DEVELOPMENT AND USE OF A THREE-DIMENSIONAL WATER QUALITY MODEL

TO PREDICT DISSOLVED OXYGEN CONCENTRATIONS IN THE LOWER CAPE FEAR RIVER ESTUARY, NORTH CAROLINA

James D. Bowen, Solomon Negusse, J. Matthew Goodman, Benoit Duclaud, Mathieu Robin, and Jesslyn Williams

Department of Civil and Environmental Engineering
William States Lee College of Engineering
University of North Carolina at Charlotte
Charlotte, NC 28223

The research on which this report is based was supported by funds provided by the North Carolina General Assembly through the North Carolina Department of Environment and Natural Resources.

October 2009

TABLE OF CONTENTS

EXECUTIVE SUMMARY iv
LIST OF FIGURES viii
LIST OF TABLES xiii

1. INTRODUCTION 1-1
1.1 Background 1-1
1.2 Study Objectives 1-2
1.3 Organization of the Study Report 1-3
2. MODEL SETUP 2-1
2.1 Model Description 2-1
2.2 Description of the Lower Cape Fear River Basin 2-3
2.3 Previous Modeling of the Cape Fear River Estuary 2-5
2.4 Model Grid and Bathymetry 2-6
2.5 Monitoring Data Used for Model Setup and Calibration 2-11
3. SPECIFICATION OF MODEL INPUT FILES 3-1
3.1 Riverine and Wetland Inputs 3-1
3.1.1 Flow Specification 3-1
3.1.2 Temperature and Concentration Specification 3-5
3.2 Point Source Inputs 3-8
3.2.1 Flow Specification 3-8
3.2.2 Temperature and Concentration Specification 3-8
3.3 Downstream Boundary Inputs 3-15
3.3.1 Water Surface Elevation Specification 3-15
3.3.2 Temperature and Concentration Specification 3-17
3.4 Benthic Inputs 3-18
3.5 Meteorological Inputs 3-18
4. CALIBRATION 4-1
4.1 Description of the Calibration Time Period 4-1
4.2 Hydrodynamic Model Calibration 4-2
4.2.1 Modeled and Observed Water Surface Elevations 4-4
4.2.2 Modeled and Observed Salinities 4-22
4.3 Temperature Model Calibration 4-30
4.4 Water Quality Model Calibration 4-38
5. MODEL EVALUATION 5-1
5.1 Model Confirmation 5-1
5.2 Sensitivity Testing 5-15
6. SCENARIO TESTING. 6-1
6.1 Description of Base and Scenario Cases 6-1
6.2 Effect of Eliminating Wastewater Point Source Loadings 6-1
6.3 Effect of Reducing River, Creek, and Wetland Loadings 6-4
6.4 Effect of Changing Sediment Oxygen Demand 6-6
6.5 Cumulative Effect of Lower Sediment Oxygen Demand and Reduced Loadings from Rivers, Creeks, and Wetlands 6-8
6.6 Effect of Eliminating Ammonia Inputs from Wastewater Point Sources. 6-10
6.7 Effect of Increasing Wastewater Inputs to Maximum Permitted Values 6-12
6.8 Effect of Deepening of the Navigation Channel. 6-16
6.9 Effect of Changing Brunswick County Wastewater Loadings 6-18
6.10 Analysis of the Summer Time-Averaged Dissolved Oxygen Deficit in the Impaired Region 6-20
7. SUMMARY, DISCUSSION, AND CONCLUSIONS 7-1
8. REFERENCES 8-1
Appendix A. Conversion Matrices Used to Create WQPSL.INP Appendix A 1
Appendix B. Grid Files CELL.INP, DXDY.INP, LXLY.INP Appendix B 1
Appendix C. EFDC Control File EFDC.INP for base case run. Appendix C 1
Appendix D. EFDC Water Quality Control File, WQ3DWC.INP Appendix D 1
Appendix E. EFDC Benthic Flux Input File, benflux_tser.inp Appendix E 1

EXECUTIVE SUMMARY

An application of the three-dimensional water quality model EFDC (Environmental Fluid Dynamics Code) was developed for the Lower Cape Fear River Estuary, North Carolina. The model was used to investigate the effects of various organic matter and ammonia load reduction scenarios on the dissolved oxygen concentrations within the estuary. The model region included the tidally affected portions of the Cape Fear, Black, and Northeast Cape Fear Rivers near Wilmington, North Carolina, and extended southward to the mouth of the Cape Fear River near Southport, North Carolina.

The model's three-dimensional numerical grid had 1050 horizontal cells and eight vertical layers. The average horizontal grid size was approximately 600 m ; individual cell sizes ranged from 100 to 1300 m . Cell water depths varied for river and estuary channel cells from 2.5 to 12.5 m . EFDC uses a "sigma" vertical grid so that the water depth within a horizontal cell was subdivided into eight layers of uniform thicknesses. The model grid included 241 "marsh" cells that were used to model the off-channel storage of wetlands adjoining the estuary. Flow boundary conditions were utilized at the upstream riverine boundaries; a radiation-separation boundary condition was used at the downstream open boundary. Model input data sets and observed data sets used for calibration and confirmation, and model scenario testing were developed using observed data gathered from various agencies. The period December 1, 2003 to December 31, 2004 was found to have sufficient data to create the necessary model data set for calibration. An additional model data set using data from January 1 to December 31, 2005 was used for model confirmation.

The model calibration period (January 1 - December 31, 2004) had streamflows that were generally below average for the first half of the year, and generally above average for the latter half of the year. After a storm in early May 2004, streamflows remained below average until August. The remainder of 2004 and 2005 until the middle of April had streamflows that were near historical average values. Flows through the summer of 2005 were generally below average. Dissolved oxygen (DO) concentrations at two stations that were in the impaired region and had continuous monitors installed in 2004 (Navassa and the Northeast Cape Fear at Wilmington) showed summertime (April 1 - October 31) dissolved oxygen concentrations that varied between 3 and $7.5 \mathrm{mg} / \mathrm{L}$. At both of these sites the median DO concentration was below $4.5 \mathrm{mg} / \mathrm{L}$ and the $25^{\text {th }}$ percentile DO concentration was below $4.1 \mathrm{mg} / \mathrm{L}$. DO concentrations were generally lower at the Northeast Cape Fear site, and at this site were generally lower near the bottom of the water column.

Model calibration was performed separately on the hydrodynamic and water quality submodels. Hydrodynamic model calibration relied heavily on a set of continuous in-situ water level and water quality monitors that were deployed through the estuary. Hydrodynamic model calibration consisted primarily of varying the location, width, and bottom roughnesses of shallow model cells located adjacent to the river and estuary channels. The distribution of these "marsh" cells utilized information on the location and lateral extent of saltwater marshes and wetland forests adjoining the estuary. The calibrated hydrodynamic model matched well the attenuation of the tidal amplitude signal from the estuary mouth to the upstream model boundaries. The
model was also able to simulate to a reasonable extent the time histories of salinities throughout the estuary.

The twenty-one state variable water quality model available in EFDC included multiple dissolved and particulate organic carbon constituents, as well as organic and inorganic nutrients, dissolved oxygen, and three phytoplankton constituents. To adequately characterize the various organic matter decomposition rates of the riverine and wastewater inputs, both labile and refractory dissolved organic matter constituents were used. The water quality model considered inputs from the three riverine sources at the model boundaries, twenty wastewater point source inputs within the estuary, and fourteen additional point sources that simulated other freshwater inputs to the estuary from tidal creeks and wetlands. Over the three-year time period (20022005) for which the freshwater and point source loadings were developed, approximately 10% of the organic matter loading and 50% of the ammonia loading to the estuary came from the twenty wastewater point sources that discharged directly to the estuary.

The dissolved oxygen model utilized a user specified sediment oxygen demand (SOD) that could vary spatially and temporally. Both temporal and spatial variation in SOD was utilized for the model. The temporally variable SOD that was used in this study was based upon an analysis of the available monitoring data. Temporal variation was modeled according the observed variation in measured SOD with changes in water temperature during the SOD measurement. SOD values were then adjusted seasonally according to observed changes in water temperature in the water body. During calibration it was determined that higher SOD values should be used for the Northeast Cape Fear. The ratio between these higher SOD values and the SOD values for remaining portion of the model region was determined during calibration. Discharge and estuary monitoring data were used to quantify the loadings of organic matter, nutrients, and dissolved oxygen to the estuary. As part of calibration SOD values were varied to values above and below the average values from the monitoring program. The calibrated value was found to be nearly identical to the corresponding value from the monitoring program.

The calibrated model matched well time histories of observed dissolved oxygen concentration. Model predictions were compared to over 5200 measured dissolved oxygen concentrations collected at eighteen sites throughout the estuary. The mean model error was less than $0.01 \mathrm{mg} / \mathrm{L}$, and the root mean square error was $0.92 \mathrm{mg} / \mathrm{L}$, which corresponded to 13.8% of the mean value. The correlation r^{2} was 84.4%. This is an excellent degree of model fit for an estuarine dissolved oxygen model. Time history comparisons were also made for other important water quality constituents, such as nitrate + nitrite, orthophosphate, total nitrogen, and chlorophyll. In each case the model acceptably simulated the spatial and temporal patterns in the observed data set. A water quality model confirmation test run using input and calibration data from 2005 showed a similar degree of fit between observed and predicted dissolved oxygen concentrations. Based upon this work, the calibrated model is considered to be suitable for conducting scenario tests on the effect of changes in organic matter and ammonia loadings on the dissolved oxygen concentrations in the estuary.

A number of scenario tests were conducted to investigate the system's sensitivity to loading changes and other possible changes in the water body. For each scenario, a model run
was used to determine the predicted dissolved oxygen concentrations during the summer period of 2004 (April 1 - October 31) within the state designated impaired region of the estuary. Twice daily dissolved oxygen snapshots were recorded from all eight vertical layers at eighteen sites within the impaired region. More than twenty separate model runs were made and compared to the base case to determine how the dissolved oxygen concentrations might vary for a particular scenario. These eight scenarios were examined:

1. Eliminating wastewater point source loadings
2. Reducing river, creek, and wetland loadings
3. Changing wastewater loadings for various values of sediment oxygen demand
4. Reducing river, creek, and wetland loadings and sediment oxygen demand
5. Eliminating ammonia inputs from wastewater point sources
6. Increasing wastewater inputs to maximum permitted values
7. Deepening of the navigation channel
8. Changing Brunswick County wastewater loadings

Four model runs were made to investigate the effect of completely turning off the discharges from the wastewater treatment plants. These scenarios were run, not because the pollutant removals used were considered achievable or advisable, but instead these scenarios were run to investigate the system's sensitivity to WWTP loads. River, creek, and wetland inputs were maintained at the base condition levels. It was assumed that organic matter and ammonia concentrations in the wastewater inputs would be decreased to $0.0 \mathrm{mg} / \mathrm{L}$. When all WWTP loads were eliminated, the $10^{\text {th }}$ percentile DO concentration increased by approximately $0.3 \mathrm{mg} / \mathrm{L}$, from 4.3 to $4.5 \mathrm{mg} / \mathrm{L}$. The median value DO concentration increased by about 0.10 mg / L, from 5.6 to $5.7 \mathrm{mg} / \mathrm{L}$. Selectively turning off individual WWTP loads, as expected, had a smaller effect. Turning off the International Paper WWTP had an effect that was roughly $2 / 3$ of that when all the plants were turned off. Turning off both Wilmington domestic wastewater treatment plants had an effect that was roughly $1 / 3$ of that when all discharges were turned off. A fourth scenario considered eliminating the ammonia loading for all wastewater treatment plants. This scenario increased the dissolved oxygen concentration by about $0.1 \mathrm{mg} / \mathrm{L}$ at the $10^{\text {th }}$ percentile level.

The impact of changing the loadings that entered the model region from rivers, creeks, and wetlands were also investigated. Loading reductions of $30 \%, 50 \%$, or 70% were assumed for the three river inputs (Cape Fear, Black, and Northeast Cape Fear), and from the fourteen creeks and wetland inputs in the estuary. To reduce the loadings, flows were maintained at the observed levels, but concentrations were reduced by $30 \%, 50 \%$, or 70%. Loadings for the twenty wastewater point sources were maintained at the levels in the base case scenario. These load reductions were found to have a significant impact on dissolved oxygen concentrations. At the $10^{\text {th }}$ percentile level, DO concentrations for the $30 \%, 50 \%$, and 70% load reduction increased by $0.20,0.3$, and $0.40 \mathrm{mg} / \mathrm{L}$ respectively, from $4.3 \mathrm{mg} / \mathrm{l}$ to either $4.5,4.6$ or $4.7 \mathrm{mg} / \mathrm{L}$. Unlike the other scenarios investigated, this level of increase in DO concentration was maintained at the higher percentiles. In fact, the median DO concentration was increased to even a greater extent, increasing from 5.6 to $5.85 \mathrm{mg} / \mathrm{L}$ for the 30% load reduction, and from 5.6 to $6.2 \mathrm{mg} / \mathrm{L}$ for the 70% load reduction scenario.

