Modeling Nitrogen in Urban Watersheds

Nutrient Sensitive Waters Science Advisory Board

February 4, 2011 Presentation at the Triangle J Council of Governments, Durham, North Carolina Trevor Clements, Water Resources Director Dr. Jon Butcher, PH

Presentation Overview

Model Context (Trevor)Site Modeling Options (Jon)

Watershed Scale

What constitutes a model?

Others

Model Basis

- Empirical formulations
 - mathematical relationship based on observed data rather than theoretical relationships

Deterministic models

 mathematical models designed to produce system responses or outputs to temporal and spatial inputs (process-based)

Speciation, Transport and Transformation Processes in the Aquatic Environment

Model Categories

- Landscape models
 - Runoff of water and materials on and through the land surface
- Receiving water models
 - Flow of water through streams and into lakes and estuaries
 - Transport, deposition, and transformation in receiving waters
- Watershed models
 - Combination of landscape and receiving water models
- Site-scale models
 - Detailed representation of local processes, for example Best Management Practices (BMPs)

Spatial Focus

- Site accounting versus delivered loads
 - Delivered loads (to reservoirs, estuaries) are what matter
 - □ But, regulation focuses on site loads
- Stream and reservoir models enable processbased evaluation of delivered or exerted loads
 - A pound of nitrogen in the headwaters has less impact than a pound of nitrogen discharged at lake side

Spatial Focus

- Watershed models allow evaluation of urban loads in context with other load sources
 Provide basis for trading evaluations
- Such models should evaluate urban and rural runoff, as well as instream transformations
 HSPF, SWAT, and WARMF are examples
 Each has its own strengths and weaknesses

Process and Temporal Resolution

Site accounting models

Establish N baseline

- Reduction credits for management measures
- Levels of resolution:
 - Steady-state, empirical
 - Dynamic, semi-empirical
 - Full process basis

Empirical Tools

- Jordan Lake tool is a simple empirical model
 - Assigns EMCs to land uses and BMPs
 - Evaluates average annual load does not provide simulation of loading time series or yearto-year variability
- Other examples include:
 - Site Evaluation Tool (SET)
 - PLoad

Empirical Tools

Pros

□ Simple, easy to use

Provide a consistent framework

Cons

Don't enable analysis of changes in assumptions

- No process-based representation of changes in management and upland practices
- No ability to tweak BMP design
- Can't evaluate responses to climate change
- Don't enable detailed source tracking

More Complex Tools

- Add dynamic representation
- Attempt some level of process-based representation of sources
- Require considerably more effort to implement

□ When is this worthwhile?

Dynamic, Semi-Empirical Tools

- Wide range available, from simpler to more complex, e.g.
- SLAMM: Simple continuous simulation with pollutant probability distributions
- SWMM: Sophisticated stormwater simulation with buildup-washoff representation of pollutants and simple instream transformations (without explicit atmospheric deposition)
- HSPF: Sophisticated stormwater simulation with buildup-washoff, atmospheric deposition, and detailed instream processes.

Dynamic, Semi-Empirical Tools

- All these tools are still semi-empirical, because they do not fully represent processes that control N loads
- Similar considerations apply to representation of BMPs:
 - N mitigation generally depends on the natural processes of denitrification and plant uptake
 - □ SLAMM: treatment efficiencies
 - SWMM: Flexible equation-based representation of treatment (external resolution of the processes)
 - HSPF: Add-ons, such as BMP-DSS provide some process-based representation of pollutant removal as a function of hydrology

Full Process-Based Simulation

Full Process-Based Simulation

- Requires simulation of plant growth and soil stores
- Surface-groundwater interactions
- Models that do all this are largely experimental or academic
 - SWAT provides the plant growth simulation, but is weaker on urban hydrology
 - Newer grid-based models (e.g., GSSHA) attempt to do full surface-groundwater linkage, but still in development

SUSTAIN U.S. EPA ORD - Edison

System for Urban Stormwater Treatment and Analysis INtegration

- A GIS-based framework designed to support decisionmaking
 - Evaluate and select BMPs to achieve loading targets set by a TMDL
 - Identify protective management practices and evaluate pollutant loadings for Source Water Protection
 - Develop cost-effective management options for a municipal MS4 program
 - Determine a cost-effective mix of green infrastructure measures to help meet optimal flow reduction goals in a CSO control study
- Released in November '09

http://www.epa.gov/ednnrmrl/models/sustain/index.html

SUSTAIN Advantages

- Multi-scale application
- Detailed BMP simulation
- Cost consideration
- Optimization

Summary - model selection factors to consider...

- Utility: ability to answer key management questions and convey results
- Relevance:
 - Representation of key processes
 - Assumptions and limitations
- Credibility: peer-reviewed, public domain
- Usability:
 - □ Match to data availability
 - Cost and level of expertise required
- Resources Available: time and funding

Thank you!

Contact Information:

Trevor Clements trevor.clements@tetratech.com (919)485-8278 x-100 Dr. Jonathan Butcher Jon.butcher@tetratech.com (919)485-8278 x-103

