVILLE	cen $\begin{aligned} & \text { 6904 DUTON } \\ & \text { ST }\end{aligned}$		BOCARATON	NC	33434
01504134	FISHER	JOYCE B			6830		DUNTON	ST		HUNTERSVILLE	${ }^{6830} \mathrm{DUNTON}_{\text {ST }}$		HUNTERSVILLE	NC	28078
01504135	HOMESINC ARVIDA MID-ATLANTIC HOMES INC		beate	\% HANKE			DARBLAY	ST		HUNTERSVILLE	7900 GLADES RD $\# 200$		BOCA RATON	FL	33434
01504136	HIRACH	KATHRYN			8009		BAYLIS	DR		HUNTERSVILLE	8009 BAYLIS DRIVE		huntersville	NC	28078

COMMENDATION	Enhancement II														
PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	CIRST NAME	NAME	Houseno	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
00523411	BURRIS	RODDY DEAN		CRYSTAL YVETTE	19631		HEARTLAND	ST		CORNELUS	$\begin{aligned} & \text { A9631 ST } \\ & \text { HEARTAND } \end{aligned}$		CORNELIUS	NC	$\begin{gathered} 28031-1 \\ 92266 \end{gathered}$
00525404	FESPERMAN	G Laverne			19600		DERBY	CT		CORNELUS	19600 DERBY CT		CORNELIUS	NC	28031
00525405	woods	LAURA PHYLLIS			19603		DERBY	CT		CORNELUS	${ }^{19603 \text { DERBY }}$		CORNELUS	NC	28031
00525407	HALWEG	JAMES			10330		DANESWAY	LN		CORNELUS	$\stackrel{10330}{\text { DANESWAY LN }}$		CORNELUS	NC	28031
											${ }_{\text {danESWAY LN }}^{1036}$				
00525408	WISE	LESSIE B			10326		DANESWAY	LN		CORNELUS	DANESWAYLN		CORNELIUS	NC	28031
00525409	FRECHETTE	EARLF	SANDRAM	FRECHETTE	10320		DANESWAY	LN		CORNELUS	dANESWAY LN		CORNELUS	NC	28031
00525410	GOLDMAN	MALCOLM R			203		CONISTAN	PL		CORNELUS	CONISTAN PL		CORNELUS	NC	28031
00525411	THOMASSON	CLYDEH			10209		CONISTAN	PL		CORNELIUS	$\begin{array}{r} 10209 \\ \text { CONISTAN PL } \\ \hline \end{array}$		CORNELIUS	NC	28031
00525412	SCHUERMANN	FRANCESJ			10213		CONISTAN	PL		CORNELUS	$\begin{gathered} 10213 \\ \text { CONSTAN PL } \end{gathered}$		CORNELIUS	NC	28031
00525413	MASSIMINI	JOHN	CHRISTINA	MASSIMINI	10217		CONISTAN	PL		CORNELUS	19218 RUFFNER DR		CORNELUS	NC	28031
00525414	LETTA	JOSEPH A			10221		CONISTAN	PL		CORNELUS	$\begin{gathered} 1021 \\ \text { CONISTAN PL } \\ \hline \end{gathered}$		CORNELIUS	NC	28031
00525415	CRADIT	STEVEN			10227		CONISTAN	PL		CORNELUS	$\stackrel{\text { ONISTAN }}{1027}$		CORNELIUS	NC	28031
00525416	AMERSON	LISAM	JOSEPH A	AMERSON	10301		CONISTAN	PL		CORNELUS	CONISTAN PL		CORNELIUS	NC	28031
00525417	MBUTHIA	ALEXA	CHARITY	MBUTHIA	10305		CONISTAN	PL		CORNELUS	$\begin{aligned} & 10305 \\ & \text { CONISTAN PL } \end{aligned}$		CORNELIUS	NC	28031
00525418	Lewis	PAMELAC			10309		CONISTAN	PL		CORNELUS	10309		CORNELIUS	NC	28031
								2							

McDowell Creek Watershed Management Plan Version 4......................March 2, 2008

											WAY				6458
00942135	LAMB	WILLARD BRADLEY	ANGELA D	LAMB	10022		BAYART	WY		HUNTERSVILLE	10022 BAYART WY		CHARLOTTE	NC	28078
00942136	COOPER	EDDIE D	ANNETTE	COOPER	10016		BAYART	WY		HUNTERSVILLE	$\begin{gathered} 10016 \text { BAYART } \\ \text { WAY } \end{gathered}$		HUNTERSVILLE	NC	28078
00942137	ROUSE	CRAIG C	SHELLY	ROUSE	10010		BAYART	WY		HUNTERSVILLE	10010 BAYART WAY		HUNTERSVILLE	NC	28078
00942138	DIXON	ROBERTE	SHARONB	DIXON	10002		BAYART	WY		HUNTERSVILLE	$\begin{gathered} 10002 \text { BAYART } \\ \text { WAY } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 6458 \\ \hline \end{gathered}$
00942139	HECKLER	MATTHEW S	CHRISTIE L	HECKLER	9932		BAYART	WY		HUNTERSVILLE	9932 BAYART WAY		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 4900 \end{gathered}$
00942140	GAMBILL	ROBERT S	KERRI	GAMBILL	9924		BAYART	WY		HUNTERSVILLE	$\begin{aligned} & 9924 \text { BAYART } \\ & \hline \end{aligned}$		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 4900 \\ \hline \end{gathered}$
REACH RANK (NEED \& FEASIBILITY) RECOMMENDATION	M8a 38 Enhancement I														
PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01502113	BARNETTE	AGNES B		(ET-AL)	7107		$\begin{gathered} \text { BUD } \\ \text { HENDERSON } \\ \hline \end{gathered}$	RD		HUNTERSVILLE	7107 BUD HENDERSON RD		HUNTERSVILLE	NC	28078
01502124	FREENEY	STEPHEN P	KARRIS	FREENEY	14442		BEATTIES FORD	RD		HUNTERSVILLE	16735-A CRANLYNRD $\# 124$		HUNTERSVILLE	NC	28078
01502128	QUAN	$\begin{aligned} & \text { WILLIAM } \\ & \text { SHANE } \end{aligned}$	TERESAF	QUAN			BEATTIES FORD	RD		HUNTERSVILLE	$\begin{gathered} \text { 14422 BEATTIES } \\ \text { FORD RD } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078

[^1]| PARCEL ID | OWNER, LAST NAME | OWNER, FIRST NAME | COWNER, FIRST NAME | COWNER, LAST NAME | HOUSENO | STDIR | STNAME | STTYPE | STSUFFIX | MUNICIPALITY | MAILADDR1 | MAILADDR2 | CITY | STATE | ZIPCODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01720101 | BAUMAN | ROBERT N | PAMELA G | BAUMAN | 12117 | N | STATESVILLE | RD | | HUNTERSVILLE | $\begin{gathered} 2235 \text { TOWNSHIP } \\ \text { RD } \\ \hline \end{gathered}$ | | CHARLOTTE | NC | 28273 |
| 01721201 | CFI PROPERTIES LLC | | | PATRICK HIGHWAY 49 LLC | 12025 | N | STATESVILLE | RD | | HUNTERSVILLE | $\begin{gathered} 255 \text { CHEROKEE } \\ \text { RD } \\ \hline \end{gathered}$ | | CHARLOTTE | NC | 28207 |
| 01721212 | CFI PROPERTIES LLC | | | $\begin{gathered} \text { PATRICK } \\ \text { HIGHWAY } 49 \mathrm{LLC} \\ \hline \end{gathered}$ | 12019 | N | STATESVILLE | RD | | HUNTERSVILLE | $\begin{gathered} 255 \text { CHEROKEE } \\ \text { RD } \\ \hline \end{gathered}$ | | CHARLOTTE | NC | 28207 |

154

McDowell Creek Watershed Management Plan Version 4.....................March 2, 2008