Additional water quality model runs were conducted to investigate the sensitivity of the results to the choice of model kinetic parameters. Because of its relative importance in determining dissolved oxygen concentrations, the sensitivity analysis focused on the impact of various choices for the sediment oxygen demand. During calibration it was found that this parameter had a significant impact on dissolved oxygen concentrations in the estuary. In addition to the calibrated SOD value $\left(0.4 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}\right.$ at $20^{\circ} \mathrm{C}$), runs were made at a lower value (0.3 $\mathrm{g} / \mathrm{m}^{2} / \mathrm{d}$ at $20^{\circ} \mathrm{C}$) and a higher value $\left(0.5 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}\right.$ at $\left.20^{\circ} \mathrm{C}\right)$. Model fit to the observed data set was compared for these three cases. All three cases had similar correlation r^{2} values ($83.4 \%, 83.4 \%$, and 84.5%), but on average the low SOD case overpredicted DO concentrations by $0.11 \mathrm{mg} / \mathrm{L}$, while the high SOD case underpredicted DO concentrations by a similar amount ($0.09 \mathrm{mg} / \mathrm{L}$). The impact of turning off the organic matter and ammonia loadings from all wastewater treatment plants was investigated for each of these three SOD cases. Each scenario produced a very similar change in DO concentration when all point sources were turned off. Even though DO concentrations were changed with the different SOD cases, in each scenario, turning off the sources increased DO concentrations by approximately $0.25 \mathrm{mg} / \mathrm{L}$ at the $10^{\text {th }}$ percentile level. It is expected that changes in other model parameters would have a similar result. Although absolute concentrations are affected by changes in parameter values, relative changes in concentration are less affected by changing parameter values.

An additional set of model runs were conducted to investigate the effect of reducing both river loading of organic matter and sediment oxygen demand. Three pairs of model runs were made that reduced river loading or river loading and SOD by $30 \%, 50 \%$, and 70%, using the methods described earlier. As expected, a larger effect was seen when both river loading and SOD were reduced. A 30% reduction raised the $10^{\text {th }}$ percentile DO concentration from 4.3 to 4.8 mg / L; a 50% reduction raised the $10^{\text {th }}$ percentile DO concentration to $5.2 \mathrm{mg} / \mathrm{L}$; a 70% reduction raised the $10^{\text {th }}$ percentile DO concentration to $5.4 \mathrm{mg} / \mathrm{L}$. In this final case where both river load and SOD were reduced by 70% from the base case, only about 1% of the model predicted DO concentrations in the impaired region were less than the water quality standard value of 5.0 mg / L.

The impact of increasing all wastewater treatment plant loadings to the maximum allowed by permit was also investigated. For cases where both the maximum concentration and flow were specified, both these values were used in the scenario. In permits with only a load or concentration limit, the existing flows were maintained, but concentrations were adjusted to produce the permitted limit. Using these maximum permitted loadings decreased predicted dissolved concentrations in the impaired region by approximately $0.1 \mathrm{mg} / \mathrm{L}$. This level of decrease was fairly uniform across the range of predicted concentrations.

The impact of deepening the navigation channel on predicted dissolved oxygen concentrations in the estuary was also investigated. Model grid files were adjusted to match the channel deepening plan developed by the Wilmington district of the US Army Corps of Engineers that will deepen portions of the Cape Fear and Northeast Cape Fear Rivers. It was found that this deepening would decrease dissolved oxygen concentrations by approximately 0.1 to $0.2 \mathrm{mg} / \mathrm{L}$. The percentage of dissolved oxygen concentrations in the summertime in the impaired region that would be below $5.0 \mathrm{mg} / \mathrm{L}$ would increase slightly with the channel deepening from 32% to 34%.

Three model scenarios considered the impact of changing the wastewater flow of a single discharger (Brunswick County wastewater treatment plant). Based on the discharge monitoring reports for the model period, the base condition had a time-averaged flow of 0.38 MGD. The three scenarios tested had time-averaged flow of 1.65, 4.65 and 15 MGD. These scenarios therefore represented the effect of changing the wastewater treatment flow by factors of 4.3, 12.1, and 39.1. Despite the relatively large changes in the assumed wastewater flow, there were only very small differences in the predicted dissolved oxygen concentrations, for summertime conditions in the impaired region. Across the entire range of dissolved oxygen concentrations, the differences between the base case and each of the three scenarios were always less than 0.05 mg / L.

An analysis was performed to attribute the observed oxygen depletion within the estuary to riverine loadings of degradable waste, wastewater discharges, and sediment oxygen demand. It was found that for three sites in the impaired region during the summer, less than 10% of the dissolved oxygen deficit was attributable to wastewater discharges. Riverine loadings and sediment oxygen demand each contributed similar amounts to the remaining 90% of the deficit.

The report concludes with some recommendations as to additional development of the model that seems justified. Both this model study and a previous effort demonstrated the importance of benthic fluxes of oxygen. As this model used a prescribed sediment oxygen demand, albeit one that varies temporally and spatially, further refinement of the sediment model seems warranted. In addition, some additional work seems justified to separately consider the effects of wetland and riverine loadings to dissolved oxygen conditions in the estuary.

LIST OF FIGURES

Figure 1. The Cape Fear River Basin, North Carolina 1-3
Figure 2. Schematic Description of the State Variables within the EFDC Water Quality Model 2-3
Figure 3. A Conceptual Model of the Dissolved Oxygen Mass Balance in the Lower Cape Fear River Estuary 2-5
Figure 4. Channel Cells Within the Model Region 2-8
Figure 5. Riverine Swamps and Saltwater Marshes in the Lower Cape Fear River Estuary 2-9
Figure 6. Model Grid Showing Location and Size of Marsh Cells 2-10
Figure 7. Lower Cape Fear River Monitoring Program Monitoring Stations 2-13
Figure 8. USGS Continuous Monitoring Stations and the Division of Water Quality Special Study Monitoring Stations 2-14
Figure 9. Cross-Sections Surveyed by the Division of Water Quality 2-16
Figure 10. Division of Water Quality SOD Monitoring Stations 2-17
Figure 11. Watersheds Draining Directly into the Cape Fear River Estuary 3-4
Figure 12. Procedure for Creating Water Quality Mass Load File, WQPSL.INP 3-6
Figure 13. Wastewater Treatment Plant Source Locations. 3-11
Figure 14. Long-term BOD Measurement, International Paper, July 20, 2003 3-14
Figure 15. Long-term BOD Measurement, International Paper, July 27, 2003 3-13
Figure 16. Long-term BOD Measurement, Wilmington Northside WWTP 3-15
Figure 17. Long-term BOD Measurement, Wilmington Southside WWTP 3-16
Figure 18. Streamflows at the Cape Fear River at the Lock and Dam 1 Station During the Model Time Period 4-2
Figure 19. Dissolved Oxygen Concentrations at the Navassa and Northeast Cape Fear at Wilmington Monitoring Stations 4-3
Figure 20. Monitoring Stations Used for Comparing to Hydrodynamic Model Predictions.. 4-6
Figure 21. M2 Tidal Amplitude at Seven Stations for Various Wetland Cell Width Scenarios4-8
Figure 22. M2 Tidal Amplitude at Seven Stations for Various Wetland Cell Size Scenarios. 4-8
Figure 23. Model Predictions and Observed Water Surface Elevations During 2004 at Cape Fear R. Station Lock and Dam 1 and the Black R. at Currie 4-9
Figure 24. Model Predictions and Observed Water Surface Elevations During 2004 at NE Cape Fear at Burgaw and Cape Fear at Navassa 4-10
Figure 25. Model Predictions and Observed Water Surface Elevations During 2004 at NE Cape Fear at Wilmington and Cape Fear at Marker 12 4-11

Figure 26. Model Predictions and Observed Water Surface Elevations During January 2004 (Day $730=1 / 1 / 2004$) at Cape Fear River Marker 12 and at the Wilmington Tide Gage
Figure 27. Model Predictions and Observed Water Surface Elevations During January 2004 (Day $730=1 / 1 / 2004$) at NE Cape Fear at Wilmington, and the Cape Fear at Navassa.

Figure 28. Model Predictions and Observed Water Surface Elevations During January 2004 (Day $730=1 / 1 / 2004$) at NE Cape Fear at Burgaw.
Figure 29. Model Predictions and Observed Water Surface Elevations During January 2004 (Day $730=1 / 1 / 2004$) at the Cape Fear at Lock and Dam 1 and at the Black River at Currie. ... 4-16

Figure 30. Model Predictions and Observed Water Surface Elevations During June 2004 (Day $900=6 / 19 / 2004$) at the Cape Fear at Marker 12 and the Wilmington Tide Gage.
Figure 31. Model Predictions and Observed Water Surface Elevations During June 2004 (Day $900=6 / 19 / 2004)$ at the NE Cape Fear at Wilmington and the Cape Fear River at Navassa. 4-18

Figure 32. Model Predictions and Observed Water Surface Elevations During June 2004 (Day $900=6 / 19 / 2004$) at the NE Cape Fear at Burgaw... 4-23
Figure 33. Model Predictions and Observed Water Surface Elevations During June 2004 (Day $900=6 / 19 / 2004)$ at the Black River at Currie and the Cape Fear R. at Lock and Dam 1.

Figure 34. Model Predictions (lines) and Observed (symbols) Salinities During 2004 at the Cape River at Navassa and the NE Cape Fear River at Wilmington.
Figure 35. Model Predictions (lines) and Observed (symbols) Salinities During 2004 at the
Cape River at Marker 12.. 4-26
Figure 36. Scatter Plot of Predicted Salinity (ppth, x-axis) vs. Corresponding Observed Salinity (ppth, y-axis).
Figure 37. Percentile Plot of Observed and Model Predicted Salinities During the Calibration Period. The y-axis indicates the fraction of values below the corresponding salinity (ppth) indicated on the x -axis.

Figure 38. Model Predicted and Observed Temperatures During 2004 at the Cape Fear River at Lock and Dam 1 and the Black River at Currie.

Figure 39. Model Predicted and Observed Temperatures During 2004 at the NE Cape Fear River at Burgaw and at Station NCF 117.
Figure 40. Model Predicted and Observed Temperatures During 2004 at the NE Cape Fear
River at Wilmington and the Cape Fear River at Marker 12.............................. 4-34
Figure 41. Scatter Plot of Predicted Temperature (${ }^{\circ} \mathrm{C}, \mathrm{x}$-axis) vs. Corresponding Observed Temperature (${ }^{\circ} \mathrm{C}, \mathrm{y}$-axis) During the 2004 Calibration Run.

Figure 42. Percentile Plot of Observed and Model Predicted Temperatures During the 2004 Calibration Period. The y-axis indicates the fraction of values below the corresponding temperature $\left({ }^{\circ} \mathrm{C}\right)$ indicated on the x -axis. 4-37

Figure 43. Average Daily Load of Refractory Particulate Organic Carbon to the Model Region from Various Sources 4-40

Figure 44. Average Daily Load of Dissolved Organic Carbon to the Model Region from Various Sources. 4-41

Figure 45. Average Daily Load of Ammonia to the Model Region from Various Sources. . 4-41
Figure 46. Natural Logarithm of Measured Sediment Oxygen Demand (y-axis) vs. Deviation from 20 Degree ${ }^{\circ} \mathrm{C}$ Measured Temperature (x-axis).

Figure 47. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During 2004 at the Cape Fear River at Lock and Dam1 and the Black River at Currie. 4-44

Figure 48. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During 2004 at the NE Cape Fear River at Burgaw and Station NCF 117. 4-45

Figure 49. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During 2004 at the Cape Fear River at Navassa and the NE Cape Fear River at Wilmington.

4-46
Figure 50. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During 2004 at the Cape Fear River at Marker 12. 4-47

Figure 51. Scatter Plot of Predicted Dissolved Oxygen Concentrations (mg/L, x-axis) vs. Corresponding Observed Dissolved Oxygen Concentrations (mg/L, y-axis) for the 2004 Calibration Period.

4-50
Figure 52. Percentile Plot of Observed and Model Predicted Dissolved Oxygen Concentrations During the Calibration Period. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis. 4-51

Figure 53. Model Predicted (lines) and Observed (symbols) Ammonia Concentrations During 2004 at the Cape Fear River at Station NC 11 and the Black River at Station B210. 4-52

Figure 54. Model Predicted (lines) and Observed (symbols) Ammonia Concentrations During 2004 at the NE Cape Fear River at Station NCF6 and the Cape Fear River at Station IC. 4-53

Figure 55. Model Predicted (lines) and Observed (symbols) Ammonia Concentrations During 2004 at the Cape Fear River at Navassa and at Station M23. 4-54
Figure 56. Model Predicted (lines) and Observed (symbols) Nitrate + Nitrite Concentrations During 2004 at the Cape Fear River at Station NC 11 and the Black River at Station B210. 4-55

Figure 57. Model Predicted (lines) and Observed (symbols) Nitrate + Nitrite Concentrations During 2004 at the NE Cape Fear River at Station NCF6 and the Cape Fear River at Station IC. 4-56

Figure 58. Model Predicted (lines) and Observed (symbols) Nitrate + Nitrite Concentrations During 2004 at the Cape Fear River at Navassa and at Station M23.

Figure 59. Model Predicted (lines) and Observed (symbols) Total Phosphorus Concentrations During 2004 at the Cape Fear River at Station NC 11 and the Black River at Station B210.

4-60
Figure 60. Model Predicted (lines) and Observed (symbols) Total Phosphorus Concentrations During 2004 at the NE Cape Fear River at Station NCF6 and the Cape Fear River at Station IC.

Figure 61. Model Predicted (lines) and Observed (symbols) Total Phosphorus Concentrations During 2004 at the Cape Fear River at Navassa and at Station M23.
Figure 62. Model Predicted (lines) and Observed (symbols) Chl-a Concentrations During 2004 at the Cape Fear River at Station NC 11 and the Black River at Station B210.

