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Project Overview

Project Duration: Aug. 2018 — Dec. 2019

Objectives:

1. Setup and calibrate a mechanistic, multi-
dimensional model of Jordan Lake, NC based
on current monitoring data

2. Run scenario tests to investigate system
sensitivity to potential management actions
(nutrient load reduction, circulation
modification, others TBD)



Project Tasks and Timeline

Presentation of Initial

Initial Consultation Model Project Results
with NC DWR, Jordan to DWR,
Lake Monitoring Stakeholders, Jordan
Project Team, . . Lake Project Team: . .
Stakeholders Model Calibration August 1- 31, 2019 Project Reporting
1 Sep. — 31 Dec. 1May—-31July @ 1Sep.-310ct.
| 2018 2019 | 2019 |
1 July — 30 Sep. 1Jan.-30Apr. 1-31 Aug. ~ 1Nov. -31 Dec.
2018 2019 | | 2019
Data Gathering, Initial Scenario Testing with Additional Work as
Model Setup and Calibrated Model Needed on Model
Testing Inputs, Calibration,

and Scenario Tests
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PhD from MIT, 1990 - Modeled
interaction between a phytoplankton
cell and nearby motile bacteria,
simulated effects of turbulent shear on
microscale nutrient distributions and
bacterial chemotaxis

Worked in consulting in Boston area
until 1996 doing surface water
monitoring and modeling work

Moved to NC in ‘96 to take position as
an Assistant Professor at UNC
Charlotte, began work on Neuse R.
almost immediately (w/ help from Rick
Luettich)

Interim Chair of Civil & Environmental
Engr. (CEE) Dept. in 2017 & 15t half of
2018

Now CEE dept. graduate program
director and associate chair, Nutrient
Criteria Development SAC member



Mechanistic Modeling Experience in
North Carolina — Neuse River Estuary

* Research funded by NC WRRI ("97, ‘99, ‘16, ‘18)

* Developed a 2-d laterally averaged model of Neuse
River Estuary (using CE-QUAL-W?2)

e Added a sediment submodel to simulate
denitrification in estuary

* Used as part of nutrient TMDL analysis of estuary in
1999, 2002

 Latest work refines model grid, automates
calibration, extends model run to 2016, adds full
sediment diagenesis submodel



Neuse River Estuary Model Grid

Neuse Estuary Model Grid

and MODMON monitoring stations
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Automated model calibration w/
computer cluster Histograms of Six
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Mechanistic Modeling Experience in
North Carolina — Cape Fear River
-stuary

e Research funded by NC DWR (2006-2009)

* Developed a 3-d laterally averaged model of lower
Cape Fear River Estuary (below lock & dam 1) using
EFDC

e Used long-term BOD tests of WWTP effluent to
guantify OM decay rates

e Used attenuation of progressive wave in estuary to
calibrate effective exchange volume w/ fringing
marshes

* Model used by DWR to estimate DO impact of
point and non-point organic matter inputs to
estuary
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Figure 6. Model Grid Showing Location and Size of Marsh Cells



DOC (top) and
NH4 (bot

oad to LCFR
estuary by
source
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Figure 44. Average Daily Load of Dissolved Organic Carbon to the Model Region from
Various Sources
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Figure 45. Average Daily Load of Ammonia to the Model Region from Various Sources .
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Figure 52. Percentile Plot of Observed and Model Predicted Dissolved Oxygen Concentrations
During the Calibration Period. The y-axis indicates the fraction of values below the
comresponding DO concentration (mg/L) indicated on the x -axis.
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Jordan Lake Model Plan, Some
Thoughts

* Previous model (EFDC/WASP) was developed using
data from almost 20 years ago
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Figure 3-2. EFDC Simulation Grid for Jordan Lake. Cells shown in pink are repres
dry at lake normal pool elevation.

@ TETRATECH, INC.

[REY
¢ 8]




WASP
Water Quality
Grid

OWASA <= Durham
O r | gl n a ‘ — Greensboro

Burlington % Durham Co.

Tetratech Mebane

Reidsville

Jordan Lk. = &8
Vodel

“
‘

Figure 3-13. Relationship of WASP Model Segments, Major Dischargers, and Withdrawal
from Jordan Lake. 14




Jordan Lake Model Plan, Some
Thoughts

e Recent monitoring efforts (DWR, UNC policy
collaboratory, UNC & NCSU faculty) provide data neeed
to run and calibrate model



e.g. “Algal Blooms and Cyanotoxins in
Jordan Lake, North Carolina” (2018,
Schnetzer lab, NCSU)
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Jordan Lake Model Plan, Some
Thoughts

* Data collection underway, tentative plan is to model
some or all of 2014 — 2017 time period

* Implementing a 3-d model (EFDC) for both
hydrodynamics and water quality

 EFDC model will include sediment transport sub-model



EFDC water column, water quality
state variables
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Figure 2.1 Schematic diagram of EFDC Water Quality Model Structure.



EFDC water column, water quality
state variables
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Figure 2.1 Schematic diagram of EFDC Water Quality Model Structure.



EFDC water column, water quality
state variables
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Figure 2.1 Schematic diagram of EFDC Water Quality Model Structure.



EFDC water column, water quality
state variables
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Figure 2.1 Schematic diagram of EFDC Water Quality Model Structure. 1



SEDIMENT

LAYER 2

Sediment Diagenesis, conceptual
model & state variables
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Fig. 3. Benthic sediment diagenesis modeling framework in enhanced W2.
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* Will rely on Dan O. & Co.s work in the watershed
(WRTDS) to specify time varying nutrient load

e Water quality calibration will take advantage of
automated multi-criteria approach developed for
the Neuse River model

* Consultation w/ stakeholders throughout project is
planned



Project Tasks and Timeline

Presentation of Initial

Initial Consultation Model Project Results
with NC DWR, Jordan to DWR,
Lake Monitoring Stakeholders, Jordan
Project Team, . . Lake Project Team: . .
Stakeholders Model Calibration August 1- 31, 2019 Project Reporting
1 Sep. — 31 Dec. 1May—-31July @ 1Sep.-310ct.
| 2018 2019 | 2019 |
1 July — 30 Sep. 1Jan.-30Apr. 1-31 Aug. ~ 1Nov. -31 Dec.
2018 2019 | | 2019
Data Gathering, Initial Scenario Testing with Additional Work as
Model Setup and Calibrated Model Needed on Model
Testing Inputs, Calibration,

and Scenario Tests
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Questions?
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