N8a
42 42
Restoration

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01506290	HOMEOWNERS ASSOCIATION FOR	STONEGATE SUBDIVISION INC					ROLLING MEADOWS	LN		HUNTERSVILLE	P OBOX 350		MINERAL SPRINGS	NC	28108
01506321	RAMIREZ	HUGO J	SARAH E	SHOE	7930		ROLLING MEADOWS	LN		HUNTERSVILLE	7930 ROLLING MEADOWS LN		HUNTERSVILLE	NC	28078
01506322	RUSSELL	KENNETH C			7924		ROLLING MEADOWS	LN		HUNTERSVILLE	7924 ROLLING MEADOWS LN		HUNTERSVILLE	NC	28078
01506398	HOMEOWNERS ASSOCIATION	$\begin{gathered} \text { FOR } \\ \text { STONEGATE } \\ \text { SUBDIVISION } \end{gathered}$					ROLLING MEADOWS	LN		HUNTERSVILLE	PO BOX 113		MINERAL SPRINGS	NC	28108
01507108	WATERS	WILLIAM W			8113		MCILWAINE	RD		HUNTERSVILLE	$\begin{gathered} 3850 \\ \text { SHARONVIEW } \\ \text { RD } \\ \hline \end{gathered}$		CHARLOTTE	NC	28226
01507110	SHAW	RICHARD DONALD		DIXIE LEE HUFFMAN	7807		MCILWAINE	RD		HUNTERSVILLE	$\begin{gathered} 7807 \\ \text { MCILWAINE RD } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
01507113	GUIGNARD	CHARLES S			7821		MCILWAINE	RD		HUNTERSVILLE	PO BOX 1766		HUNTERSVILLE	NC	28070
01539198	$\begin{gathered} \text { MECKLENBURG } \\ \text { COUNTY } \\ \hline \end{gathered}$						LEISURE	LN		HUNTERSVILLE	$\begin{gathered} 600 \mathrm{E} \text { FOURTH } \\ \text { ST } \end{gathered}$		CHARLOTTE	NC	28202
01543103	$\underset{\text { COUNTY }}{\text { MECKLENBURG }}$			\% REAL ESTATE /FINANCE DEPT	8147		MCILWAINE	RD		HUNTERSVILLE	$\begin{aligned} & \text { 600 EAST 4TH } \\ & \text { ST 11TH FLOOOR } \end{aligned}$		CHARLOTTE	NC	28202

REACH
FEASIBILITY)
RECOMMENDAT

PARCELID
01506290
01506322
01506398

01507108
01507110
01507113
01539198
01543103

REACH
RANK (NEED \&
FEASIBILITY)
B5a_B9a
43
Enhancement II
OWNER, LAST NAME
CDH VENTURES LLC KAROON INC
CHARLOTTE CHURCH
INC THE

RECOMMENDATION
PARCEL ID
00517102
00517118

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
00517101	BLAKELY	JF		\% ANN BLAKLY			STATESVILLE	RD		CORNELIUS	$\begin{gathered} 21132 \\ \text { BRINKLEY ST } \end{gathered}$		CORNELIUS	NC	28031
00517102	CDH VENTURES LLC				19300		STATESVILLE	RD		CORNELIUS	$\begin{gathered} 18531 \\ \text { HARBORSIDE } \\ \text { DR } \end{gathered}$		CORNELIUS	NC	28031
00517115	KAROON INC				19400		STATESVILLE	RD		CORNELIUS	PO BOX 2276		CORNELIUS	NC	28031
00517118	CHARLOTTE CHURCH INC THE						STATESVILLE	RD		CORNELIUS	$\begin{aligned} & 1200 \text { SOUTH } \\ & \text { GRAHAM ST } \end{aligned}$		CHARLOTTE	NC	28203

McDowell Creek Watershed Management Plan Version 4......................March 2, 2008

L2a
46

$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 \\ 2\end{array}$

01531238	PEAY	JOHN W		JACQUELINE CARSON	12301
01531239	RENCKENS	TIMOTHY T	SUSAN G	RENCKENS	12305
01531240	FENSTERMACHER	ROBERT PAUL			9106
01531241	RUSSELL	DANIELJ	LAURA A	RUSSELL	9100
01531242	RINEHARDT	WALTERS		LARA EAKER	9101
01531250	CEDARFIELD	HOMEOWNERS ASSOC INC			
01531251	CEDARFIELD PLANTATION	HOMEOWNERS ASSOC INC			
01531256	RUST	CHRISTOPHER	ANN C	RUST	12400
01531257	AXE	G RANDALL	KATHY P	AXE	12401
01531258	MARKHAM	daniel g	JO C	MARKHAM	12405
01531265	FLANAGAN	WILLIAM FRANKLIN	MIRIAM EVANS	FLANAGAN	

[^2]${ }^{8+}$
P18a
Restoration

OWNER, LAST NAME
CHUMLEY
$\begin{array}{c}\text { KAZAKOS BROTHERS } \\ \text { PROPERTIES }\end{array}$

REACH
RANK (NEED \&
FEASIBILITY)
RECOMMENDAT

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01708101	CHUMLEY	MELANIE R	THOMAS M	CHUMLEY	13701		ALEXANDER	LN		HUNTERSVILLE	$\begin{gathered} 13701 \\ \text { ALEXANDER LN } \end{gathered}$		HUNTERSVILLE	NC	28078
01708102	KAZAKOS BROTHERS				13400	N	STATESVILLE	RD		HUNTERSVILLE	$\begin{gathered} 534 \\ \text { TURNERSBURG } \\ \text { HWY } \end{gathered}$		STATESVILLE	NC	$\begin{gathered} 28625- \\ 2722 \end{gathered}$
01708103	TAYLOR	MARJORIE			510		mt hollyHUNTERSVILLE	RD		HUNTERSVILLE			HUNTERSVILLE	NC	28078
01708104	JOHNSON	EVELYN			514		MT HOLLYHUNTERSVILLE	RD		HUNTERSVILLE	13011 MT HOLLY- HUNTERSVILLE RD		HUNTERSVILLE	NC	28078
01708109	MLLEER	WILLIAM BANKS,JR	SARA	MLLLER	13125		IRIS	DR		HUNTERSVILLE	13125 IRIS DR		HUNTERSVILLE	NC	28078
01708110	PLYLER	WILLIAM G	JANE D	PLYLER	13131		IRIS	DR		HUNTERSVILLE	13131 IRIS DR		HUNTERSVILLE	NC	28078
01708113	KAZAKOS BROTHERS PROPERTIES						ALEXANDER	LN		HUNTERSVILLE	$\begin{gathered} 534 \\ \text { TURNERSBURG } \\ \text { HWY } \\ \hline \end{gathered}$		STATESVILLE	NC	$\begin{array}{r} 28625- \\ 2722 \end{array}$
01708114	ROSS	MELANIE LEE \%WM L ROSS	$\begin{aligned} & \text { MELANIE } \\ & \text { ROSS } \end{aligned}$	CHUMLEY			ALEXANDER	LN		HUNTERSVILLE	$\begin{gathered} 13701 \\ \text { ALEXANDER LN } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
01708201	PRICE	DONALD	APRIL	PRICE	319		HILLCREST	DR		HUNTERSVILLE	$\begin{gathered} 319 \text { HILLCREST } \\ \text { DR } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
01708202	JoLly	CHARLES M			13628		ALEXANDER	LN		HUNTERSVILLE	PO BOX 311		HUNTERSVILLE	NC	28270
01708221	KERNS	PEGGY S			308		GREENWAY	ST		HUNTERSVILLE	POBOX 172		HUNTERSVILLE	NC	$\begin{gathered} \hline 28070- \\ 0172 \\ \hline \end{gathered}$
01708222	HUBBARD	ROBERT CLAY	NORMA F	HUBBARD	306		GREENWAY	ST		HUNTERSVILLE	PO BOX 192		HUNTERSVILLE	NC	$\begin{gathered} 28070- \\ 0192 \\ \hline \end{gathered}$
01708223	BEARD	GRADY M	FRANCES	BEARD	304		GREENWAY	ST		HUNTERSVILLE	$\begin{gathered} 304 \text { GREENWAY } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 7265 \\ \hline \end{gathered}$
01708224	NICHOLS	MARTIN M III			302		GREENWAY	ST		HUNTERSVILLE	$\begin{gathered} \hline 302 \text { GREENWAY } \\ \text { DR } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
01708225	FREEZE	CR		(L/E BN)	300		GREENWAY	ST		HUNTERSVILLE	PO BOX 252		HUNTERSVILLE	NC	$\begin{gathered} 28070- \\ 0252 \\ \hline \end{gathered}$
01708226	KERNS	ROBERT N	ELAINE E	KERNS	301		HILLCREST	DR		HUNTERSVILLE	$\begin{gathered} 301 \text { HILLCREST } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 7855 \\ \hline \end{gathered}$
01708229	STEWART	MICHAEL H	PATRICIA	STEWART	311		HILLCREST	DR		HUNTERSVILLE	PO BOX 252		HUNTERSVILLE	NC	28078
01708230	MARTIN	FRANK WAYNE	ALISON J	MARTIN			HILLCREST	DR		HUNTERSVILLE	402 GREENWAY		HUNTERSVILLE	NC	28078

McDowell Creek Watershed Management Plan Version 4......................March 2, 2008

\footnotetext{
O30c
50
RECOMMENDATION Enhancement I
REACH
RANK (NEED \&
FEASIBILITY)
RECOMMENDAT