Figure 63. Model Predicted (lines) and Observed (symbols) Chl-a Concentrations During 2004 at the NE Cape Fear River at Station NCF6 and the Cape Fear River at Station IC.
Figure 64. Model Predicted (lines) and Observed (symbols) Chl-a Concentrations During 2004 at the Cape Fear River at Navassa and at Station M23. 4-65

Figure 65. Model Predicted (lines) and Observed (symbols) Salinities During the 2005 Confirmation Run in the NE Cape Fear River at Station NCF6 and in the Cape Fear River at Navassa ... 5-2
Figure 66. Model Predicted (lines) and Observed (symbols) Salinities During the 2005 Confirmation Run at the Cape Fear River at Marker 61 and at Station M35.5-3

Figure 67. Model Predicted (lines) and Observed (symbols) Temperatures During the 2005 Confirmation Run for the NE Cape Fear River at Station NCF117 and the Cape Fear River at Navasssa.
Figure 68. Model Predicted (lines) and Observed (symbols) Temperatures During the 2005 Confirmation Run for the Cape Fear River at Marker 61 and at Station M35....... 5-6

Figure 69. Scatter Plot of Predicted Temperature (${ }^{\circ} \mathrm{C}, \mathrm{x}$-axis) vs. Corresponding Observed Temperature (${ }^{\circ} \mathrm{C}$, y-axis) during the 2005 Confirmation Run.
Figure 70. Percentile Plot of Observed and Model Predicted Temperatures During the 2005 Confirmation Period. The y-axis indicates the fraction of values below the corresponding temperature $\left({ }^{\circ} \mathrm{C}\right)$ indicated on the x -axis.

Figure 71. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During the 2005 Confirmation Run for the Cape Fear River at Station NC11 and the Black River at Station B210. 5-9

Figure 72. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During the 2005 Confirmation Run for the NE Cape Fear River at Station NCF117 and the Cape Fear River at Navasssa.
Figure 73. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During the 2005 Confirmation Run for the Cape Fear River at the Brunswick River Station and at Station M35. 5-12

Figure 74. Scatter Plot of Predicted Dissolved Oxygen Concentrations (mg/L, x-axis) vs. Corresponding Observed Dissolved Oxygen Concentrations (mg/L, y-axis) for the 2005 Confirmation Period. .. 5-13
Figure 75. Percentile Plot of Observed and Model Predicted Dissolved Oxygen Concentrations During the 2005 Confirmation Period. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis........ 5-14
Figure 76. Scatter Plot and Percentile Plot, DO, SOD = 0.3.. 5-16
Figure 77. Scatter Plot and Percentile Plot, DO, SOD = 0.5.. 5-17
Figure 78. Eighteen Locations Used to Determine Model Predicted Dissolved Oxygen Concentrations for the Scenario Tests 6-2

Figure 79. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and Three Wastewater Treatment Plant Load Reduction Scenarios. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis
Figure 80. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and two Scenarios that Reduce Loading from Rivers and Creeks by $30 \%, 50 \%$, and 70%. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x-axis.6-5
Figure 81. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and a No WWTP Loading Scenario for Three Different Values of Sediment Oxygen Demand. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis.6-7
Figure 82. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and two Scenarios that Reduce Loading from Rivers and Creeks by 30% and 50%. The dashed lines show the corresponding changes in dissolved oxygen when SOD is also reduced by 30% or 50%. The yaxis indicates the fraction of values below the corresponding DO concentration $(\mathrm{mg} / \mathrm{L})$ indicated on the x -axis.
Figure 83. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and a no Ammonia Loading Scenario. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis. 6-11

Figure 84. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and a Scenario Where all WWTP's are Set to the Their Maximum Permitted Discharge. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis 6-15

Figure 85. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and a Scenario Where the Navigation Channel is Deepened by Dredging. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis
Figure 86. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and Three Brunswick County WWTP Loading Scenarios. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis. 6-19

Figure 87. Model Predicted Dissolved Oxygen Concentrations as a Percentage of Saturation Concentration at Two Cape Fear Locations (Navassa and Horseshoe Bend) and one NE Cape Fear Station (Wilmington).

Figure 88. Bar Graphs of Summer Season (April through October) Time-Averaged Model Predicted Dissolved Oxygen Concentrations (green) and the Dissolved Oxygen Deficit Caused by Wastewater Treatment Plants (black) Riverine Discharges (blue), and Sediment Oxygen Demand (pink) at Two Cape Fear Locations (Navassa and Horseshoe Bend) and one NE Cape Fear Station (Wilmington).6-23

LIST OF TABLES

Table 1. EFDC Water Quality State Variables. Abbreviations refer to constituents as shown inFigure 22-2
Table 2. EFDC Input Files and Data Sources 2-11
Table 3. USGS Monitoring Station Data 3-2
Table 4. Subdivision of the Cape Fear River Watershed 3-3
Table 5. Subwatersheds Draining Directly to the Lower Cape Fear River Estuary 3-3
Table 6. Temperature Time History Specification 3-5
Table 7. Organic Matter Degradation Parameters for Each Riverine Source 3-8
Table 8. Parameter Matrix for Creating Cape Fear Point Source Loading Time History 3-10
Table 9. Description of Point Sources 3-12
Table 10. Degradation Rates and Fractionation of International Paper and Wilmington Municipal Wastewaters 3-15
Table 11. Tidal Harmonic Constituent Data Used to Specify Open Boundary Elevation 3-17
Table 12. Sediment Oxygen Demand (SOD) Measurements 3-20
Table 13. Locations Used for Model Calibration 4-4
Table 14. Model Predicted and Observed Tidal Constituents at Seven Stations 4-19
Table 15. Calibration Statistics, Salinity 4-27
Table 16. Model Calibration Statistics for Salinity at Monitoring Sites Within the Model Region 4-28
Table 17. Calibration Statistic, Temperature 4-34
Table 18. Model Calibration Statistics for Temperature at Monitoring Sites Within the Model Region. 4-35
Table 19. Calibration Statistics, Dissolved Oxygen 4-48
Table 20. Model Calibration Statistics for Dissolved Oxygen at Monitoring Sites Within the Model Region. 4-49
Table 21. Model Fit Statistics, Temperature, 2005 Confirmation Run 5-7
Table 22. Model Fit Statistics, Dissolved Oxygen, 2005 Confirmation Run 5-13
Table 23. Model Point Sources That Were Adjusted to Maximum Permitted Values 6-12
Table 24. Total Maximum Monthly Permitted Values for the Point Sources in the Lower Cape Fear Estuary 6-13

1. INTRODUCTION

1.1 Background

The Cape Fear River watershed is the largest in North Carolina with a drainage area of 9,149 square miles. The watershed is nearly 200 miles long and is completely contained within the state (NC DENR 2004). The watershed is divided into upper, middle, and lower regions. The upper region contains the Triad metropolitan area of Greensboro, High Point, and WinstonSalem. The Lower Cape Fear River Estuary occupies the southernmost 60 kilometers of the watershed, from upstream of Wilmington to the Atlantic Ocean (Figure 1). The estuary includes not only the tidally affected portion of the Cape Fear River, but also the lowermost portions of the Black and Northeast Cape Fear Rivers. The Wilmington metropolitan area is located within the estuarine portion of the Lower Cape Fear watershed.

The river and its watershed are vital resources to the state providing not only as a water supply for drinking and industrial use, but also by providing habitat for countless aquatic plants and animals. As such, reaches within the Cape Fear River watershed have been deemed by the North Carolina government to have designated uses such as water supply, primary and secondary recreation, aquatic life propagation, and agriculture depending on the desired use of the water and its quality (see classifications listing at http://h2o.enr.state.nc.us/csu/). State (NC Department of Environment and Natural Resources) and Federal (Environmental Protection Agency) agencies are charged with maintaining, protecting, and restoring the quality of surface waters. Section 303(d) of the Federal Clean Water Act (CWA) requires all states to develop a list of waters not meeting water quality standards or which are not meeting their designated use. Listed waters must be prioritized, and a management strategy or total maximum daily load (TMDL) analysis must subsequently be developed for all listed waters.

A portion of the Lower Cape Fear River Estuary occupying 5,616.7 acres is currently on the state's 303(d) list (NC Division of Water Quality 2008). This listing, having the following description:

From upstream mouth of Toomers Cr. to a line across the river between Lilliput Creek and Snow's cut
is given in part because of violations of the state's water quality standard for dissolved oxygen ($5.0 \mathrm{mg} / \mathrm{L}$ for surface waters, and $4.0 \mathrm{mg} / \mathrm{L}$ for swamp waters) (NCDEHNR 1994). Because of the history of dissolved oxygen water quality violations, and the 303(d) listing of this portion of the estuary, the NC is currently conducting a dissolved oxygen TMDL analysis of the estuary. As part of this TMDL analysis, a three-dimensional water quality model of the estuarine portion of the Cape Fear River watershed has been developed, tested, and utilized to run management scenarios. This report summarizes the development, testing, and use of this model.

1.2 Study Objectives

The overall objective of the study was to develop a water quality model of the Lower Cape Fear River estuary that would be suitable for use during the dissolved oxygen TMDL analysis performed by the NC Division of Water Quality (DWQ). During the early investigative phase of the project, it was determined that a three-dimensional numerical model would be necessary. Once the model was selected, developed and tested, the project objective was to estimate the nature and magnitude of changes in the water quality of the estuary that would result from changes in inputs of oxygen demanding wastes to the estuary. This objective was achieved by formulating, running, and analyzing several sets of model scenarios that simulated water quality conditions in the estuary for various loading levels of oxygen demanding wastes. A secondary model objective was to assess the reliability of model predictions. This objective was achieved through model confirmation and model sensitivity testing.

1.3 Organization of the Study Report

In order to achieve the model study objectives, the project was divided into the following phases:

- model selection,
- collection of model forcing and calibration data,
- creation of the model computational grid,
- creation of model input files,
- model calibration,
- model confirmation (verification and sensitivity analysis), and
- scenario testing.

The remaining chapters describe each of the phases listed above. Chapter 2 introduces the threedimensional model and describes the process by which the computational grid was created. This section also reviews the data sources used to create model input and calibration data files. Chapter 3 provides additional details on the specifications of model inputs that were used to create the various model input files. This is followed in Chapter 4 by a description of hydrodynamic and water quality model calibration. Model evaluation, which included a model confirmation test and sensitivity testing, is described in Chapter 5. The sensitivity of the system to changes in inputs of organic matter or other changes in the system is described in chapter 6. In this chapter are described five separate scenario tests that were performed to investigate how water quality in the estuary might change with changes in organic matter loadings. Discussion of the results and some conclusions that come from the study are provided in Chapter 7.
References are provided in the final chapter.

Figure 1. The Cape Fear River Basin, North Carolina

2. MODEL AND SYSTEM DESCRIPTION

2.1 Model Description

After a review of the previous monitoring and modeling work done in the Lower Cape Fear River Estuary (e.g. Cahoon et al., 1999; Lin et al. 2006, Mallin et al., 2003, Tetra Tech 2001), it was decided that a three-dimensional water quality model was needed. Because of its flexibility in water quality simulation, its frequent use for hydrodynamic simulation, and its support by EPA, the Environmental Fluid Dynamics Code (EFDC) was selected as the model to be used for this application. EFDC is a hydrodynamic and water quality model that can be used to model one, two or three-dimensional aquatic systems. EFDC uses stretched or sigma vertical coordinates and Cartesian or curvilinear-orthogonal horizontal coordinates to represent the physical characteristics of a water body. It solves the three-dimensional, vertically hydrostatic, free surface, turbulent averaged equations of motion for a variable-density fluid. Dynamically coupled transport equations for turbulent kinetic energy, turbulent length scale, salinity and temperature are also solved. The EFDC model allows for drying and wetting in shallow areas by a mass conservation scheme (Hamrick, 1992).

A water quality model with 21 state variables (Table 1) has been developed and implemented within EFDC to form a three-dimensional coupled hydrodynamic and water quality model (water quality formulation can be found in Park et al., 1995). The model simulates temporal and spatial distributions of several water quality parameters such as dissolved oxygen, suspended algae, several components of carbon, nitrogen, phosphorous, silica as well as fecal coliform bacteria. The model predicts time and space variable concentrations by coupling the fate of these constituents (Figure 2) and performing a mass balance for each constituent at each water quality model time step (Tetra Tech, Inc., 2002a, 2002b).

The complete EFDC model contains three submodels (1: Hydrodynamics and Temperature, 2: Water Quality, 3: Sediment Diagenesis). The complete model, which was originally developed by John Hamrick (Hamrick, 1992) is currently maintained by Tetra Tech, Inc.. The hydrodynamics and temperature submodel is currently supported by the Environmental Protection Agency (EPA). In this application, the hydrodynamics, temperature, and water quality submodels were utilized. The sediment diagenesis model was not used, instead fluxes between the water column and sediments were prescribed.

Table 1. EFDC Water Quality State Variables. Abbreviations refer to constituents as shown in Figure 2.

Water Quality State Variable	Abbreviation	Unit
Cyanobacteria (blue-green algae)	Bc	$\mathrm{g} / \mathrm{m}^{3}$
Diatoms (algae)	Bd	$\mathrm{g} / \mathrm{m}^{3}$
Green algae (others)	Bg	$\mathrm{g} / \mathrm{m}^{3}$
Refractory particulate organic carbon	RPOC	$\mathrm{g} / \mathrm{m}^{3}$
Labile particulate organic carbon	LPOC	$\mathrm{g} / \mathrm{m}^{3}$
Dissolved organic carbon	DOC	$\mathrm{g} / \mathrm{m}^{3}$
Refractory particulate organic phosphorus	RPOP	$\mathrm{g} / \mathrm{m}^{3}$
Labile particulate organic Phosphorous	LPOP	$\mathrm{g} / \mathrm{m}^{3}$
Dissolved organic Phosphorous	DOP	$\mathrm{g} / \mathrm{m}^{3}$
Total phosphate	TPO	$\mathrm{g} / \mathrm{m}^{3}$
Refractory particulate organic Nitrogen	RPON	$\mathrm{g} / \mathrm{m}^{3}$
Labile particulate organic Nitrogen	LPON	$\mathrm{g} / \mathrm{m}^{3}$
Dissolved organic Nitrogen	DON	$\mathrm{g} / \mathrm{m}^{3}$
Ammonium	NH	$\mathrm{g} / \mathrm{m}^{3}$
Nitrate Nitrogen	NO	$\mathrm{g} / \mathrm{m}^{-}$
Particulate biogenic silica	SU	$\mathrm{g} / \mathrm{m}^{3}$
Available silica	SA	$\mathrm{g} / \mathrm{m}^{3}$
Chemical Oxygen Demand	COD	$\mathrm{g} / \mathrm{m}^{3}$
Dissolved Oxygen	DO	$\mathrm{g} / \mathrm{m}^{3}$
Total active metal	TAM	$\mathrm{g} / \mathrm{m}^{3}$
Fecal Coliform Bacteria	FCB	$\mathrm{Mpn} / \mathrm{m}^{3}$

Figure 2. Schematic Description of the State Variables within the EFDC Water Quality Model.

