Pathogen Source Assessment for

TMDL Development and Implementation in

North Carolina

April 28, 2005

Bacterial Source Tracking

- Laboratory Methods
- Known-Source Library Development
- Statistical Procedures
- Understanding the Reports
- Post-Processing

3

ARA Methodology

- Grow bacteria from known sources of bacteria
- Isolate colonies
- Subject "isolates" to different concentrations and types of antibiotics
- Identify source-related patterns
- Detect similar patterns in water samples

Statistical Analysis

Use known-source library to determine the relationship between Antibiotic Resistance and bacteria source:

Most Likely Source = f(A1, A2, A3 ... A28)

Is the library large enough?

Randomization Test

- Randomly assign sources to samples
- Create new model
- Calculate ARCC
- With 4 source categories, the randomized ARCC should be close to 25%
- ARCC >> 25% indicates false clustering
 - library is too small

9

Is the library representative?

Jackknife Analysis

- Hold back one known-source sample
- Create model
- Assess model's ability to categorize held-back sample

Why not throw all of the data into one big library?

- Geographical Differences
 - Combine smaller libraries as appropriate
 - Too big: ARCC goes down
 - Too small: False Clustering goes up
- Temporal Differences
 - Need to update libraries

What source categories are appropriate?

- Human/Non-human
 - Where human waste is the only pollutant of concern
- Human/Domestic Animals/Wildlife
 - A good catch-all grouping
- Human/Pets/Wildlife
 - Watersheds with NO livestock
- Human/Livestock/Pets/Wildlife
 - Watersheds with all sources present
- Others...

19

What species should be included?

- Major contributors
 - Waterfowl
 - Aquatic mammals
 - Warm blooded animals that frequent the stream corridor, or have a large, wide-spread population
- Opportunity/Availability
- Does it matter if one or two species are not included?
 - No, the statistical procedures used account for that

Statistical Analyses: Where is there uncertainty?

- Natural Variability: How is the bacteria distributed in the stream?
 - "Clumping"
 - Temporal variation
- **Field Sampling:** Was the water sample representative of stream conditions at the time of sampling?
 - Good standard water sampling procedures
- Statistical Significance: Have enough isolates been analyzed to draw conclusions about the larger population?
 - Sample size requirements similar to assessing survey results
- Lab Methodology: How accurate is the BST methodology?

2:

Natural Variability

- Analyses often assume homogeneity in the stream
- As with other pollutants (and more than some), there are non-homogeneities

How can we address the uncertainty in the data?

- Natural Variability
 - Sample more, if greater certainty is needed
 - Be careful not to give too much weight to 1 sample
- Field Sampling
 - Use good stream sampling techniques
- Statistical Significance
 - Analyze more isolates per sample, if greater certainty is needed
- Lab Methodology/Analysis
 - Use false-positive rates to assess results

27

Using the False-Positive Rate

- How often does the analysis indicate the category of interest when the source category is something else (False-Positive)?
 - Analyze known-source library
 - FP Rate = (Sum FPs)/(# of "other" isolates analyzed)
- Use FP Rate to determine if percentages are significantly different from zero

BST Report

- Chapter 1: Introduction
- Chapter 2: Objectives
- Chapter 3: Methods
 - Source Sampling Strategy
 - Stream Sampling Locations
- Chapter 4: Known-Source Library Development
 - Details follow...
- Chapter 5: Results
 - Details follow...

29

Chapter 4: Known-Source Library Development

- Initial Libraries
 - High RCCs, but high random RCCs
 - Potential for overfitting
- Regional Libraries
 - Acceptable RCCs
 - Lower random RCCs
 - Acceptable Jackknife RCCs
- Urban Library
 - Urban library did not perform as well as regional libraries

- Average of each source category
- Isolates weighted average
- Concentration weighted average
- Flow weighted average
- Combined weighted average