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01510499	$\begin{gathered} \text { MECKLENBURG } \\ \text { COUNTY } \\ \hline \end{gathered}$			\% REAL ESTATE /FINANCE DEPT.			SHEPPARTON	DR		HUNTERSVILLE	$\begin{aligned} & 600 \text { E 4TH ST } \\ & \text { 11TH FLOOR } \\ & \hline \end{aligned}$		CHARLOTTE	NC	$\begin{gathered} 28202 \\ 2816 \\ \hline \end{gathered}$
01530208	SEXTON	DAVIDE	BARBARA R	SEXTON	9001		WILLOW TRACE	CT		HUNTERSVILLE	9001 WILLOW TRACE CT		HUNTERSVILLE	NC	28078
01530209	PAGE	KENNETH L			9005		WILLOW TRACE	CT		HUNTERSVILLE	9005 WILLOW TRACE CT		HUNTERSVILLE	NC	28078
01530210	NASKO	THOMAS J	DONNA L	NASKO	9011		WILLOW TRACE	CT		HUNTERSVILLE	9011 WILLOW		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 9154 \end{gathered}$
01530211	YOUNG	CRAIG S	CHRISTINA B	YOUNG	9015		WILLOW TRACE	CT		HUNTERSVILLE	9015 WILLOW TRACE CT		HUNTERSVILLE	NC	28078
01530212	MILHOLLAND	DAVID C	DONNA P	MILHOLLAND	9019		WILLOW TRACE	CT		HUNTERSVILLE	9019 WILLOW TRACE CT		HUNTERSVILLE	NC	28078
01530218	HANRAHAN	SHERRY GREEN		HSB THOMAS RIKLEY	9002		MAPLE HILL	CT		HUNTERSVILLE	9002 MAPLE HILL CT		HUNTERSVILLE	NC	28078
01530219	AUTEN	BRICE C	SHEILA C	AUTEN	9000		MAPLE HILL	CT		HUNTERSVILLE	9000 MAPLE HILL CT		HUNTERSVILLE	NC	28078

$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \stackrel{\circ}{\sigma} \\ & \stackrel{\circ}{\sigma} \end{aligned}$		の		¢	$\begin{aligned} & \stackrel{\infty}{\stackrel{0}{0}} \\ & \stackrel{\sim}{0} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\stackrel{0}{0}}}$	$\stackrel{\stackrel{\sim}{0}}{\underset{\sim}{2}}$	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\begin{gathered} \stackrel{\infty}{\stackrel{\circ}{0}} \\ \stackrel{\sim}{0} \end{gathered}$	$\begin{aligned} & \stackrel{\infty}{\stackrel{\circ}{0}} \\ & \stackrel{\sim}{0} \end{aligned}$	$\stackrel{\infty}{\infty} \stackrel{0}{0}$	$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{\otimes}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\stackrel{\circ}{0}} \\ & \stackrel{\sim}{0} \end{aligned}$	$\stackrel{\infty}{\infty} \stackrel{0}{0}$	$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{\sim}{\circ} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{0}} \stackrel{\sim}{0}$	$\begin{aligned} & \stackrel{\infty}{\stackrel{\circ}{0}} \\ & \stackrel{\sim}{0} \end{aligned}$			$\begin{gathered} \stackrel{\infty}{\mathbf{o}} \\ \stackrel{\sim}{0} \end{gathered}$	$\stackrel{\underset{\sim}{N}}{\substack{2}}$			$\stackrel{\infty}{\stackrel{\infty}{0}} \stackrel{\sim}{0}$	$\stackrel{\infty}{0}$				$\stackrel{\infty}{\stackrel{\infty}{0}} \stackrel{\sim}{0}$	$\stackrel{\infty}{\sim}$
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	$\stackrel{1}{2}$	2	2	2		2	2	2	2

艮筑

 huntersville

 HUNTERSVILLE

McDowell Creek Watershed Management Plan Version 4......................March 2, 2008

01535241	WEIR	EDWARD		JANE B WEIR (H/W)	9208		OLD BARNETTE	PL		HUNTERSVILLE	$\begin{gathered} 9208 \text { OLD } \\ \text { BARNETE PL } \end{gathered}$		HUNTERSVILLE	NC	28078
01535242	PARKER	JOHN ANDREW	NATALIE	PARKER	9204		OLD BARNETTE	PL		HUNTERSVILLE	$\begin{gathered} 9204 \text { OLD } \\ \text { BARNETTE PL } \end{gathered}$		HUNTERSVILLE	NC	28078
REACH RANK (NEED \& FEASIBILITY) RECOMMENDATIO															
PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
00516661	ROBERTSON	JAMES E	SUSAN E	ROBERTSON	21108		PINE RIDGE	DR		CORNELIUS	$\begin{gathered} 6028 \text { DELTA } \\ \text { CROSSING LN } \\ \text { APT G } \end{gathered}$		CHARLOTTE	NC	$\begin{gathered} 28212- \\ 2371 \end{gathered}$
00516662	WOJTOWICZ	JAMES J	MARY E	WHITNEY	21100		PINE RIDGE	DR		CORNELIUS	2110 PINE RIDGE DR		CORNELIUS	NC	28031
00525513	WILLIAMS	MARK A	ELIZABETH P	WILLIAMS	10219		DANESWAY	LN		CORNELIUS	$\begin{gathered} 10219 \\ \text { DANESWAY LN } \\ \hline \end{gathered}$		CORNELIUS	NC	28031
00525514	MISENAR	RYAN S		$\underset{(H / W)}{\text { LISA M MISENAR }}$	10223		DANESWAY	LN		CORNELIUS	$\begin{gathered} 10223 \\ \text { DANESWAY LN } \end{gathered}$		CORNELIUS	NC	28031
00525515	SANFILIPPO	THOMAS JJR	JOAN	SANFILIPPO	10227		DANESWAY	LN		CORNELIUS	$\begin{gathered} 10227 \\ \text { DANESWAY LN } \end{gathered}$		CORNELIUS	NC	28031
00525516	KAZMIERCZAK	JOHN	APRIL	MEADOWS	10231		DANESWAY	LN		CORNELIUS	$\begin{gathered} 10231 \\ \text { DANESWAY LN } \\ \hline \end{gathered}$		CORNELIUS	NC	28031
00525517	GOTTA	MICHAEL P		$\begin{gathered} \text { KRISTIN L GOTTA } \\ (H / W) \end{gathered}$	10235		DANESWAY	LN		CORNELIUS	$\begin{gathered} 10235 \\ \text { DANESWAY LN } \end{gathered}$		CORNELIUS	NC	28031
00525518	LAKE	KELLY			10239		DANESWAY	LN		CORNELIUS	$\begin{gathered} 10239 \\ \text { DANESWAY LN } \end{gathered}$		CORNELIUS	NC	28031
00525599	$\underset{\substack{\text { MECKLENBUURG } \\ \text { COUNTY }}}{\text { Man }}$				10313		DANESWAY	LN		CORNELIUS	$\begin{aligned} & \hline 600 \mathrm{EFOURTH} \\ & \hline \text { ST } \\ & \hline \end{aligned}$		CHARLOTTE	NC	28202
REACH RANK (NEED \& FEASIBILITY) RECOMMENDATIO	U 15 52 Enhancement \mid														
PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01706205	DELLINGER	WILLIAM J		(ET-AL)	12150		HAMBRIGHT	RD		HUNTERSVILLE	PO BOX 929		MONROE	NC	$\begin{gathered} 28111- \\ 0929 \\ \hline \end{gathered}$
REACH RANK (NEED \& FEASIBILITY)	L7a 53 Restoration upstream of Sherwood Drive Improvement to Sherwood Drive culvert / Bank Stabilization downstream of Sherwood Drive \qquad														
PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	$\underset{\substack{\text { COWNER, LAST } \\ \text { NAME }}}{\text { N }}$	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01712222	FIRST BAPTIST CHURCH OF	HUNTERSVILLE NC INC			119		$\begin{gathered} \text { OLD } \\ \text { STATESVILLE } \end{gathered}$	RD		HUNTERSVILLE	PO BOX 331		HUNTERSVILLE	NC	28078
01712226	FIRST BAPTIST CHURCH OF	HUNTERSVILLE NC INC			621		$\begin{gathered} \text { OLD } \\ \text { STATESVILLE } \end{gathered}$	RD		HUNTERSVILLE	$\begin{aligned} & \text { 119 NORTTH OLD } \\ & \text { STATESVILLE } \\ & \text { RD } \end{aligned}$		HUNTERSVILLE	NC	28078
01712228	LEHEW	DONALD G	CONSTANCE J	LEHEW	300		SHERWOOD	DR		HUNTERSVILLE	$\begin{gathered} 620 \text { SHERWOOD } \\ \text { DR } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
01712229	ROUTH	BEN D	NANCYK	ROUTH	102		FOREST	CT		HUNTERSVILLE	102 FOREST CT		HUNTERSVILLE	NC	28078
01712232	GIBSON	JOHN TRUETT	GLORIAL	GIBSON	202		SHERWOOD	DR		HUNTERSVILLE	PO BOX 513		HUNTERSVILLE	NC	$\begin{gathered} 28070- \\ 0513 \\ \hline \end{gathered}$
01712233	MCAULAY	HUGH M	LOUISA	MCAULAY	104		SHERWOOD	DR		HUNTERSVILLE	PO BOX 285		HUNTERSVILLE	NC	$\begin{gathered} 28070- \\ 0285 \\ \hline \end{gathered}$
01712239	MAXWELL	JAMES WILSON			200		SHERWOOD	DR		HUNTERSVILLE	$\begin{gathered} 200 \text { SHERWOOD } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	28078
01712240	WALTERS	PAUL S	ESTHER H	WALTERS	102		SHERWOOD	DR		HUNTERSVILLE	$\begin{gathered} 102 \text { SHERWOOD } \\ \text { DR } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078