2.2 Description of the Lower Cape Fear River Basin

The Cape Fear River flows for 200 miles through the North Carolina piedmont, crosses the coastal plain, and empties into the Atlantic Ocean near Southport, North Carolina. The river begins near Greensboro and Winston-Salem as two rivers, the Deep River and the Haw River. These two rivers converge near Moncure to form the Cape Fear River. The Black River joins the Cape Fear 15 miles above Wilmington, and the Northeast Cape Fear River enters the system at Wilmington (Figure 1).

The Lower Cape Fear River Estuary occupies the southernmost 60 kilometers of the watershed, between Wilmington and the Atlantic Ocean. The estuary includes not only the tidally affected portion of the Cape Fear River, but also the lowermost portions of the Black and Northeast Cape Fear Rivers. This area of the river basin is extremely important for saltwater animals because of its function as a nursery for juvenile fish, crabs, and shrimp. The Cape Fear River system is North Carolina's largest river system whose basin covers 9,000 square miles and encompasses streams in 29 of the state's 100 counties. It is the most industrialized of all of North Carolina's rivers (Cahoon et al., 1999; Mallin et al., 2003). The river is also an important natural resource that supports many uses including industry, transportation, recreation, drinking water and aesthetic enjoyment.

The hydrology of the Cape Fear Estuary is similar to that of most of the middle to large estuaries located along the US Atlantic Coast. During the summer and the beginning of the fall, the estuary has relatively low flows, whereas it has high flows from the end of the fall to the beginning of the spring. From a hydrodynamic perspective, the Cape Fear has approximately a two-meter tide range and strong tidal currents ($>0.5 \mathrm{~m} / \mathrm{s}$) in the navigational channel of the open estuary and in the narrow tidal river channels of the three tributaries (Ensign et al. 2004).

A region of the estuary near the junction of the Cape Fear, Black, and Northeast Cape Fear Rivers is prone to low dissolved oxygen concentrations during the warm summer and early fall seasons (Mallin et al. 2003) as a result of natural and anthropogenic (both point and nonpoint source) organic matter loadings. Dissolved oxygen concentrations are frequently below saturation concentrations, and typically exhibit an unusual vertical distribution in which surface concentrations are consistently lower than bottom concentrations (Lin et al. 2006). Previous modeling studies of the estuary have replicated this behavior, and have shown reaeration to be an important component of the dissolved oxygen budget for this region (Tetra Tech 2001).

A conceptual model of dissolved oxygen in the Lower Cape Fear River Estuary considers that the mass balance of dissolved oxygen in the water-column is simultaneously affected by several sources (Figure 3). Biologically or chemically degradable organic matter, quantified according to a biochemical oxygen demand load (BOD in kg/day), is introduced into the estuary from a variety of sources including the three major rivers (Cape Fear River, Northeast Cape Fear River, Black River), wastewater treatment plant discharges, and local inputs of non-point source loadings from the fringing wetlands and tidal creeks within the estuary. These same sources may also contribute or deplete the estuaries water column of dissolved oxygen as they either add or remove dissolved oxygen from the water. Likewise the bottom sediments of the estuary, which accepts the organic matter that settles from the water column, will also produce a water column dissolved oxygen sink as the organic matter in the bottom sediments is aerobically decomposed by benthic microbes and animals. Sources of dissolved oxygen to the estuary water column includes phytoplankton that produces oxygen as they photosynthesize new plant material, and the overlying atmosphere, which will replenish the water column with dissolved oxygen whenever surface water dissolved oxygen concentration are less than 100% saturated. Together these dissolved oxygen sources and sinks and BOD sources produces a dissolved oxygen concentration that varies both in time and space within the estuary. In general the cumulative effects result in dissolved oxygen concentrations that are lowest in the warm summer months when organic matter decomposition occurs at a maximum rate while dissolved oxygen saturation concentrations, which decrease with increasing temperature and salinity, are at their seasonal minimum values.

Figure 3. A Conceptual Model of the Dissolved Oxygen Mass Balance in the Lower Cape Fear River Estuary

2.3 Previous Modeling of the Lower Cape Fear River Estuary

A three-dimensional water quality model of the Lower Cape Fear River Estuary has previously been developed for the City of Wilmington and New Hanover County (Tetra Tech 2001). This work had these stated objectives:

- Simulation of the mixing and transport of the City/County existing and proposed future Northside and Southside facility effluents.
- Simulation of the impact of existing and proposed future Northside and Southside facility pollutant loads for oxygen-demanding substances.
- Evaluation of multiple sources and cumulative loads of oxygen-demanding substances to the lower Cape Fear River estuary.
- Analysis of the various processes affecting dissolved oxygen and their relative contribution to ambient dissolved oxygen deficit levels.

Included in the model analysis was a prediction of the near-field and far-field dilution of the two Wilmington wastewater treatment plants and a water quality analysis for various scenarios that considered changes to wastewater treatment plant loadings, changes to sediment oxygen demand values within the estuary, changes to river loadings of organic matter and ammonia, and changes arising from elimination of the fringing wetland areas of the estuary. The hydrodynamic model was calibrated using continuous monitoring of water surface elevation and salinity during the summer of 1993 and long-term measurements of water surface elevation at the NOAA tide gauge at Wilmington. A radiation separation boundary condition was used for the open boundary at the mouth of the Cape Fear River Estuary. The water quality model calibration utilized in-stream data from the Lower Cape Fear Program and wastewater treatment plant loading data from the NC Division of Water Quality. The water quality calibration was based upon model predicted and observed data comparisons for the entire 1998 calendar year. The scenario analysis also considered the 1998 calendar year.

The scenario analyses focused on changes to dissolved oxygen concentration that would be seen at five monitoring stations within the Cape Fear and Northeast Cape Fear Rivers (Navassa, NCF6, M61, M54, M42). The scenario analysis considered time-averaged changes in dissolved oxygen concentrations at these five stations. It was concluded based upon the results of the scenario analyses that sediment oxygen demand had the largest effect on dissolved oxygen concentrations, followed by either the point source loads or the wetland effect, depending on the station examined. Overall the tributary loadings of organic matter had the smallest effect on dissolved oxygen concentrations at the five stations examined, although there were significant differences in the relative magnitudes of the effects at the five stations. The study concluded with recommendations for additional studies and water quality modeling of the estuary aimed at better quantifying the relative magnitude of the factors causing dissolved oxygen depletion.

2.4 Model Grid and Bathymetry

The model's three-dimensional numerical grid had 1050 horizontal cells and eight vertical layers. The average horizontal grid size was approximately 600 m ; individual cell side dimensions ranged from 100 to 1300 m (Figure 3). Cell water depths varied for river and estuary channel cells from 2.5 to 12.5 m . EFDC uses a "sigma" vertical grid so that the total water depth within a horizontal cell was subdivided into eight layers of uniform thicknesses.

Of the 1050 horizontal cells in the Lower Cape Fear River, the model grid included 241 "marsh" cells that were used to model the off-channel storage of wetlands adjoining the estuary. The model also has 809 channel cells that provide the majority of transport into and out of the estuary. Horizontal sizes and location of the channel cells were set to match as much as possible the estuary bathymetric information obtained from NOAA (available at
http://NOSDataExplorer.noaa.gov). The size, location, water depth, and bottom roughness of the marsh cells was determined during calibration of the hydrodynamic model. The method for specifying marsh cell characteristics will be described in more detail in the calibration section of this report (see Chapter 4).

The overall distribution of marsh cells within the estuary was initially set according to wetland delineations conducted by the North Carolina Division of Coastal Management NC Division of Coastal Management, 1999). Marsh cells were assumed to be located in regions of the estuary that had two of the wetland types identified in the NC DCM delineation: riverine swamps and saltwater marshes. Of the wetland types identified by the NC DCM, these two represented the majority of wetlands adjoining the Cape Fear River in the estuary. According to the Division of Coastal Management, within the Lower Cape Fear River estuary, saltwater marshes can be found south of Wilmington (Figure 4), while the riverine marshes are generally located farther upstream (Figure 4). The marsh cells in the calibrated EFDC model are also located both upstream and downstream of Wilmington (Figure 5).

Figure 4. Channel Cells Within the Model Region

Figure 5. Riverine Swamps and Saltwater Marshes in the Lower Cape Fear River Estuary

Figure 6. Model Grid Showing Location and Size of Marsh Cells

2.4 Monitoring Data Used for Model Setup and Calibration

Monitoring data is needed to define the model system characteristics and system inputs of mass, momentum, and energy. Table 2 summarizes the data types and sources used for setting up and running the Lower Cape Fear River estuary water quality model.

Table 2. EFDC Input Files and Data Sources

EFDC Input Filename	Description of Data Contained in File	Data Sources
QSER.INP	Flow time series data at flow specified model boundaries and point source locations	US Geological Survey, NC Division of Water Quality
ASER.INP	Meteorological time series data	National Weather Service
PSER.INP	Water surface elevation time series data at elevation specified model boundaries	National Oceanographic and Atmospheric Administration (NOAA)
TSER.INP	Temperature time series data at all model boundaries and point source inputs	Lower Cape Fear River Program, US Geological Survey, NC Division of Water Quality
WSER.INP	Wind time series data	National Weather Service
DXDY.INP	Horizontal cell lengths, widths, depths, bottom roughness	National Oceanographic and Atmospheric Administration (NOAA)
LXLY.INP	Horizontal cell size location, orientation relative to E-W, N- S direction	National Oceanographic and Atmospheric Administration (NOAA)
WQ3DWC.INP	Sediment oxygen demand specification	NC Division of Water Quality
SALT.INP	Initial condition for salinity for every model cell and layer	US Geological Survey, NC Division of Water Quality
TEMP.INP	Initial condition for temperature for every model cell and layer	Lower Cape Fear River Program, NC Division of Water Quality
WQPSL.INP	Time series mass load for each water quality constituent at each flow boundary or point source input	Lower Cape Fear River Program, NC Division of Water Quality
CWQSRXX.INP (XX indicates $o n s t i t u e n t ~$	Time series concentration boundary condition at elevation specified boundaries number)	US Division of Water Quality, Lower Cape Fear River Program

Much of the water quality information for specifying initial and boundary conditions and calibration data came from the Lower Cape Fear River Program (e.g. Mallin et al. 2003). This water quality monitoring program, which is administered by the Center for Marine Science at UNC Wilmington, collects monthly data at a large number of sites throughout the estuary (Figure 6). The following monitoring data from this program were used for model specification and calibration:

> Physical Parameters: temperature, salinity
> Water Quality Parameters: nitrate-nitrite, ammonium, total nitrogen, orthophosphate, total phosphorus, total kjedahl nitrogen, dissolved oxygen
> Biological Parameters: chlorophyll-a, biological oxygen demand

Additional water quality and physical data were collected using continuous in-situ monitors. This monitoring program was administered by the US Geological Survey, with financial support from the NC Division of Water Quality. The following data, which were collected every 15 minutes at each site, were used for model specification:

Physical parameters: temperature, salinity, water depth or water elevation, streamflow Water Quality Parameters: dissolved oxygen

The continuous monitors were operated for roughly a one-year period beginning in November 2003 at six sites (Figure 7) throughout the estuary. Two of the sites (NE Cape Fear at Wilmington, Marker 12) had a near-surface and near-bottom monitor. The other stations had the monitors installed in the upper portion of the water column. The actual start and stop date of the monitoring differed somewhat for each of the sites. Two additional sites operated by the USGS that were upstream of the model region on the Black and NE Cape Fear Rivers were also used for establishing boundary conditions for flow (Figure 7).

Several other special studies administered by the NC Division of Water Quality collected important additional physical, water quality, and biological data. A short-term special study collected data from 12 sites within the estuary (Figure 7) during July and August 2004 (NC Division of Water Quality 2004). The study data were used along with the Lower Cape Fear River Program data to specify boundary conditions and calibration data for the model. The following data were collected and used in this study:

Field parameters: dissolved oxygen, temperature, salinity
Chemical parameters: 5-day biochemical oxygen demand, 30-day biochemical oxygen , total organic carbon, dissolved organic carbon, chlorophyll, ammonia nitrogen, total kjeldahl nitrogen (tkn), nitrite + nitrate nitrogen, total phosphorus, ortho-phosphorus

Figure 7. Lower Cape Fear River Monitoring Program Monitoring Stations

Figure 8. USGS Continuous Monitoring Stations and the Division of Water Quality Special Study Monitoring Stations

A second special study conducted by the NC Division of Water Quality surveyed river cross-sections at 21 stations throughout the estuary (Figure 8). These data were used to specify the width and depth of each channel cell. A third sampling program performed by the NC Division of Water Quality used chambers to measure in-situ sediment oxygen demand (SOD). Measurements were taken at five separate locations (Figure 10) on five separate days during the Summer and Fall of 2003.

Several other agencies also provided data necessary to specify model forcings or calibration data. Meteorological data (wind speed and direction, cloud cover, air and dewpoint temperature, short-wave solar radiation) were provided by the National Weather Service (NWS). The data were collected by the NWS at the Wilmington Airport. Water surface elevations at several locations (Southport, Sunset Beach, Wilmington) was provided by the National Oceanographic and Atmospheric Administration (NOAA).