McDowell Creek Watershed Management Plan Version 4......................March 2, 2008

McDowell Creek Watershed Management Plan Version 4.
March 2, 2008

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	$\underset{\text { NAME }}{\substack{\text { COWNER, LAST }}}$	houseno	STDIR	stanme	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01720101	bauman	Robert	PAMELA G	Bauman	12117	N	Statesville	RD		huntersvile	$\underset{R D}{2235 \text { Townshlp }}$		Charlotte	NC	28273
01720102	HURD	LINDAS			12221		STATESVILLE	RD		HUNTERSVILLE	$\begin{gathered} 12221 \\ \text { STATESVILLE } \\ \text { RD } \end{gathered}$		HUNTERSVILLE	NC	28078
01720103	EDWARDS	RAYMOND H	ANNES	EDWARDS	12303	N	STATESVILLE	RD		HUNTERSVILLE	$\begin{gathered} \text { RD } \\ \hline \begin{array}{c} \text { RTATESVIILLE } \\ \text { RD } \end{array} \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078

P15a

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01745101	BOWMAN GROUP THE				12801		MT HOLLYHUNTERSVILLE	RD		HUNTERSVILLE	10228 GOVERNER LANE BLVD \#3002		WILLIAMSPORT	MD	21795
01745102	G M HOLDINGS LLC				100		CENTER	LN		HUNTERSVILLE	$\begin{aligned} & 119 \text { SILVER } \\ & \text { EAGLE LN } \end{aligned}$		MOORESVILLE	NC	28117
01745103	BERNSTEIN	KENNETH D					CENTER	LN		HUNTERSVILLE	103 CENTER LN		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 9778 \\ \hline \end{gathered}$
01745104	BERNSTEIN	KENNETH D					CENTER	LN		HUNTERSVILLE	103 CENTER LN		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 9778 \\ \hline \end{gathered}$
01745105	LEWIS	MICHAEL B	JOYCE M	LEWIS			CENTER	LN		HUNTERSVILLE	PO BOX 1030		DAVIDSON	NC	$\begin{gathered} 28036- \\ 1030 \\ \hline \end{gathered}$
01745106	PENINSULA INVESTMENTS LLC				107		CENTER	LN		HUNTERSVILLE	225 HILLSBOROUGH ST		RALEIGH	NC	27603
01745108	SMITH	MARK CHARLES	KATHLEEN D	SMITH	103		CENTER	LN		HUNTERSVILLE	103 CENTER LN		HUNTERSVILLE	NC	28078
01745199	PENINSULA INVESTMENTS LLC						CENTER	LN		HUNTERSVILLE	225 HILLSBOROUGH ST		RALEIGH	NC	27603

U3
58

REACH
RANK (NEED \&
FEASIBILITY)
REACH
RANK (NEED \&
FEASIBILITY)
RECOMMENDAT
57
57
Enhance
58
Enhance
$\begin{array}{lll}0 & z \\ 0 & 0 \\ 2 & 0 \\ & \end{array}$
F11a

U \mathbf{O} \mathbf{U} $\stackrel{0}{\mathbf{N}}$	$\begin{gathered} \stackrel{0}{0} \\ \underset{N}{\mid} \end{gathered}$	$\begin{gathered} \overline{0} \\ \stackrel{\infty}{0} \end{gathered}$	$\begin{gathered} \infty \\ \stackrel{\infty}{\infty} \\ \stackrel{N}{2} \end{gathered}$	$\begin{gathered} \overline{0} \\ \stackrel{\sim}{0} \end{gathered}$	$\begin{gathered} \overline{0} \\ \stackrel{\circ}{0} \end{gathered}$
$\stackrel{\underset{4}{6}}{\stackrel{4}{6}}$	2	2	2	2	2
$\frac{\grave{y}}{\overline{0}}$				$\begin{aligned} & \infty \\ & \underset{y}{\infty} \\ & \underset{\sim}{\underset{\sim}{0}} \\ & \underset{0}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{y}{3} \\ & \stackrel{\rightharpoonup}{\underset{\sim}{0}} \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & \bar{\alpha} \\ & \frac{\alpha}{c} \\ & \frac{y}{k} \\ & \Sigma \end{aligned}$					
$\begin{aligned} & \frac{x}{4} \\ & \frac{4}{4} \\ & \frac{\pi}{3} \\ & \frac{6}{6} \end{aligned}$					
	$\stackrel{5}{5}$	̛ㅡㅇ	$\stackrel{\sim}{0}$	¢	¢

OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME
JOSHUA THOMAS	ASHLEY S	WORLEY	18334		FLAGMAN
WAYNE J	JOSH	HALL	18330		FLAGMAN
TIMARAL	CORY R	BOLDING	18326		FLAGMAN
JOHN KYLE			18320		FLAGMAN

01706201	MONTEITH	WILLIAM GLENN		DON REID MONTEITH	12001		$\begin{aligned} & \text { OLD } \\ & \text { STATESVILLE } \end{aligned}$	RD		HUNTERSVILLE	$\begin{gathered} 8908 \text { CARLETO } \\ \text { CT } \end{gathered}$		CHARLOTTE	NC	28214
01706202	HUNTER	WEST P JR		BRENDAR HUNTER	11912	N	STATESVILLE	RD		HUNTERSVILLE	$\begin{gathered} 2430 \\ \text { GALLOWAY RD } \end{gathered}$		CHARLOTTE	NC	28262
REACH RANK (NEED \& FEASIBILITY) RECOMMENDATION	L5a 62 Enhancement l upstream /Restoration downstream														
PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01732115	BAXTER	TIMOTHY		$\underset{(H / W)}{\text { GAIL BAXTER }}$	403		GLENORA	DR		HUNTERSVILLE	$\begin{gathered} 116 \text { PINERIDGE } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	28078
01732116	HEETE	CAROLIN			404		GLENORA	DR		HUNTERSVILLE	$\begin{aligned} & 404 \text { GLENORA } \\ & \text { DR } \end{aligned}$		HUNTERSVILLE	NC	28078
01732122	BURWELL	JAMES L	ELAINE M	BURWELL	202		REMALLY	LN		HUNTERSVILLE	$\begin{gathered} 202 \text { REMALLY } \\ \text { LN } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 6009 \\ \hline \end{gathered}$
01732123	BALDWIN	MICHAEL S		NATALIE D BALDWIN (H/W)	204		REMALLY	LN		HUNTERSVILLE	$\begin{gathered} 204 \text { REMALLY } \\ \text { LN } \end{gathered}$		HUNTERSVILLE	NC	28078
01732124	MACLAUGHLIN	ERIC V			205		REMALLY	LN		HUNTERSVILLE	$\begin{gathered} 205 \text { REMALLY } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
01732125	WILLYARD	HARVEY LJR	SUSAN M	WILLYARD	203		REMALLY	LN		HUNTERSVILLE	$\begin{aligned} & 203 \text { REMALLY } \\ & \text { LN } \end{aligned}$		HUNTERSVILLE	NC	28078
01733213	CAMPBELL	JOHN DONALD		GATEWOOD PAYNE	104		INTERLAKEN	PL		HUNTERSVILLE	$\begin{gathered} 104 \\ \text { INTERLAKEN PL } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
01733214	BEAUMONT	STEPHEN			102		INTERLAKEN	PL		HUNTERSVILLE	$\begin{gathered} 14535 \text { CORDIAL } \\ \text { LN \#115 } \end{gathered}$		HUNTERSVILLE	NC	28078
01733215	BENITEZ	ISAIAS	MAGNOLIA	BENITEZ	100		INTERLAKEN	PL		HUNTERSVILLE	$\begin{gathered} 100 \\ \text { INTERLAKEN PL } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
01733216	ELKINS	ROBERT	CAROL	ELKINS	203		SOUTHLAND	RD		HUNTERSVILLE	$\begin{array}{r} 203 \\ \text { SOUTHLAND RD } \end{array}$		HUNTERSVILLE	NC	28078
01734105	MARSICO	MICHAEL		DOROTHY KLEIN-	301		SHERWOOD	DR		HUNTERSVILLE	$\begin{gathered} 301 \text { SHERWOOD } \\ \text { DR } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
01734106	PATTERSON	WILLIAM R JR		ANN B PATTERSON (H/W)	303		SHERWOOD	DR		HUNTERSVILLE	303 SHERWOOD DR		HUNTERSVILLE	NC	28078
01734107	RAMSEY	CHRISTINE			305		SHERWOOD	DR		HUNTERSVILLE	305 SHERWOOD DR		HUNTERSVILLE	NC	28078
01734111	BROWN	BRUCE N	GALE H	BROWN	103		PROVIDENCE	LN		HUNTERSVILLE	$\begin{gathered} 103 \\ \text { PROVIDENCE } \\ \text { LN } \end{gathered}$		HUNTERSVILLE	NC	28078
01734112	RICHARDSON	DONNA L	TIMOTHY S	RICHARDSON	101		NITSA	LN		HUNTERSVILLE	101 NITSA LN		HUNTERSVILLE	NC	28078
01734113	WAGSTROM	GERALD W		KATHERINE CARTWRIGHT	103		NITSA	LN		HUNTERSVILLE	103 NISTA LN		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 6023 \\ \hline \end{gathered}$
01734114	swain	DAN J	JILL M	SWAIN	105		NITSA	LN		HUNTERSVILLE	105 NISTA LN		HUNTERSVILLE	NC	28078
01734125	SKIPPER	$\begin{gathered} \text { CHARLIE LEE } \\ J R \end{gathered}$		TOMMIE EDWARDS	113		PINERIDGE	DR		HUNTERSVILLE	$\begin{gathered} 113 \text { PINERIDGE } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	28078
01734126	GIBBS	SUSAN L			115		PINERIDGE	DR		HUNTERSVILLE	$\begin{gathered} 115 \text { PINERIDGE } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	28078
01734127	HOWARD	JAMES C III	CHERYLR	HOWARD	117		PINERIDGE	DR		HUNTERSVILLE	$\begin{gathered} 117 \text { PINERIDGE } \\ \text { DR } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
01734128	FARRINGTON	RAYMOND D	SUSAN M	FARRINGTON	121		PINERIDGE	DR		HUNTERSVILLE	$\begin{gathered} 121 \text { PINERIDGE } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	28078
01734129	WEAVER	ALEX	KAREN	WEAVER	123		PINERIDGE	DR		HUNTERSVILLE	$\begin{gathered} 123 \text { PINERIDGE } \\ \text { DR } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 8928 \\ \hline \end{gathered}$
01734130	RUGGLES	DAVID P	ALISON R	RUGGLES	125		PINERIDGE	DR		HUNTERSVILLE	$\begin{gathered} 125 \text { PINERIDGE } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	28078
01734148	CASHNER	HOWARDE	ANNE M	CASHNER	303		SHERWOOD	DR		HUNTERSVILLE	$\begin{gathered} \hline 303 \text { SHERWOOD } \\ \text { DR \#A } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
01734312	HOOK	MICHAEL J	FRANCES L	HOOK	201		PROVIDENCE	LN		HUNTERSVILLE	$\begin{gathered} 201 \\ \text { PROVIDENCE } \\ \text { LN } \end{gathered}$		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 9020 \end{gathered}$
01734313	KASAK	HANS E	JULIE	KASAK	203		PROVIDENCE	LN		HUNTERSVILLE	$\begin{gathered} 203 \\ \text { PROVIDENCE } \\ \text { LN } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
01735109	ZYK	PETER F			111		CAMBRIDGE	RD		HUNTERSVILLE	$\begin{gathered} 111 \\ \text { CAMBRIDGE RD } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 9007 \\ \hline \end{gathered}$
01735110	SIMS	BOBBY E	SYLVIA D	SIMS	107		CAMBRIDGE	RD		HUNTERSVILLE	PO BOX 21		HUNTERSVILLE	NC	28070