Figure 9. Cross-Sections Surveyed by the Division of Water Quality

Figure 10. Division of Water Quality SOD Monitoring Stations

3. SPECIFICATION OF MODEL INPUT FILES

Using the complete set of monitoring data described in the previous section, a set of model input data files was created for a time period beginning in November 2003 and ending January 1, 2006. Flow, temperature, and water quality inputs were specified for all of the freshwater that was expected to enter the estuary. These sources included upstream inputs from the rivers (3 sources: Cape Fear, Black, and Northeast Cape Fear Rivers), wastewater loadings entering directly to the estuary (20 sources), and watershed loadings that enter directly into the estuary (14 sources). The overall approach to the specification of input loadings was to consider all loading categories (rivers, tidal creeks, wetlands, wastewater treatment plants), and to quantify these loadings according to the best information available on the particular loading to the estuary. For instance, loadings from tidal creeks downstream of Wilmington and outside of the impaired region were nonetheless estimated based upon available streamflow and/or drainage area data. In addition to this "upstream" source information, water surface elevation and water quality conditions were specified at the model's open boundary near Southport, NC.
Specification of all of these model input data sets is described in Sections 3.1, 3.2, and 3.3. In addition to water inputs from point sources, flow boundaries, and elevation boundaries, the estuary's surface waters also exchange mass, momentum, and energy with the sediments below and the atmosphere above. Quantification of this transport requires another set of model input files. Specification of these model inputs is described in Sections 3.4 and 3.5.

3.1 Riverine and Wetland Inputs

3.1.1 Flow Specification

Upstream flow boundary conditions for the Cape Fear, Black, and Northeast Cape Fear Rivers were based upon continuous gauging stations operated by the United States Geological Survey at the Cape Fear River Lock \& Dam \#1 (USGS Station 02105769), the Black River near Tomahawk (USGS Station 02106500) and the Northeast Cape Fear River near Chinquapin (USGS Station 02108000). The Cape Fear station was located at the model boundary while the other two stations were located approximately 40 km upstream of the model boundary. To better quantify the river flows entering the modeled region from the Black River and the NE Cape Fear River the NC Department of Environment and Natural Resources (NC DENR) funded the creation of two additional shorter-term flow monitoring sites. The US Geological Survey installed the sites (Black River near Currie, USGS Station 02107544, and NE Cape Fear at Burgaw, USGS Station 02108566) collected the data, and distributed the data via their web site. These data, and additional measurements of drainage area also performed by the USGS were used to establish the needed flow time histories, both at the model boundaries, and for the creeks and wetlands that drain directly to the estuary.

With the extra data collected by the USGS, data from the two sites on the Black River and the two sites on the NE Cape Fear River were pooled to create a continuous time history at the appropriate model boundary. To model the full three-year time period modeled (November

2003 - January 2006) it was necessary to use data from both the upstream and downstream sites for each river to construct the complete flow time history at the model boundary. By examining time periods when flow data were available at both sites (e.g. Black at Tomahawk and Currie), a time lag was established for the more upstream of the two stations. This lag represented the typical travel time of flood waves from the upper to the lower station. The flows from the upstream station after lagging were then scaled according to the drainage area ratios of the two sites. This lagged and scaled upstream site data site was then combined with the downstream site to create the full time history at each of the three upstream model boundaries.

The three flow time histories data were also used to quantify the flow draining directly to the estuary from creeks and riparian wetlands. These flow estimates utilized drainage area measurements of each of the USGS monitoring sites (Table 3). Using these data, the total watershed area of the Cape Fear River was apportioned into seven groupings; three upstream rivers and four areas draining directly to the estuary (Table 4). For each of these groupings one of the flow time histories was used with a scaling constant based upon the corresponding drainage areas. For the four areas draining directly to the estuary, the closest of the three model boundary time histories was used to quantify the flow. The area draining directly to the estuary was further subdivided into a total of fourteen point sources (Figure 11), with the contribution of each source determined according to the particular drainage area of that subwatershed (Table 5).

Table 3. USGS Monitoring Station Data

Location	USGS Station Number	Drainage Area (mi		
Cape Fear R at Lock \#1 near Kelly	02105769	5255	Latitude (deg, min, sec)	Longitude (deg, min, sec)
Black River Near Tomahawk	02106500	676	$34,24,15$	$78,17,38$
NE Cape Fear near Chinquapin	02108000	599	$34,45,17$	$78,17,21$
Hood Creek near Leland	02105900	21.6	$34,49,40$	$77,50,0$
Black River near Currie	02107544	1405	$34,24,54$	$78,08,37$
Cape Fear at Navassa	02107576	7060	$34,15,36$	$77,59,15$
NE Cape Fear near Burgaw	02108566	920	$34,35,54$	$77,52,31$
NE Cape Fear near Wilmington	02108690	1669	$34,15,32$	$77,56,54$
Cape Fear at Marker 12	02108820	9,000	$34,04,35$	$77,55,53$

Table 4. Subdivision of the Cape Fear River Watershed

Area No.	Watershed	Drainage Area (mi $\mathbf{2}^{2}$	Flow Time History Used 1
2	Cape Fear River at Model Boundary	5,255	CF @ L\&D 1
3	Black River at Model Boundary	1,405	Black at Currie
4	NE Cape Fear at Model Boundary	920	NE CF @ Burgaw
	Estuary draining to Cape Fear above NE Cape Fear (upper estuary)	270	NE CF @ Burgaw
5	Estuary draining to Cape Fear below NE Cape Fear (lower estuary	250	NE CF @ Burgaw
6	Estuary draining to Black River	120	Black @ Currie
7	Estuary draining to NE Cape Fear River	749	NE CF @ Burgaw
		Total	8,979

Table 5. Subwatersheds Draining Directly to the Estuary

Point Source Number	Estuary Watershed Name	$\begin{gathered} \text { Drainage Area } \\ \left(\mathbf{m i}^{2}\right) \end{gathered}$
21	NE Cape Fear, estuary 1	31
22	NE Cape Fear, estuary 2	6
23	NE Cape Fear, estuary 3	319
24	NE Cape Fear, estuary 4	101
25	NE Cape Fear, estuary 5	194
26	NE Cape Fear, estuary 6	109
	Total	760
27	Black River, estuary 1	91
28	Black River, estuary 2	30
	Total	121
29	Cape Fear, upper estuary 1	156
30	Cape Fear, upper estuary 2	31
31	Cape Fear, upper estuary 3	78
	Total	265
32	Cape Fear, lower estuary 1	61
33	Cape Fear, lower estuary 2	164
34	Cape Fear, lower estuary 3	22
	Total	247

Figure 11. Watersheds Draining Directly into the Cape Fear River Estuary

3.1.2 Temperature and Concentration Specification

Specification of temperature and water quality inputs for the riverine sources utilized the monitoring programs described in the previous section. Temperature time histories were available at the Lower Cape Fear Monitoring Program sites on a monthly basis, and from the USGS continuous monitoring sites on a 15 -minute basis. A total of five different monitoring locations were used to specify the temperature time histories. When available, roughly from November 2003 to November 2004, the USGS continuous monitoring data were used. After examining the temporal variability present in the 15 -minute data, it was decided that daily time averaging would be sufficient for purposes of defining the temporal variation in the data. Since the model period (November 2003 - January 2006) extended beyond the period when the continuous monitoring data were available, each temperature time history also utilized data from the Lower Cape Fear River Program. All freshwater sources thus utilized two separate sources to specify temperatures and water quality concentrations (Table 6).

Table 6. Temperature Time History Specification

Time Series No.	Location	Time Period Using USGS Data and Station Number	Lower Cape Fear River Program Station Used	Point Source Numbers Using This Location
1	Black River, Upstream Model Boundary	$9 / 8 / 03-12 / 3 / 04$, 02107544	B210	$19,27-28$
2	Cape Fear River, Upstream Model Boundary,	$9 / 8 / 03-12 / 3 / 04$, 02105769	NC11	6,18
3	Navassa	$9 / 10 / 03-11 / 24 / 04$, 02107576	Nav	$1-5,9,10,13-17$,
	NE Cape Fear River,	$9 / 10 / 03-12 / 2 / 04$, 02108566	NCF117	$20,21-26,29-34$
4	Upstream Model Boundary	$11 / 7 / 03-12 / 2 / 04$, 02108820	M18	$7,8,11,12$
5	Carolina Beach			

Water quality input specification consisted of quantifying both the flow and the time varying mass load for each source and for each water quality model constituent (Table 1). In EFDC, the mass loads from all point sources are quantified in the WQPSL.INP file. This one file gives the time varying mass loads for the riverine sources described in this section, and the point sources described in the next section for every model constituent. The term riverine sources is used rather generally here, and includes not only the three major river inputs to the estuary (Cape Fear, Northeast Cape Fear, Black Rivers), but also the loadings of water quality constituents from the tidal creeks and fringing wetland areas that discharge directly to the estuary. It should be noted here that this approach, which explicitly defines the loading from the entire watershed area draining to any portion of the estuary, is a departure from the method used in the previous modeling study of the Lower Cape Fear River estuary (Tetra Tech 2001), where the wetlands and tidal creeks did not contribute water or water quality constituents to the estuary.

For each scenario, multiple model runs were used to quantify the water quality impact of a particular change in the system (e.g. deepening the navigation channel, reducing wastewater treatment plant discharges, reducing nonpoint source loadings). Many of these scenario runs required changing the WQPSL.INP file, thus it was necessary to create many different versions (approximately 20) of this file. To simply specification of this file, an automated file generation system was created. This system used a set of Excel spreadsheets, one for each source or flow boundary, to quantify the source data time histories and the conversion of these data to mass loads for each constituent. The mass load time histories taken from each spreadsheet were then combined and reformatted to that required by EFDC using a Matlab script (make_wqpsl_capefear.m). The overall procedure for creating the WQPSL.INP is shown in Figure 12.

Use data interpolation and estimation to create a monitoring data set with no data gaps, enter data into Excel spreadsheet, one spreadsheet for each source

For each source, create a data conversion matrix to estimate each model constituent from the available parameters in the source data

For source data given as a concentration time history, multiply concentrations by flows to get mass loads

Collect mass load time histories and reformat, then write into WQPSL.INP file using Matlab script

Figure 12. Procedure for creating water quality mass load file, WQPSL.INP

For the riverine and watershed sources, the mass load time history for each of the 21 model constituents was estimated from a data set that combined information from the Lower Cape Fear River Monitoring Program, the DWQ ambient monitoring program, and the USGS continuous monitoring data. The stations used were the same ones as those used for
specification of the temperature time histories (Table 6). These data were used with data interpolation to create a daily concentration time history of the following eight water quality parameters:

1. dissolved oxygen (mg/L),
2. chlorophyll-a ($\mu \mathrm{g} / \mathrm{L}$),
3. ammonia nitrogen (mg / L as N),
4. total nitrogen (mg / L as N),
5. nitrate + nitrite nitrogen $(\mathrm{mg} / \mathrm{L}$ as N$)$,
6. total phosphorus (mg / L as P),
7. 5-day BOD (mg/L),
8. 20-day BOD (mg/L)

Daily flows at the model boundaries were also available from the USGS data set, as described in section 3.1. Together the flow and water quality information was used to create a daily load (g/s) for seven parameters (5-day and 20-day BOD were used together to estimate ultimate BOD loading). These data served as the basis for estimating the twenty-one model constituents in the EFDC water quality model.

An important consideration in specifying the time history of water quality constituent loading was to accurately quantify the quantity and degradation rate of the various sources of organic matter to the estuary. For instance, the degradation rate of detrital algal matter could be significantly different than that of wastewater discharges, which in itself could be significantly different than the degradation rate of the riverine and wetland sources of organic matter. To provide additional flexibility in specifying organic matter inputs from different categories of sources, two different dissolved organic carbon state variables were used. To avoid changing the EFDC code to accomplish this, the refractory particulate organic matter state variables (RPOC, RPON, RPOP) were used to model refractory dissolved organic matter (RDOC, RDON, RDOP) by specifying a settling velocity of $0.0 \mathrm{~m} / \mathrm{d}$. A second set of organic matter state variables (DOC, DON, DOP) was used to model the labile dissolved organic matter fraction. Different organic matter sources were modeled by using different fractions of the two dissolved organic matter state variables.

With these considerations, the following assumptions were used to estimate the loading time histories for all 21 state variables present in the EFDC model:

- the following 8 constituents were assumed to have zero loading (labile particulate carbon, nitrogen and phosphorus, particulate biogenic silica, available silica, chemical oxygen demand, total active metal, fecal coliform bacteria),
- the carbon to chlorophyll ratio in phytoplankton was assumed to be $60: 1$ ($\mathrm{mg} \mathrm{C} / \mathrm{mg}$ chl),
- the phytoplankton biomass was assumed to be equally divided among the three algal constituents (diatoms, greens, blue-greens),
- the total organic nitrogen (TON) was calculated as: TON = total nitrogen - ammonia nitrogen - nitrate+nitrite nitrogen,
- total organic carbon in the EFDC model was estimated from ultimate BOD using the stoichiometric ratio for carbon oxidation (12 g carbon oxidized requires 32 g of oxygen).

From this total was subtracted the carbon associated with phytoplankton biomass, using measured chlorophyll-a concentrations and the assumed carbon:chlorophyll-a ratio.

- the Redfield ratio, 106:16:1 C:N:P molar ratios (Redfield 1934) was used to convert between dissolved organic phosphorus, nitrogen, and carbon,
- ammonia, nitrate, and dissolved oxygen loadings were estimated directly from the monitoring data,
- two separate dissolved organic matter pools (labile and refractory) were used to model various sources of organic matter (labile organic matter is shown as DOC, DON, and DOP in Figure 2), and
- the refractory dissolved carbon, nitrogen, and phosphorus constituents were included in the model by using corresponding refractory particulate (RPOC, RPON, and RPOP in Figure 2) constituents with an assumed zero settling velocity.

Using these assumptions it was possible to create a 7×21 parameter matrix that was used to create twenty-one loading time histories, one for each constituent, from the seven available water quality time histories. Matrix multiplication using the parameter matrix also converted each load to the proper units (kilograms per day). Matrix multiplication within Excel was used to do the conversions in an automated fashion once the monitoring time histories were created.

Different parameter matrices were used for the Cape Fear, Black, and Northeast Cape Fear, as the split between labile (first order decay rate $=0.15$ day $^{-1}$) and refractory (first order decay rate $=0.03$ day $^{-1}$) organic matter was different for these three water bodies. The split between labile and refractory organic carbon was determined from the average BOD20/BOD5 ratio, after correcting for the impact of nitrogenous BOD. A corrected and time-averaged BOD20/BOD5 ratio for each river was used to calculate a corresponding organic matter decay rate and the labile refractory split (Table 7). For instance, the Cape Fear River refractory/labile split was $64.5 \% / 34.5 \%$ based on the BOD5 and BOD20 measurements. For the Cape Fear River, this gave the parameter matrix shown in Table 8.

Table 7. Organic Matter Degradation Parameters for Each Riverine Source

River	BOD20/BOD5 ratio	First Order Decay Rate $\left(\right.$ day $^{-1}$)	Refractory/Labile Split for Organic Matter
Cape Fear	2.58	0.68	$0.645 / 0.355$
Black	2.70	0.60	$0.690 / 0.310$
Northeast Cape Fear	3.15	0.34	$0.786 / 0.214$

3.2 Point Source Inputs

A similar procedure as that described in the previous section was used to define the loading time histories from the point sources that discharge directly to estuary. After reviewing discharge records provided by the NC Division of Water Quality, it was decided that a total of
twenty point sources discharged sufficient organic matter and/or nutrients to justify including them in the model of the Lower Cape Fear River Estuary. These point sources were distributed throughout the estuary both upstream and downstream of Wilmington (Figure 13). As the owner of several of these facilities has changed over the years, the twenty sources were uniquely identified using their DWQ permit number (Table 9). The following sections describe the method for estimating the flow, temperature, and water quality load time histories for these point sources.

3.2.1 Flow Specification

Specification of the flows for the twenty wastewater point sources was taken from the discharge monitoring reports, which were provided by NC Division of Water Quality. Flows were generally provided on a monthly basis in million gallons per day. The only changes made to these flows were to convert them from this unit to that used by the model ($\mathrm{m}^{3} / \mathrm{s}$). Unlike the riverine sources, the wastewater data were not interpolated to a daily time step, but instead were left as monthly data.

3.2.2 Temperature and Concentration Specification

Temperature time histories were not available in the discharge monitoring reports but were required by the model. These time histories were estimated in the same way as the riverine sources. The five data sources available for the riverine inputs (Table 6) were used for the twenty wastewater sources. For each of these, the closest monitoring location was used to represent the temperature of the water for that source.

The EFDC model also requires a water quality load time history for each of the wastewater sources. This information is provided to the model along with the riverine sources in the WQPSL.INP file. The data format needed by the EFDC model for these two types of sources is identical. Because the data needs and input data were so similar, it was decided to create this information using basically the same procedure as that for the riverine sources (Figure 11).

Table 8. Parameter Matrix for Creating Cape Fear Point Source Loading Time History

Figure 13. Wastewater Treatment Plant Source Locations

Table 9. Description of Point Sources

Source No.	NPDES Permit No.	Name of Source	Category
1	NC0000663	Dupont-Wilmington/Brunswick	WWTP
2	NC0000663	Dupont-Wilmington/Brunswick	WWTP
3	NC0000663	Dupont-Wilmington/Brunswick	WWTP
4	NC0001112	Arteva Specialties-Wilmington	WWTP
5	NC0001112	Arteva Specialties-Wilmington	WWTP
6	NC0003298	International Paper	WWTP
7	NC0021334	Southport, Town-WWTP/Southport	WWTP
8	NC0023256	Carolina Beach, Town-WWTP	WWTP
9	NC0023965	Wilmington-Northside WWTP	WWTP
10	NC0023973	Wilmington-Southside WWTP	WWTP
11	NC0025763	Kure Beach WWTP, Town Of	WWTP
12	NC0027065	Archer Daniels Midland Co.	WWTP
13	NC0059234	Takeda Chemical Products USA	WWTP
14	NC0059234	Takeda Chemical Products USA \#2	WWTP
15	NC0065676	Leland Industrial Park WWTP	WWTP
16	NC0075540	Belville, Town - WWTP	WWTP
17	NC0082295	Fortron Industries	WWTP
18	NA	Cape Fear River	Upstream River
19	NA	Black River	Upstream River
20	NA	NE Cape Fear River	Upstream River
21	NA	NE Cape Fear, estuary 1	Estuarine
22	NA	NE Cape Fear, estuary 2	Estuarine
23	NA	NE Cape Fear, estuary 3	Estuarine
24	NA	NE Cape Fear, estuary 4	Estuarine
25	NA	NE Cape Fear, estuary 5	Estuarine
26	NA	NE Cape Fear, estuary 6	Estuarine
27	NA	Black River, estuary 1	Estuarine
28	NA	Black River, estuary 2	Estuarine
29	NA	Cape Fear, upper estuary 1	Estuarine
30	NA	Cape Fear, upper estuary 2	Estuarine
31	NA	Cape Fear, upper estuary 3	Estuarine
32	NA	Cape Fear, lower estuary 1	Estuarine
33	NA	Cape Fear, lower estuary 2	Estuarine
34	NA	Cape Fear, lower estuary 3	Estuarine
35	NC0086819	Brunswick Co. WWTP	WWTP
36	NC0001228	GE - Wilmington	WWTP
37	NC0003875	Occidental Chemical	WWTP

The only differences in the procedure used to create the loading time histories for the wastewater sources resulted from there being a slightly different set of water quality parameters in the discharge monitoring reports. Twenty-day BOD measurements were not available, but for three of the major sources (International Paper, Wilmington Southside WWTP, Wilmington Northside WWTP) there was a long-term BOD study undertaken. In addition, unlike the riverine water quality data set, some of the reported wastewater data were given as flow-weighted concentrations, whereas others were given as a load. For this reason, the conversion parameter matrix used to create the water quality load time histories varied from location to location, and the load calculations were done only when water quality concentrations were given. A complete set of the conversion parameter matrices is available in Appendix A along with the information showing which parameters for which sources required load calculation using the flow record.

Three of the twenty wastewater sources undertook additional monitoring to quantify the degradation rate of their organic matter. Two long-term BOD studies were done on the International Paper wastewater discharge. In addition, long-term BOD measurements were undertaken for the Wilmington Northside and Wilmington Southside municipal wastewater discharges. In all of these studies BOD was measured over approximately 100 days, while additional monitoring was done to measure changes in nitrogen compounds that might result if the waste contained an appreciable nitrogenous biochemical oxygen demand (NBOD).

These long-term BOD data were analyzed by separating the total BOD into carbonaceous and nitrogenous biochemical oxygen demands (CBOD and NBOD). The NBOD exerted was estimated by assuming that each mg / L reduction in total Kjeldahl nitrogen in the waste would result in an oxygen demand of $4.57 \mathrm{mg} / \mathrm{L}$. The carbonaceous BOD was estimated as the total BOD exerted minus the NBOD exerted. The NBOD and CBOD were plotted as a function of time, and the following equation was used to fit a line to the CBOD vs. time data:

$$
\begin{equation*}
C B O D(t)=r B O D_{u}\left(1-e^{-k_{d r} t}\right)+r B O D_{u} \frac{k_{d r}}{k_{d r}-k_{d l}}\left(e^{-k_{d l} t}-e^{-k_{d r} t}\right)+l B O D_{u}\left(1-e^{-k_{d l} t}\right) \tag{1}
\end{equation*}
$$

where $\operatorname{CBOD}(\mathrm{t})$ is the carbonaceous BOD exerted at time $\mathrm{t}, \mathrm{rBOD} \mathrm{u}_{\mathrm{u}}$ and BODu are the ultimate BODs of the refractory and labile fractions of organic carbon, and k_{dl} and k_{dr} are the first-order decay rates of the refractory and labile organic carbon fractions. This equation assumes that the carbonaceous BOD exertion occurs as a two-step process where refractory CBOD is first degraded to labile CBOD, which then degrades while exerting an oxygen demand. This model is consistent with the organic carbon fate processes modeled in EFDC (see DOC and RPOC constituents, Figure 2).

For the International Paper waste, the two long-term BOD showed similar results. For the test done with wastewater collected on July 20, 2003 (Figure 14), the NBOD component was approximately 20%, and the CBODu was approximately $90 \mathrm{mg} / \mathrm{L}$. In the wastewater collected on July 27, 2003 (Figure 15), the NBOD was similar to the earlier measurement, but the $\mathrm{CBOD}_{\mathrm{u}}$ was lower, at about $60 \mathrm{mg} / \mathrm{L}$.

Figure 14. Long-term BOD Measurement, International Paper, July 20, 2003.

Figure 15. Long-term BOD Measurement, International Paper, July 27, 2003.

In both tests of the International Paper long-term BOD, the predicted CBOD time history matched the observed data quite well (Figure 13 and 14). From these tests, the fraction of organic carbon to be refractory was found to be approximately 75%, when using decay rates of labile and refractory organic carbon of 0.15 day $^{-1}$ and 0.03 day $^{-1}$ respectively (Table 10).

Table 10. Degradation Rates and Fractionation of International Paper and Wilmington Municipal Wastewaters

Location and Test	Labile First Order Decay Rate (day $^{-1}$)	Refractory First Order Decay Rate $^{\text {(day }^{-1} \text {) }}$	Labile Ultimate BOD $(\mathbf{m g / L})$	Refractory Ultimate BOD (mg/L)	Fraction of Total Organic Carbon that is Refractory
IP, July 20, 2003	0.15	0.03	23	69	75%
IP, July 27, 2003	0.15	0.03	15.5	46.5	75%
Wilmington Northside	0.15	0.03	16.1	6.9	30%
Wilmington Southside	0.15	0.03	0.7	0.3	30%

The results of the long-term BOD measurements of the two Wilmington wastewater discharges looked significantly different from one another, and also different from the long-term BOD measurement of the International Paper wastewater. The test using the sample from Wilmington Northside WWTP discharge (Figure 16) had significantly more NBOD than CBOD. The NBOD exerted was approximately $30 \mathrm{mg} / \mathrm{L}$ after 100 days, but the CBOD at this time was less than $5 \mathrm{mg} / \mathrm{L}$ (Figure 16).

Figure 16. Long-term BOD Measurement, Wilmington Northside WWTP.

The test using a sample from the Wilmington Southside WWTP also had a significantly higher NBOD than CBOD (Figure 17), but both of these values were significantly higher than that seen for the Northside wastewater. The long-term test of the Southside WWTP sample showed an NBOD of nearly $100 \mathrm{mg} / \mathrm{L}$, which was exerted within approximately ten days (Figure 17). The CBOD was lower, and took longer to be fully exerted. For both of these measurements, however, it was possible to model the CBOD exerted curve using the model equation (Eq. 1). Using these long-term BOD measurements, the organic matter in each of these wastewaters was fractionated into labile and refractory components (Table 10), with 30% of the Wilmington Northside and Southside wastewater assumed to be in the refractory component.

Figure 17. Long-term BOD Measurement, Wilmington Southside WWTP

3.3 Downstream Boundary Inputs

The southern boundary of the model grid, at the mouth of the Lower Cape Fear River near Southport, was specified as an elevation boundary (Figure 3). At this boundary there exist four cells ($\mathrm{I}=30: 33, \mathrm{~J}=5$). For these cells, information specifying the water surface elevations, salinity and temperatures, and water quality concentrations were specified for the complete time period that was modeled (November 2003 - January 2006). The following sections describe how each of these boundary conditions was specified in the model.

3.3.1 Water Surface Elevation Specification

The downstream elevation boundary condition was specified as the sum of elevation variations due to tidal motions, which were specified with tidal harmonic data, and an elevation time history that was used to represent elevation variations due to weather events. For the tidal harmonic data, a radiation separation boundary condition was used that allows for the outgoing radiation of waves generated within the model region (Bennett, 1976; Blumberg \& Kantha, 1985). The tidal harmonics were determined from 6-min water surface elevation data from the NOAA station at Southport, North Carolina (Station No. 8659084) that were collected from August 1 - December 31, 2006. The data were downloaded from the NOAA's tides and current web site (tidesandcurrents.noaa.gov). The 6-min water surface elevation data were decomposed into tidal harmonic constituents using the FORTRAN program lsqhs.f that was provided with EFDC. The program produced a harmonic description of the elevation data that was dominated by the semi-diurnal $\left(\mathrm{M}_{2}, \mathrm{~S}_{2}, \mathrm{~N}_{2}\right)$ and diurnal $\left(\mathrm{O}_{1}\right)$ components (Table 11).

Table 11. Tidal Harmonic Constituent Data Used to Specify Open Boundary Elevation

Tidal Component	Period (sec)	Amplitude (m)	Phase (sec)
M2	44714	0.6431	-11019
S2	43200	0.0994	-14422
N2	45570	0.1328	-18722
O1	92950	0.0776	-43968
M4	22357	0.0023	6837.7
M6	14905	0.0045	6704.8
K2	43082	0.0296	5368.2

It was expected that a significant amount of flushing of the system might occur during periods when the water surface elevations in the estuary would either rise or fall due to episodic events such as hurricanes and other major weather events. While the effects of flooding rains would be captured with the flow data, it was believed that the effects of storm surges on the open boundary elevation would not be represented either by the flow time history or by the tidal harmonic forcing. For this reason the open boundary elevation specification also included lowpass filtered elevation data. For this specification it was necessary to have a data set near the model's open boundary at Southport during the time period to be modeled (2003-2005). While a NOAA operated tide gauge was available at Wilmington (Station No. 8658120), it was decided that these data were better used as calibration data since the station is located well within the estuary. In addition, it was felt that using Wilmington for specification of tidal amplitudes might bias the specification of wetland areas within the estuary, which was done iteratively in such a way so as to match the observed attenuation of the tidal elevation signal. Instead, elevation data at Sunset Beach (Station No. 86599897), which is on the Atlantic coast near Southport, were used to for this purpose. Hourly data from January 2003 to December 2006 were taken from the NOAA web site. The hourly data were low-pass filtered using a Butterworth filter (Roberts and Roberts 1978) having a 50 -hour cutoff time period. The cutoff time period was selected to retain the majority of the elevation variations occurring over a time scale consistent with the passage of
storm events. It was found that a 50 -hour cutoff time period filtered out the tidal elevations sufficiently well while allowing longer period elevation variations to remain in the filtered data.