McDowell Creek Watershed Management Plan Version 4....................March 2, 2008

HUNTERSVILLE	NC	28078
HUNTERSVILLE	NC	${ }_{9076}^{28078-}$
HUNTERSVILLE	NC	${ }_{\substack{28078-\\ 9076}}$

McDowell Creek Watershed Management Plan Version 4.....................March 2, 2008

						estates			ESTATES DR			
00526313	ERDT	MICHAEL J		8915		MAGNOLIA ESTATES	DR	CORNELIUS	8915 MAGNOLIA ESTATES DR	CORNELIUS	NC	28031
00527302	SILICON DRIVE PARTNERS LLC		$\begin{aligned} & \text { \% BEACON } \\ & \text { PARTNERS \#3 } \\ & \text { LLC } \end{aligned}$	20488		CHARTWELL CENTER	DR	CORNELIUS	$\begin{aligned} & \text { 9300 HARRIS } \\ & \text { CORNERS PY } \\ & \text { \#100 } \end{aligned}$	CHARLOTTE	NC	28269
00527315	GANDY	PHIL M JR	QUINTON M GANDY		N	1-77	HY	CORNELIUS	$\begin{gathered} 123 \\ \text { BRIDGEPORT } \\ \text { DR } \end{gathered}$	MOORESVILLE	NC	28115

REACH E8a RANK (NEED \& FEASIBILITY) 65 RECOMMENDATION Enhancement II															
PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER,	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
00914117	BIRKDALE GOLF ASSOCIATES LLC						BIRKDALE COMMONS	PY		HUNTERSVILLE	$\begin{gathered} 4201 \\ \text { CONGRESS ST } \\ \text { SUITE } 410 \\ \hline \end{gathered}$		CHARLOTTE	NC	28209
00916127	KATZ	FRANK	MARY C	KATZ	16569		KIMBOLTEN	DR		HUNTERSVILLE	$\begin{gathered} 16569 \\ \text { KIMBOLTEN DR } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
00917108	SHARPE	SAMUEL A			16507		GRAPPERHALL	DR		HUNTERSVILLE	$\begin{gathered} 1607 \\ \text { GRAPPERHALL } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	28078
00917109	HUDNALL	ALFRED A JR	DEBRA D	HUDNALL	16521		GRAPPERHALL	DR		HUNTERSVILLE	$\begin{gathered} 16521 \\ \text { GRAPPERALL } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	28078
00917121	EDINGER	ROBERT H JR	BONNIES	EDINGER	16618		GRAPPERHALL	DR		HUNTERSVILLE	$\begin{gathered} 16618 \\ \text { GRAPPERHALL } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 8744 \end{gathered}$
00917122	BANDIERAMONTE	JOSEPH G	LINDAE	BANDIERAMONTE	16612		GRAPPERHALL	DR		HUNTERSVILLE	$\begin{gathered} 16612 \\ \text { GRAPPERHALL } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	28078
00917123	RODGERS	JIMMY		Jo ANN	16608		GRAPPERHALL	DR		HUNTERSVILLE	$\begin{gathered} 16608 \\ \substack{\text { GRAPPERALL } \\ \text { DR }} \end{gathered}$		HUNTERSVILLE	NC	28078
00917124	FRIDAY	ARTHUR F JR			16600		GRAPPERHALL	DR		HUNTERSVILLE	$\begin{gathered} 16600 \\ \text { GRAPPERHALL } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	28078
00917125	EHLINGER	MICHAEL D	KAREN S	EHLINGER	16522		GRAPPERHALL	DR		HUNTERSVILLE	$\begin{gathered} 16522 \\ \text { GRAPPERHALL } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	28078
00917126	HODGE	JEFFREY	SHERRI	HODGE	16510		GRAPPERHALL	DR		HUNTERSVILLE	$\begin{gathered} 16510 \\ \text { GRAPPERHALL } \\ \text { DR } \end{gathered}$		HUNTERSVILLE	NC	28078
00917128	BRAMLEY	DOUGLASM		SHARON CHRISTINE	8211		CHANDOS	PL		HUNTERSVILLE	8211 CHANDOS		HUNTERSVILLE	NC	28078
00917129	FLOWE	MILTON M	SHIRLEY E	FLOWE	8215		CHANDOS	PL		HUNTERSVILLE	8215 CHANDOS		HUNTERSVILLE	NC	28078
00917130	PRIOR	DAVID		$\begin{gathered} \text { LYNDA } \\ \text { FAIRWEATHER } \end{gathered}$	8219		CHANDOS	PL		HUNTERSVILLE	8219 CHANDOS		HUNTERSVILLE	NC	28078
00917152	POOLE	JIMMY K	WANDAK	POOLE	16511		BEECH HILL	DR		HUNTERSVILLE	$\begin{aligned} & \text { 16511 BEECH } \\ & \text { HILL DR } \\ & \hline \end{aligned}$		HUNTERSVILLE	NC	28078
00917153	FAUST	KENNETH M	CHERYL D	FAUST	16519		BEECH HILL	DR		HUNTERSVILLE	$\begin{aligned} & 16519 \text { BEECH } \\ & \text { HILL DR } \end{aligned}$		HUNTERSVILLE	NC	28078
00917154	HANDY	ROBERT B		DEBRA C HANDY	16527		BEECH HILL	DR		HUNTERSVILLE	$\begin{gathered} 16527 \text { BEECH } \\ \text { HILL DR } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	$\begin{gathered} 28078- \\ 8735 \\ \hline \end{gathered}$
00917165	GORDON	$\underset{S}{\text { CHRISTOPHER }}$	KATHERINE	GORDON	8316		BELLINGHAM	CT		HUNTERSVILLE	$\begin{gathered} 8316 \\ \text { BELLINGHAM } \\ \text { CT } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
00917166	RODRIGUEZ	RAUL	LORRAINE	RODRIGUEZ	8312		BELLINGHAM	CT		HUNTERSVILLE	$\begin{gathered} 8312 \\ \text { BELLINGHAM } \\ \text { CT } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078
00917169	HARDING	CONSTANCE A			16520		BEECH HILL	DR		HUNTERSVILLE	$\begin{aligned} & 16520 \text { BEECH } \\ & \text { HILL DR } \\ & \hline \end{aligned}$		HUNTERSVILLE	NC	28078
00917170	PANGLE	ANDREA LEE	WILLIAM MICHAEL	RICE	16512		BEECH HILL	DR		HUNTERSVILLE	16512 BEECH HILI DR HILL DR		HUNTERSVILLE	NC	28078
00917173	WEASE	JAMES CONRAD	NANCY P	WEASE	8311		QUEENSWAY	PL		HUNTERSVILLE	$\begin{gathered} 8311 \\ \text { QUEENSWAY } \\ \text { PL } \end{gathered}$		HUNTERSVILLE	NC	28078

McDowell Creek Watershed Management Plan Version 4.....................March 2, 2008

00917174	DEARING	TERRY W	SHIRLEY M	DEARING	8315	QUEENSWAY	PL	HUNTERSVILLE	$\begin{gathered} 8315 \\ \text { QUEENSWAY } \\ \text { PL } \end{gathered}$		HUNTERSVILLE	NC	28078
00917182	BIRKDALE HOMEOWNERS ASSOC INC					BIRKDALE COMMONS	PY	HUNTERSVILLE	$\begin{gathered} 4201 \\ \text { CONGRESS ST } \end{gathered}$	ROTUNDA SUITE \#175	CHARLOTTE	NC	28209
00917183	BIRKDALE APARTMENTS LLC			$\begin{aligned} & \text { \% THE } \\ & \text { CROSLAND } \\ & \text { GROUP INC } \end{aligned}$	16501	STONEMASON	DR	HUNTERSVILLE	227 W TRADE ST \#900		CHARLOTTE	NC	28202
00917212	CAMPIONE	LARRY E	JOANNE E	CAMPIONE	16150	COVINGTON POINT	LN	HUNTERSVILLE	$\begin{gathered} 16150 \\ \text { COVINGTON } \\ \text { POINT LN } \\ \hline \end{gathered}$		HUNTERSVILLE	NC	28078

McDowell Creek Watershed Management Plan Version 4.....................March 2, 2008

\％	$\stackrel{\stackrel{\sim}{0}}{\stackrel{\sim}{0}}$	$\stackrel{\otimes}{\stackrel{o}{0}} \mid$	$\stackrel{\stackrel{\sim}{0}}{\stackrel{\sim}{0}}$	$\stackrel{\stackrel{\infty}{0}}{\stackrel{\omega}{0}}$	$\stackrel{\otimes}{0}$	$\stackrel{\stackrel{\sim}{0}}{\substack{0}}$	崮	$\dot{\tilde{\sim}}$	嫊					$\stackrel{\vdots}{0}$	$\stackrel{\rightharpoonup}{\sim}$	橾	$\stackrel{\stackrel{\infty}{0}}{\stackrel{\rightharpoonup}{0}}$	©્ه্ণ	$\stackrel{\rightharpoonup}{\sim}$		鞙		馬	ôw	
2	2	2	2	2	2	2	2	ㄷ	2				\bigcirc	8	2	2	2	2	2	2	2	2	2	2	
	$\begin{aligned} & \overline{5} \\ & \stackrel{y}{0} \\ & \stackrel{u}{3} \end{aligned}$				$\begin{aligned} & \stackrel{y}{u} \\ & \stackrel{y}{6} \\ & \stackrel{y}{u} \\ & \stackrel{y}{4} \end{aligned}$			$\begin{aligned} & \text { 合 } \\ & \sum_{0}^{0} \\ & 0 \end{aligned}$		容				$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{\rightharpoonup}} \\ & \stackrel{\rightharpoonup}{\hat{2}} \\ & \stackrel{\rightharpoonup}{\mathrm{t}} \end{aligned}$						年					

山뚱

McDowell Creek Watershed Management Plan Version 4.....................March 2, 2008

PARCEL ID	OWNER, LAST NAME	OWNER, FIRST NAME	COWNER, FIRST NAME	COWNER, LAST NAME	HOUSENO	STDIR	STNAME	STTYPE	STSUFFIX	MUNICIPALITY	MAILADDR1	MAILADDR2	CITY	STATE	ZIPCODE
01706201	MONTEITH	WILLIAM GLENN		DON REID MONTEITH	12001		$\begin{gathered} \text { OLD } \\ \text { STATESVILLE } \end{gathered}$	RD		HUNTERSVILLE	8908 CARLETO CT		CHARLOTTE	NC	28214
01706202	HUNTER	WEST P JR		BRENDA R HUNTER	11912	N	STATESVILLE	RD		HUNTERSVILLE	$\begin{gathered} 2430 \\ \text { GALLOWAY RD } \\ \hline \end{gathered}$		CHARLOTTE	NC	28262
01706205	DELLINGER	WILLIAM J		(ET-AL)	12150		HAMBRIGHT	RD		HUNTERSVILLE	PO BOX 929		MONROE	NC	$\begin{gathered} 28111- \\ 0929 \\ \hline \end{gathered}$