3.3.2 Temperature and Concentration Specification

The temperature boundary condition at the southern open boundary was specified in a fashion nearly identical to that of the river boundaries described earlier. A complete time history for the model time period was developed using a combination of sources including the Lower Cape Fear River Program and the continuous monitoring data collection performed by the USGS. The southern open boundary condition for temperature used the fifth time history created for the EFDC temperature time series input file TSER.INP. This time series was also used for some of the wetland sources (Table 6). It was created by combining data from the USGS continuous monitoring station at Marker 12 (Station No. 02108820) while this station was operating (11/7/03-12/2/04), and using the Lower Cape Fear River Program data from station M18 for the other times. The USGS data were used as daily time-averaged data. The LCFRP data were collected at monthly intervals, and were interpolated linearly by EFDC to obtain the necessary temperature time history.

To run the EFDC hydrodynamic model, a salinity time series was also needed for the surface and bottom layer at the open boundary. Since the USGS data station closest to the model boundary (Station No. 02108820, Marker 12) was well removed from the actual boundary at Southport, an estimation procedure was used to create the salinity time history. Near top and near bottom salinities were available for this site, and were used to represent the upper and lower layer salinity. Creation of the boundary condition involved a combination of time-averaging of the 15 -minute salinity data, and selection of a number of maximum values per day to represent the time history for that day. Time averaging and selection of the maximum value were used to as a means of estimating the salinity time history that might be expected at the mouth of the Cape Fear. Hourly time averages were calculated from the 15 -minute data. From this time history were taken $1,2,4$, or 8 maximum salinity values per day, with each value representing the maximum salinity for the appropriate fraction of the day. During model calibration each of these time histories was used and the calibration performance was assessed for each. It was found that the time history using two maximum values per day gave the best fit to the observed data and was therefore used to represent the boundary condition. Linear interpolation was used to calculate the salinities for the intermediate layers. During the time period when the USGS data were not available Lower Cape Fear River Program data from station SPD (Figure 6) was used to represent salinity for EFDC layer 5. Each layer was assumed to have a salinity that differed by 0.5 ppth from its neighbor. This layer-to-layer salinity difference was calculated by taking the difference between the mean salinity surface and bottom salinity values at the USGS Marker 12 station.

Several other water quality time histories were created for representing conditions at the model's southern boundary. Time histories were created for the following constituents:

- cyanophytes (blue-green algae)
- diatoms
- chlorophytes (green algae)
- orthophosphate phosphorus
- ammonia nitrogen
- nitrate+nitrite nitrogen
- dissolved oxygen

All of these time histories used data from the Lower Cape Fear River Program station M18. These data were available on a weekly to monthly time period, depending upon the season. All layers were assigned the same concentration. For the other constituents, a time-averaged value was set in the water quality control file WQ3DWC.INP using time-averaged or estimated values at station M18. The dissolved oxygen time history was estimated by assuming that the incoming water to the model region would be saturated with dissolved oxygen. The saturation concentration depended on water temperature and salinity (Chapra 1997). Water temperatures were taken from the temperature time series file. For this calculation only, the salinity was assumed to be 35 ppth .

3.4 Benthic Inputs

The EFDC water quality model includes a predictive sediment diagenesis model. For this study, however, a simpler prescriptive model was used in which benthic fluxes of dissolved oxygen and nutrients were specified as a time history. To better quantify the fluxes of dissolved oxygen between the water column and the benthos, the NC Division of Water Quality measured sediment oxygen demands (SODs) at five sites during the Summer and Fall of 2003 (Table 12).

Five sampling rounds were undertaken as part of the study, in which SOD was measured at one site within the estuary. The sites measured included sites in the upper and lower estuary, and in both the Northeast and Cape Fear Rivers (Figure 9). In general the modeling approach for using these data was to specify the SOD in the simplest manner possible that was sufficient for quantifying the impact of the benthos on the dissolved oxygen budget of the estuary. For this reason, these data were initially used by specifying a constant SOD rate in the water quality control file WQ3DWC.INP. During model calibration it was found that model prediction capability could be improved by varying the SOD as a function of water temperature. It was also found that model prediction of dissolved oxygen were improved by specifying a higher SOD for the Northeast Cape Fear as compared with the remainder of the estuary.

Temporal variation of SOD was considered in the following way. An SOD time history was created by developing a SOD vs. temperature curve that utilized the monitoring data to determine the reference SOD at $20^{\circ} \mathrm{C}$ and the rate at which SOD changes with changing temperature. Spatially averaged but temporally varying water temperatures were then estimated using the monitoring data. Together this information was used to specify the time variation in SOD, which was provided to the numerical model in the benthic flux input file. A non-zero nitrate flux to the sediments was also included, and was considered to vary according to temperature in the same way as SOD. The ratio of nitrate flux to SOD was determined during calibration by comparing model predicted and observed nitrate concentrations within the model region.

Table 12. Sediment Oxygen Demand (SOD) Measurements

Date	Measurement Location	Latitude \& Longitude	Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	SOD at ambient temp (g/m2/d)	SOD corrected to 20 deg C (g/m2/d)
8/6/2003	Prince George Creek, tributary to the Northeast Cape Fear River, station located 0.5 miles upstream from its confluence with the Northeast Cape Fear River	$\begin{gathered} \mathrm{N} 34^{\circ} 21^{\prime} \\ 29.11^{\prime \prime} \mathrm{W} 77^{\circ} \\ 57^{\prime} 7.55^{\prime \prime} \\ \hline \end{gathered}$	26.3	0.5189	0.3490
11/20/2003	Northeast Cape Fear River, upstream from Wilmington near channel marker 4	$\begin{gathered} \mathrm{N} 34^{\circ} 16^{\prime} 7.67^{\prime \prime} \\ \mathrm{W} 77^{\circ} 56{ }^{\prime} \\ 58.20^{\prime \prime} \\ \hline \end{gathered}$	15.9	0.1900	0.2460
10/29/2003	Cape Fear River downstream from Wilmington near channel marker 61	$\begin{gathered} \mathrm{N} 34^{\circ} 11^{\prime} \\ 39.30^{\prime \prime} \mathrm{W} 77^{\circ} \\ 57^{\prime} 28.24^{\prime \prime} \\ \hline \end{gathered}$	19.3	0.4440	0.4640
7/17/2003	Cape Fear River downstream from Wilmington near channel marker 55	$\begin{gathered} \mathrm{N} 34^{\circ} 08^{\prime} 7.8^{\prime \prime} \\ \mathrm{W} 77^{\circ} 56^{\prime} 46.3^{\prime \prime} \end{gathered}$	27.6	0.4679	0.2899
10/2/2003	Town Creek, tributary to the Cape Fear River, station located 0.5 miles upstream from its confluence with the Cape Fear River.	$\begin{aligned} & \text { N34 }{ }^{\circ} 07^{\prime} 53^{\prime \prime} \\ & \text { W77 } \end{aligned}$	20.7	0.6951	0.6651

3.5 Meteorological Inputs

All three EFDC sub-models (hydrodynamics, temperature, water quality) require information on meteorological conditions in the modeled region. Several options exist as to which set of data is given to the model. In the Lower Cape Fear River application, these time histories were specified in the ASER.INP and WSER.INP files:

- atmospheric pressure in millibars,
- air temperature in degrees Celsius,
- relative humidity,
- rainfall (a conversion factor is available to handle various rainfall units)
- evaporation rate (a conversion factor is available to handle various evaporation units)
- short-wave solar radiation (given as Watts $/ \mathrm{m}^{2}$, various units can be used)
- cloud cover (given as sky fraction, various units can be used)
- wind speed in m / s
- wind direction (given as the "to" direction, 0 degrees $=$ to the north)

Data collected from the National Weather Service were used for all values except solar shortwave radiation. Data from the Wilmington International Airport were used and was assumed to represent weather conditions over the entire model region. Evaporation and precipitation were assumed to be in balance, and were therefore assumed both to be zero. Solar short-wave radiation was obtained from the National Renewable Energy Lab's National Solar Radiation Database. Hourly values of solar radiation at the Wilmington Airport (Station No. 723013) for years 2003, 2004, and 2005 were downloaded from the database's web site (www.nrel.gov/rredc/solar_data.html).

4. MODEL CALIBRATION

4.1 Description of the Calibration Time Period

A fourteen-month time period was used for model calibration (November 1, 2003 January 1, 2005). This period of time was chosen because it offered the best set of monitoring data for establishing model forcings and for assessing model performance. A second time period (January 1, 2005 - January 1, 2006) was used for model confirmation. The model confirmation runs are described in section 5. For model calibration, the first two months of the time period (November 1, 2003 - January 1, 2004) were used for "spinning up" the model to establish initial conditions. Comparison of model predictions to data from the various monitoring programs was done for the period from January 1, 2004 to January 1, 2005.

Calibration was accomplished first using only the hydrodynamic model. Hydrodynamic calibration consisted of comparing model predicted water surface elevations, water velocities, salinities, and temperatures to corresponding values from the monitoring program. The EFDC input files describing the model grid (CELL.INP, DXDY.INP, LXLY.INP) were created as part of the hydrodynamic model calibration. These files are included in this report as Appendix B. The model time step (20 seconds), the number and location of all boundary conditions, the locations for model output, and many other parameters needed for running the model were set in the EFDC control file (EFDC.INP). This file is included in this report as Appendix C. Once the hydrodynamic model was calibrated, water quality calibration was conducted.

The model calibration period had streamflows that were generally below average for the first half of the year, and generally above average for the latter half of the year (Figure 18). After a storm in early May 2004, streamflows remained below average until August. The remainder of 2004 and 2005 until the middle of April had streamflows that were near historical average values. Flows through the summer of 2005 were generally below average (Figure 18).

Dissolved oxygen (DO) concentrations at two stations that were in the impaired region and had continuous monitors installed in 2004 (Navassa and the Northeast Cape Fear at Wilmington) showed summertime (April 1 - October 31) dissolved oxygen concentrations that varied between 3 and $7.5 \mathrm{mg} / \mathrm{L}$ (Figure 19). At both of these sites the median DO concentration was below $4.5 \mathrm{mg} / \mathrm{L}$ and the $25^{\text {th }}$ percentile DO concentration was below $4.1 \mathrm{mg} / \mathrm{L}$. DO concentrations were generally lower at the Northeast Cape Fear site, and at this site were generally lower near the bottom of the water column (Figure 19).

Figure 18. Streamflows at the Cape Fear River at the Lock and Dam 1 Station During the Model Time Period

4.2 Hydrodynamic Model Calibration

Hydrodynamic model calibration was performed by comparing model predictions to observations at twenty-three different locations where data had been collected by the USGS continuous monitoring program, the Lower Cape Fear River Program, or by NOAA (Table 13). These twenty-one sites span the entire model region and all three rivers that make up the Lower Cape Fear River Estuary (Figure 20). Initially hydrodynamic calibration concerned specification of the model grid. The objective of this part of the calibration task was to locate and size all the channel and wetland cells, and to establish a bottom roughness for each of these cells. Once the model grid was specified hydrodynamic calibration continued by comparing model predictions to salinity and temperature observed data. Hydrodynamic calibration is described in more detail in the following sections.

Figure 19. Dissolved Oxygen Concentrations at the Navassa and Northeast Cape Fear at Wilmington Monitoring Stations

Table 13. Locations Used for Model Calibration

EFDC Grid Cell Used (I, J)	Station Name	River	Monitoring Data Collected by
4,84	Lock and Dam 1, 02105769	Cape Fear	USGS
4,80	NC11	Cape Fear	LCFRP
7,67	Black River at Currie, 02107544	Black	LCFRP
7,66	B210	Black	LCFRP
4,60	AC	Cape Fear	LCFRP
4,25	IC	Cape Fear	LCFRP
43,97	NECF at Burgaw, 02108566	Northeast Cape Fear	USGS
43,66	NCF117	Northeast Cape Fear	LCFRP
44,27	NCF6	Northeast Cape Fear	LCFRP
4,11	Cape Fear at Navassa, 02107576	Cape Fear	USGS
4,10	Nav	Cape Fear	LCFRP
22,81	HB	Cape Fear	LCFRP
43,15	NECF at Wilmington, 02108690	Northeast Cape Fear	USGS
18,72	Brunswick River	Cape Fear	LCFRP
24,68	M61	Cape Fear	LCFRP
24,58	M54	Cape Fear	LCFRP
25,49	M42	Cape Fear	LCFRP
25,47	M12, 02108820	Cape Fear	USGS
26,40	M35	Cape Fear	LCFRP
23,21	M23	Cape Fear	LCFRP
24,11	M18	Cape Fear	LCFRP
23,76	Wilmington Tide Gage, Station	Cape Fear	NOAA
33,5	Cape Fear at Southport, Station 8658120	Cape Fear	NOAA

4.2.1 Modeled and Observed Water Surface Elevations

Hydrodynamic model calibration began by comparing model predictions to observed water surface elevations and depths. This work took advantage of the continuous monitoring data program operated by the USGS and tide gage data available from NOAA. Model predictions of tide varying elevations were compared to observed data at these seven locations:

1. Cape Fear River at Lock and Dam 1 (USGS 02105769)
2. Black River at Currie (USGS 02107544)
3. Northeast Cape Fear River at Burgaw (USGS 02108566)
4. Cape Fear River at Navassa (USGS 02107576)
5. Northeast Cape Fear River at Wilmington (USGS 02108690)
6. Cape Fear River at Marker 12 (USGS 02108690)
7. Cape Fear River at NOAA's Wilmington Tide Gage (NOAA 8658120)

The initial model grid used the Lower Cape Fear River Estuary grid created by Tetra Tech (2001). It was recognized in Tetra Tech's earlier study that additional work needed to be done on the model grid. Specifically, two of the recommendations from the earlier modeling effort were that additional information be gathered on the bathymetry within the estuary, and that additional work be done to quantify the effect of the riparian wetlands within the estuary. Both recommended areas of additional work were undertaken during the hydrodynamic model calibration. Twenty-one river cross-sections (Figure 9) were surveyed by the Division of Water Quality as part of the data collection phase of this modeling project (go to the LCFR model website at www.coe.uncc.edu/~jdbowen/LCFR to view cross-sections). All of this new bathymetric information was incorporated into the updated specification of the model grid.