0097169	0.558	HARDING CONSTANCEA	16520 BEECH HILL DR		HUNTERSVILLE	NC	28078	0.000	huntersville	16520		BEECH HILL
01724715	0.455	HARDY ACE P	4320 COLLINGWOOD DR		Charlotte	NC	28209	0.000	HUNTERSVILLE	12039		LAKEWOOD
00915325	0.538	HARRISON DAVID D JR	15715 GATHERING OAKS DR		HUNTERSVILLE	NC	28078	0.538	HUNTERSVILLE	15715		GATHERING OAKS
00504406	5.363	HD DEVELOPMENT OF MARYLAND INC	PO BOX 105842	$\# 3608$	ATLANTA	GA	303485842	5.363	HUNTERSVILLE	17111	N	STATESVILLE
01539157	9.931	HENDERSON PARK HOMEOWNER'S	5601 EXECUTVE CENTER DR	STE 201	CHARLotte	NC	282128841	9.931	HUNTERSVILLE			henderson park
00540102	44.080	HERITAGE PLANTATION INC	POBOX 2326		CORNELIUS	NC	28031	23.480	CORNELIUS	19011		OLD STATESVILLE
00507123	0.000	HILLS COMMUNITES OF CHARLOTTE	4901 HUNT RD	STE 300	CINCINNATI	ОН	45242	13.560	MECKLENBURG COUNTY			
00507101	63.963	HILLS COMMUNITES OF CHARLOTTE	4901 HUNT RD	STE 300	CINCINNATI	OH	45242	63.963	$\begin{array}{\|l\|} \hline \text { MECKLENBURG } \\ \text { COUNTY } \\ \hline \end{array}$	8918		WESTMORELAND
00903216	30.960	HL \& SH BROWN PARTNERSHIP THE	120 VILLA LN		DAVIDSON	NC	28036	30.960	HUNTERSVILLE			ERVIN COOK
00905116	16.880	HL \& SH BROWN PARTNERSHIP THE	120 VILLA LN		DAVIDSON	NC	28036	16.880	HUNTERSVILLE	14324		ERVIN COOK
00912275	0.437	HOLDER GORDON	10103 TALLENTLN		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	10103		TALLENT
00927233	1.000	HOLLY POINTLLC	101 EWT HARRIS BLVD STE 2320		CHARLOTTE	NC	282623423	1.000	HUNTERSVILLE	9604		HOLLY POINT
01506291	0.000	HOMEOWNERS ASSOCIATION FOR	ровох 350		MINERAL SPRINGS	NC	28108	6.730	HUNTERSVILLE			
01506292	0.000	HOMEOWNERS ASSOCIATION FOR	Ровох350		MINERAL	NC	28108	3.450	HUNTERSVILLE			
00535295	0.000	HORTON DRINC-TORREY	1100 S TRYON ST SUITE 100		Charlotte	NC	28203	29.360	CORNELIUS			
01539198	15.720	HORTON DRINC-TORREY	5800 5800 EXECUTIVE CENTER DR \#100		Charlotte	NC	282128869	15.720	HUNTERSVILLE			LeIsURE
01715308	1.730	HOUSER JAMES P JR	2200 PEMBROKE AVE		Charlotte	NC	282072112	1.730	HUNTERSVILLE		N	STATESVILLE
00541212	1.988	Howell stevel	152 RIDGETOP RD		MOORESVILLE	NC	28117	2.084	Cornelius	18705		STATESVILLE
01510318	0.000	HUDSON MELIISSA	9128 CULCAIRN RD		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	9128		CULCAIRN
01718108	13.681	HUNTERSVILLE BUSINESS PROPERTY	3340 PEACHTREE RD NE STE 610		ATLANTA	GA	303261065	13.681	HUNTERSVILLE	10307		REESE
00537199	6.050	HUNTERSVILLE DEVELOPMENT LLC	50 PUBLIC SQ 1250 TERMINAL	TOWER	CLEVELAND	ОН	44113	9.440	HUNTERSVILLE			PENNINGTON
00537699	9.000	HUNTERSVILLE DEVELOPMENT LLC	50 PUBLIC SQ		CLEVELAND	OH	441132201	9.050	CORNELIUS			CAMBERLY
00504407	2.478	HUNTERSVILLE SUITES LLC N/C	POBOX9165		HICKORY	NC	28603	2.478	HUNTERSVILLE			Caldwell creek
00943378	0.330	HUTCHINSON JOHNR	15919 STONEMONT RD		HUNTERSVILLE	NC	28078	0.330	HUNTERSVILLE	15919		STONEMONT
00517183	2.520	JJF ENTERPRISES LLC	215 LAWTONRD		Charlotte	NC	28216	2.520	CORNELIUS			STATESVILLE
01744101	13.533	KEFFER PROPERTIES LP	8200 E INDEPENDENCE BLVD		Charlotte	NC	282277777	13.533	HUNTERSVILLE		N	STATESVILLE
00930105	2.830	kENNEDY C RAY	16701 NORTHCROSS DR		HUNTERSVILLE	NC	28078	2.830	HUNTERSVILLE	16701		NORTHCROSS
01388126	5.760	KIDD ANTHONY DAVID	5900 STEPHENS RD		HUNTERSVILLE	NC	28078	5.760	HUNTERSVILLE			JIM KIDD
01305102	194.400	KIDD EDWARD B F/T	238 CHAPMAN LOOP		P/ PAWLEYS	sc	29585	194.400	HUNTERSVILLE	5824		JIM KIDD
01320106	6.200	KIDD FANNE C \%NELLIE AUST B/E	238 CHAPMAN LOOP		PAWLEYS ISLAND	sc	29585	3.510	HUNTERSVILLE			JIM KIDD
01320103	30.810	KIDD WILLIAMP	5730 JIM KIDD RD		HUNTERSVILLE	NC	28078	30.810	HUNTERSVILLE	5730		JIM KIDD
01714683	0.000	KING CYNTHIA C	15184 ERIC KYLE DR		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	15184		ERIC KYLE
00943425	0.152	KIRK LOIS	16018 STONEMONT RD		HUNTERSVILLE	NC	28078	0.152	HUNTERSVILLE	16018		Stonemont
0092622	0.444	KITA JERRY	8939 PRISTINE CT		HUNTERSVILLE	NC	28078	0.444	HUNTERSVILLE	8939		PRISTINE
00918434	0.650	KLINE MAYNARD H JR	15111 OXFORD HOLW		HUNTERSVILLE	NC	280785511	0.000	HUNTERSVILLE	15111		OXFORD HOLLOW
00503219	3.530	KNOX ROBERT FRANKLIN	13116 MT-HOLLY HUNTERSVILLE RD		HUNTERSVILLE	NC	28078	3.530	HUNTERSVILLE		N	STATESVILLE
01714597	6.000	KNOX RUBY BYERS B/E	4350 RANDOLPH RD		ROCK HILL	sc	29730	6.000	HUNTERSVILLE		N	$1-77$
01539143	0.245	KUCZEK ANN M	7810 LEISURE LN		HUNTERSVILLE	NC	28078	0.245	HUNTERSVILLE	7810		LEISURE
00514114	3.127	LACKEY NANCY L B/E	103 PIER 33 DR UNIT 216		MOORESVILLE	NC	281175533	3.420	CORNELIUS			STATESVILLE
00906116	0.000	LAKE FOREST COMMUNITY CHURCH	20472 CHARTWELL CENTER DR		CORNELIUS	NC	28031	19.096	HUNTERSVILLE			
01519111	40.000	LAKE NORMAN PAVILION LLC	POBOX 1496		CORNELUS	NC	28031	40.000	HUNTERSVILLE			HAMBRIGHT
00536108	1.967	LAKE NORMAN SLEEP LLC	2567 UNIVERSITY AVE	SUITE 4000	MORGANTOWN	wv	265053432	2.517	HUNTERSVILLE			NORTHCROSS

01509107	13.000	mecklenburg county	600 E 4TH ST		Charlotte	NC	28202	13.032	HUNTERSVILLE	7700		GILEAD
01535199	13.081	MECKLENBURG COUNTY	600 E 4TH ST FL 11		Charlotte	NC	282022816	13.081	HUNTERSVILLE			BRADFORD HILL
01509104	24.893	MECKLENBURG COUNTY	600 EAST 4TH ST		Charlotte	NC	28202	24.893	HUNTERSVILLE	8200		GILEAD
01538197	14.804	MECKLENBURG COUNTY	600 E 4TH ST		Charlotte	NC	282022816	14.800	HUNTERSVILLE			NEW OAK
00513127	2.344	MMR HOLDINGS LLC	1420 SPRING HILL RD STE 525		Mc lean	VA	221023041	2.704	CORNELIUS		N	$1-77$
00934101	3.554	MONTEITH GWEN HUCKS B/E	13832 STUMPTOWN RD		HUNTERSVILLE	NC	28078	31.605	HUNTERSVILLE	13832		Stumptown
00934104	5.001	MONTEITH HOLDINGS LLC	13777 BALLANTYNE CORP		CHARLOTTE	NC	28277	5.001	HUNTERSVILLE			STUMPTOWN
00934102	58.340	MONTEITH HOLDINGS LLC	501 SOUTH SHARON AMITY RD $\# 310$		Charlotte	NC	28211	58.340	HUNTERSVILLE	13650		STUMPTOWN
00910127	6.744	MONTEITH HOLDINGS LLC	13777 BALLANTYNE CORP PLZA\#\#320		CHARLotte	NC	28277	6.744	HUNTERSVILLE			BANKSIDE
00910126	5.033	MONTEITH HOLDINGS LLC	13777 BALLANTYNE CORP		Charlotte	NC	28277	5.033	huntersville		N	BANKSIDE
01747156	0.000	MOONEY WILLAM D	9312 STAWELL DR		Huntersville	NC	28078	0.000	HUNTERSVILLE	9312		STAWELL
00523323	0.284	MORAND ANTHONY M	10601 DANESWAY LN		CORNELIUS	NC	28031	0.000	CORNELIUS	10601		daneswar
00905111	16.040	MORROW Jo AnN B BML	9123 MT HOLLY-HUNTERSVILLE RD		HUNTERSVILLE	NC	28078	16.040	HUNTERSVILLE	14036		ERVIN COOK
0095342	8.130	MOWREY RANDOLPH P	7829 BABE STILWELL FARM RD		HUNTERSVILLE	NC	280788720	8.130	HUNTERSVILLE	7829		BABE STILWELL FARM
01719301	45.410	N C STATE HIGHWAY	1119 E SUGAR CREEK RD		Charlotte	NC	282051448	45.410	HUNTERSVILLE	12101		MT HOLLY-HUNTERSVILL
01516173	0.278	NEW FORTIS CORP THE	543577 CENTER DR \#30		Charlotte	NC	28217	0.278	HUNTERSVILLE	11840		JOURNEY'S END
01516171	0.288	NEW FORTIS CORPORATION THE	5435-30 77 CENTER DR		Charlotte	NC	28217	0.288	HUNTERSVILLE	11850		JOURNEY'S END
01516172	0.287	NEW FORTIS CORPORATION THE	5435-77 CENTER DR		Charlotte	NC	28217	0.287	HUNTERSVILLE	11846		JoURNEY'S END
01516698	3.490	NIBLOCK-RIDGELINE LLC	300 MCGILL AVE NW		CONCORD	NC	280276150	3.490	HUNTERSVILLE			TANNERS CREEK
01516134	56.220	NIBLOCK-RIDGELINE LLC	300 MCGILL AVE NW		CONCORD	NC	280276150	29.370	HUNTERSVILLE			BEATTIES FORD
01516111	29.317	NIBLOCK-RIDGELINE LLC	4500 CARMERON VALLEY PKWY	\#350	Charlotte	NC	282113552	29.317	HUNTERSVILLE			BEATTIES FORD
01733142	0.517	NORTH MECKLENBURG VOLUNTEER	PO BOX 622		CASAR	NC	28020	0.000	HUNTERSVILLE	727		OLD STATESVILLE
00504223	11.000	NORTHCROSS BUSINESS CAMPUS LLC	125 SCALEYBARK RD		Charlotte	NC	28209	11.000	huntersville			NORTHCROSS CENTER
00505201	2.550	NORTHCROSS COMMONS LP	501 E MOREHEAD ST STE 3		Charlotte	NC	282022630	2.550	HUNTERSVILLE	17000		NORTHCROSS
00504212	16.570	NORTHCROSS LAND \& DEVELOPMENT	5950 FAIRVIEW RD \# 200		Charlotte	NC	282103167	16.570	HUNTERSVILLE		N	STATESVILLE
00536109	4.011	NORTHCROSS MASTER ASSOCIATION	6401 CARMEL RD STE 102		charlotte	NC	282268364	4.011	HUNTERSVILLE			SAM FURR
00505208	8.770	NORTHCROSS PROPERTIES LLC	300 AUCKLAND LN		MATTHEWS	NC	28104	8.770	HUNTERSVILLE			SAM FURR
00505206	1.190	Northcross rbllc	POBOX 1029		CONOVER	NC	28613	1.190	HUNTERSVILLE	9109		SAM FURR
01716601	30.902	NOVANT HEALTHINC	200 HAWTHORNE LN		CHARLOTTE	NC	28204	30.902	HUNTERSVILLE	10115		kINCEY
01542105	27.940	OAKLINLLC	1220 S KINGS DR		Charlotte	NC	282071808	28.420	huntersvile	7039		mCILWAINE
00919221	0.207		8903 CUMBRIA CT		huntersville	NC	28078	.000	HUNTERSVILLE	8903		CUMBRIA
01514370	7.200	OUR TOWNS OF NORTH MECKLENBURG	POBOX 1088		davidson	NC	28036	7.200	huntersville			Palomar
01718505	5.328	PAAK-EM LLC	4143 RIDER TRL N		EARTH CITY	мо	630451102	5.328	HUNTERSVILLE			JULIAN CLARK
01510319	0.000	PAGE EDWARD D	9123 HILSTON RIDGE RD		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	9123		HILLSTON RIDGE
00917185	2.093	PAPPAS PETER A	4201 CONGRESS ST STE 175		CHARLOTTE	NC	282094624	2.093	HUNTERSVILLE			BIRKDALE COMMONS
01539158	0.204	PARRIS JoEY D	7638 HENDERSON PARK DR		HUNTERSVILLE	NC	280786365	0.204	HUNTERSVILLE	7638		HENDERSON PARK
01714402	1.680	PATEL DINESH AMBALA	4526 WILKINSON BLVD		CHARLOTTE	NC	282085531	1.880	HUNTERSVILLE	14601		MARUTI
01714410	0.850	PATEL dinesh ambala	4526 WILKINSON BLVD		Charlotte	NC	282085531	0.850	HUNTERSVILLE			MARUTI
01510441	0.000	PATTERSON JEFFRY L	9118 CULCAIRN RD		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	9118		CULCAIRN
01535101	0.656	PATTON BRADLEY D	8516 GILEAD DR		HUNTERSVILLE	NC	28078	0.724	HUNTERSVILLE	8518		GILEAD
01707222	4.953	PELL JOHN NICHOLSON	13500 MT HOLLY-HUNTVLE RD		HUNTERSVILLE	NC	28078	4.953	HUNTERSVILLE	13500		MT HOLLY-HUNTERSVILL
00905109	9.270	PENDER HELENB B/WL	13938 ERVIN COOKE RD		HUNTERSVILLE	NC	280788967	9.270	HUNTERSVILLE			GILEAD
01510421	0.000	PHAM TOM T	9420 HILLSTON RIDGE RD		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	9420		HILLSTON RIDGE

Mn: Mind

-

00503218	7.070	TUCKER SYLVIA S B/E	10120 BAILEY RD		CORNELIUS	NC	28031	7.070	meCkLenburg COUNTY		BAILEY	RD
00528199	9.030	TWIN OAKS HOMEOWNERS ASSOC INC	PO BOX 8100		CHARLOTTE	NC	28203	9.030	CORNELIUS	19901	OAK LEAF	CR
01724706	0.589	TYER NEALP B/E	PO BOX 462		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	12024	HILLCREST	LN
01509115	1.563	VANG YING	8018 MT GILEAD RD		HUNTERSVILLE	NC	28078	1.560	HUNTERSVILLE	8018	GILEAD	RD
00919228	0.242	WALKER JANIS	15129 STONEGREEN LN		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	15129	STONEGREEN	LN
00503202	2.640	WASHAM NANCY B	10140 BAILEY RD		CORNELIUS	NC	28031	2.640	MECKLENBURG COUNTY	10160	BAILEY	RD
00503209	7.250	WASHAM ROBERT V	10000 BAILEY RD		CORNELIUS	NC	28031	7.290	MECKLENBURG county	10020	BAILEY	RD
01503109	10.680	WATERS CONSTRUCTION COINC	7620 BALTURSOLLN		CHARLOTTE	NC	28210	10.210	HUNTERSVILLE	8033	BUD HENDERSON	RD
00917173	0.433	WEASE JAMES CONRAD	8311 QUEENSWAY PL		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	8311	QUEENSWAY	PL
00504225	1.506	WELBORNE K MCNEIL	9700 CALDWELL COMMONS DR		CORNELIUS	NC	28031	1.506	MECKLENBURG COUNTY	9700	CALDWELL COMMONS	CR
00507111	74.856	WESTMORELAND HOLDINGS LLC	728 KLUMAC RD \#102A		SALISBURY	NC	281445713	74.856	MECKLENBURG COUNTY		WEST CATAWBA	AV
00532114	0.000	Wheeler nancy b	17521 CAMBRIDGE GROVE DR		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	17521	CAMBRIDGE GROVE	DR
01707221	3.862	WILLIAMS JERRY R	13520 MT HOLLY-HUNTERSVILLE RD		HUNTERSVILLE	NC	28078	3.862	HUNTERSVILLE	13520	MT HOLLY-HUNTERSVILL	RD
00517178	4.950	WILLOW POND AT LAKE	GENERAL DELIVERY		CORNELIUS	NC	28031	4.950	CORNELIUS		WILLOW POND	RD
01510442	0.000	WILSON DANIELS	9114 CULCAIRN RD		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	9114	CULCAIRN	RD
01747157	0.000	WINTCHS ADRIAN P	9306 STAWELL DR		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	9306	STAWELL	DR
00912274	0.561	WINTER CHRISTOPHER JOHN	10025 TALLENT LN		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	10025	TALLENT	LN
01714681	0.000	WRIGHT MICHAEL C	15173 ERIC KYLE DR		HUNTERSVILLE	NC	28078	0.000	HUNTERSVILLE	15176	ERIC KYLE	DR
01539156	0.185	WRIGHT PATRICK N	7641 HENDERSON PARK DR		HUNTERSVILLE	NC	280786366	0.185	HUNTERSVILLE	7641	HENDERSON PARK	RD
00926299	2.292	WYNFIELD FOREST HOMEOWNERS	141 SCALEYBARK RD		CHARLOTTE	NC	28209	2.292	HUNTERSVILLE		PRISTINE	CT
00923398	8.324	WYNFIELD FOREST HOMEOWNERS	141 SCALEYBARK RD		CHARLOTTE	NC	28209	8.324	HUNTERSVILLE		WYNFIELD CREEK	PY
00926195	6.415	WYNFIELD FOREST HOMEOWNERS	141 SCALEYBARK RD		CHARLOTTE	NC	28209	6.415	HUNTERSVILLE		LIZZIE	LN
00920303	1.140	WYNFIELD PROPERTY OWNERS	4324 BARRINGER DR STE 104		CHARLOTTE	NC	282171500	1.140	HUNTERSVILLE		WYNFIELD CREEK	PY
00919273	1.840	WYNFIELD PROPERTY OWNERS	4324 BARRINGER DR STE 104		CHARLOTTE	NC	282171500	1.840	HUNTERSVILLE		CUMBRIA	CT
00919144	3.900	WYNFIELD PROPERTY OWNERS	4324 BARRINGER DR STE 104		CHARLOTTE	NC	282171500	3.900	HUNTERSVILLE		WYNFIELD CREEK	PY
00920302	5.870	WYNFIELD PROPERTY OWNERS	4324 BARRINGER DR STE 104		CHARLOTTE	NC	282171500	5.870	HUNTERSVILLE	14301	WYNFIELD CREEK	PY

[^0]: U17a Restoration IWVN ISV7 ‘yヨNMO

 REACH
 RANK (NEED \&
 FEASIBILITY)

 | |
 | :--- |
 | FEASIBILITY) |
 | RECOMMENDATION |

 PARCEL ID

 | STTYPE | STSUFFIX | MUNICIPALITY | MAILADDR1 | MAILADDR2 | CITY | STATE | ZIPCODE |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^1]: REACH
 RANK (NEED \&
 EASIBILITY)
 RECOMMENDATION $\begin{gathered}\text { Removal of large CMPs } \\ \text { deposited in the channel }\end{gathered}$

[^2]: P18a
 48