Additional work was also done to specify the location and size of "wetland" cells that adjoin the main river channel. The overall strategy in determining wetland surface area was to use the information on the attenuation of the tidal amplitude to determine the distribution and overall area of the fringing marshes. Thus the wetland area was determined to some extent as a calibrated value. The wetting/drying routines within EFDC were not used, thus water depths had to be specified to keep the cells wet during spring tides.

This work relied upon wetland delineations performed by the NC Division of Coastal Management (NC Division of Coastal Management, 1999). In the model grid these cells were assumed to be shallower (depth = approximately 1 m) and have a higher bottom roughness ($\mathrm{z}_{0}=$ 0.04 m) than the channel cells. An initial estimate of the location and size of these cells was meant to approximate the surface area of off-channel storage available in two of the wetland types (riverine swamps and saltwater marshes) identified by the Division of Coastal Management (Figure 5). With this distribution of wetland cells as a starting point a sensitivity analysis was performed to investigate how changing the total surface area of these cells would affect the attenuation of incoming tidal waves. Multipliers of $1,2,5,10$ were applied to the width of each marsh cell, and the effect on the M2 component of the tide was calculated for the seven locations listed earlier that span the model region. As expected, it was found that increasing the width of the marsh cells increased the attenuation of the tidal signal (Figure 21). Width ratios of 5 and 10 seemed to over attenuate the tidal signal in the oligohaline portion of the estuary. The width ratio of 2.0 seemed to give the best overall results, but this run showed inadequate damping in the Navassa and Wilmington areas. Three additional cases were tried that used various width ratios, and distributions of wetland cells (Figure 22). In the end, the case with a uniform width ratio of 2.0 , and the " v 1 " version of the wetland cell distribution (shown in green in Figure 22) was chosen as optimal. The final size and distribution of wetland cells has these wetland cells along each river above Wilmington, and also in the area between Wilmington and Town Creek (Figure 6).

Figure 20. Monitoring Stations Used for Comparing Monitoring Data to Hydrodynamic Model Predictions.

With the specification of the model grid set model predictions of elevation were examined during the entire 2004 calibration period and at shorter time periods within the calibration period. The EFDC input files that define the model grid (CELL.INP, DXDY.INP, and LXLY.INP) are available in Appendix B. For the model/data comparison of the full 2004 calibration period, model predictions were printed twice per day and compared with observations at six stations: three near the upstream extent of the model region (Cape Fear at Lock and Dam 1, Black at Currie, NE Cape Fear at Burgaw), two in the impaired region near Wilmington (Cape Fear at Navassa, NE Cape Fear at Wilmington), and one in the lower estuary region south of Wilmington (Marker 12). Of interest was how the model responded to the longer-term changes in water surface elevation that would likely lead to episodes of flushing from the estuary. These flushing events could be seen in the flow record (Figure 18) during late August, September, and October 2004. They would also be expected in the variation of water surface elevation that would occur during the transitions between neap and spring tides. The water elevations at the three most upstream locations show increased elevations during the high flow time period in both the observations and the model predictions (Figures 23 and 24). In general, the model was found to underpredict elevation increases at the Cape Fear and Northeast Cape Fear sites during periods of high river flow. The two sites around Wilmington and the lower estuary site (Navassa, NE Cape Fear at Wilmington, Marker 12) showed elevation differences from spring to neap tide that are well represented by the model (Figures 24 and 25).

To examine elevation fluctuations within a few tide cycles it was necessary to examine shorter periods within the overall calibration time period. Hourly model predictions of elevation were compared to observations at the six sites listed earlier plus one additional site, the NOAA tide gage at Wilmington. The observations at the six sites other than the NOAA tide gage relied upon water measured and logged by the continuous water quality monitors. These pressure transducers were non-vented, thus their water depth measurement were affected by changes in atmospheric measurement. In addition, it seems likely that when the instruments were serviced, they were not always placed back in the water at exactly the depth they occupied previously, which could be seen in the data record as sudden increases or decreases in depth every few weeks. These two factors limited how the observed depth data could be used for comparison to model predictions. Because of the nature of the observed data set, we did not attempt any statistical calibration evaluations of the model's water surface elevation predictions. Rather, we examined the model predictions for evidence that the model was correctly attenuating the tidal wave at various locations within the estuary, and correctly varying tidal ranges through the neap to spring cycle. Two time periods were found to have a sufficiently a long period without disruption of any of the depth data at the six sites under study. These two time periods were January 11-21, 2004 and June $16-23,2004$. Tidal constituents predicted by the model at several sites within the estuary were also compared to corresponding observed data (Table 14) to assess how well the model could match the attenuation and phase lag characteristics seen in the observed data set.

Figure 21. M2 Tidal Amplitude at Seven Stations for Various Wetland Cell Width Scenarios

Figure 22. M2 Tidal Amplitude at Seven Stations for Various Wetland Cell Size Scenarios

Figure 23. Model Predictions and Observed Water Surface Elevations During 2004 at Cape Fear R. Station Lock and Dam 1 and the Black R. at Currie

Figure 24. Model Predictions and Observed Water Surface Elevations During 2004 at NE Cape Fear at Burgaw and Cape Fear at Navassa

Figure 25. Model Predictions and Observed Water Surface Elevations During 2004 at NE Cape Fear at Wilmington and Cape Fear at Marker 12

Examination of the model predictions and observations during January 2004 showed that the model did a good job of simulating the attenuation of the tidal signal from lower to the upper portions of the estuary. For this comparison hourly snapshot model predictions were compared to hourly time-averaged observed data. The time-averaging of the observed data was necessary to reduce the size of the observed data files. Examination of the observed data revealed no systematic bias resulting from the averaging procedure.

The four stations in either the lower estuary (Marker 12) or the Wilmington area (Wilmington tide gage, NE Cape Fear at Wilmington, Navassa) had a close agreement between the observed and predicted tidal amplitudes (Figures 26 and 27). There does seem to be some drift in observed data at the Marker 12 station, and some disagreement in the tidal amplitude at these three stations, but overall the fit is good between model predictions and the observed data. All the stations predict well the timing of peak, although there is a consistent disagreement of about one hour between the timing of the peaks at Navassa (Figure 27). During the model calibration it was found that model predictions of the tidal phase at Navassa and farther upstream at Lock and Dam 1were relatively insensitive to changes in model parameters. Model predictions of tidal phase at this station were not as good as at the remaining three stations analyzed.

The three stations in the upper portions of the estuary (NE Cape Fear at Burgaw, Cape Fear at Lock and Dam1, Black at Currie) also show good agreement between the observed and predicted tidal amplitudes (Figures 28 and 29) during January 2004. As at the Cape Fear at Navassa, the model prediction of tidal phase at the Cape Fear at Lock and Dam1 misses the observed data by about one hour (Figure 29). Phase predictions are better at the Northeast at Burgaw (Figure 28) and the Black at Currie (Figure 29). At each location the model does a good job in simulating the attenuation of the tidal signal as it moves up into the estuary. Tidal ranges at the three upstream sites are less than 0.5 m (Figure 28 and 29), while the tidal range at Marker 12 is generally more than 1.5 m (Figure 26). In general the model slightly overpredicts attenuation in the Cape Fear and Northeast Cape Fear, and correctly simulates it in the Black River (Figures 28 and 29).

A shorter time period in June 2004 (June 16-23) also had an observed elevation data set that was suitable for comparison to model predictions. The same set of seven stations were analyzed by comparing hourly time histories of observed and model predicted water surface elevations. As during the other time period analyzed, the model predicted well the tidal phase at the Wilmington tide gage, at Marker 12, and at the Northeast Cape Fear at Wilmington stations, but underpredicted the tide lag at the Navassa station (Figures 30 and 31). The consistent underprediction of the time lag in the upper portion of the Cape Fear River may have something to do with the effect of the split in the river channel in the Brunswick River area. It is not expected that the relatively slight underprediction of time lag has a negative impact on the model's ability to simulate water quality conditions. As in January 2004, the model underpredicts somewhat the tidal range at Marker 12, but better represents the tidal variation at the three stations around Wilmington: the Wilmington tide gage, the Northeast Cape Fear at Wilmington, and Navassa (Figures 30 and 31).

Figure 26. Model Predictions and Observed Water Surface Elevations During January 2004 (Day $740=1 / 11 / 2004$) at Cape Fear R. Marker 12 and the Wilmington Tide Gage

Figure 27. Model Predictions and Observed Water Surface Elevations During January 2004 (Day $740=1 / 11 / 2004$) at NE Cape Fear at Wilmington, and the Cape Fear at Navassa.

Figure 28. Model Predictions and Observed Water Surface Elevations During January 2004 (Day $740=1 / 11 / 2004$) at NE Cape Fear at Burgaw.

Figure 29. Model Predictions and Observed Water Surface Elevations During January 2004 (Day $740=1 / 11 / 2004$) at the Cape Fear at Lock and Dam 1 and at the Black River at Currie.

Figure 30. Model Predictions and Observed Water Surface Elevations During June 2004 (Day $900=6 / 19 / 2004)$ at the Cape Fear at Marker 12 and the Wilmington Tide Gage.

Figure 31. Model Predictions and Observed Water Surface Elevations During June 2004 (Day $900=6 / 19 / 2004$) at the NE Cape Fear at Wilmington and the Cape Fear at Navassa.

Comparison of model predictions and observed water surface elevations at the three upstream locations (Northeast Cape Fear at Burgaw, Black at Currie, Cape Fear at Lock and Dam 1) show the model's ability to simulate the attenuation of the tidal signal as it moves through the estuary. All three locations show tidal amplitudes that are much reduced from the other more downstream stations (Figures 32 and 33). As for the January 2004 time period, the model overpredicts somewhat the attenuation at the Cape Fear station, but in this case also underpredicts slightly the tidal amplitude at the Black River site (Figure 33). Tidal phases are predicted well, although there exists again some error in the predicted phase at the Cape Fear site. Both the tidal phase and amplitude are predicted well at the Northeast Cape Fear site (Figure 32).

An additional examination of hydrodynamic model performance was performed by decomposing both observed data and model predictions into tidal frequency components. Tidal amplitudes and phases were calculated for both the model predictions and the observed data at seven stations scattered throughout the model region (Table 14). The numerical model does a good job in predicting the attenuation of the M2 tidal amplitude from the downstream location (e.g. Marker 12) to the upstream locations within the Northeast Cape Fear, Black, and Cape Fear Rivers. Errors in the predicted M2 tidal amplitude are $1-4 \mathrm{~cm}$ in the downstream locations and $1-8 \mathrm{~cm}$ in the upstream locations. Similar model performance is seen for the other tidal constituents (Table 14).

Table 14. Model Predicted and Observed Tidal Constituents at Seven Stations

Cape Fear River at Lock and Dam1							
	Tidal Amplitude (m)			Tidal Phase (sec)			
Component	Model Predicted	Observed	Difference	Model Predicted	Observed	Difference	Diff. (\% per.)
M2	0.065	0.011	0.054	15790	-2907	18697	41.8\%
S2	0.006	0.004	0.002	10830	31689	-20859	-48.3\%
N2	0.003	0.041	-0.038	10750	21200	-10450	-22.9\%
01	0.021	0.069	-0.048	85620	88520	-2900	-3.1\%
M4	0.015	0.022	-0.007	9578	11804	-2226	-10.0\%
M6	0.005	0.013	-0.008	10200	14209	-4009	-26.9\%
K1	0.016	0.032	-0.016	48760	87623	-38863	-45.1\%

Black River at Currie							
	Tidal Amplitude (m)			Tidal Phase (sec)			
Component	Model Predicted	Observed	Difference	Model Predicted	Observed	Difference	Diff. (\% per.)
M2	0.124	0.133	-0.009	11070	11315	-245	-0.5\%
S2	0.012	0.009	0.003	8905	15073	-6168	-14.3\%
N2	0.013	0.023	-0.010	3869	10255	-6386	-14.0\%
01	0.022	0.041	-0.019	80220	80123	97	0.1\%
M4	0.033	0.019	0.014	6393	777	5616	25.1\%
M6	0.005	0.007	-0.002	13300	11755	1545	10.4\%
K1	0.015	0.046	-0.031	42110	57624	-15514	-18.0\%

Northeast Cape Fear at Burgaw							
	Tidal Amplitude (m)			Tidal Phase (sec)			
Component	Model Predicted	Observed	Difference	Model Predicted	Observed	Difference	Diff. (\% per.)
M2	0.090	0.168	-0.078	25520	20265	5255	11.8\%
S2	0.013	0.036	-0.023	28190	13525	14665	33.9\%
N2	0.018	0.091	-0.073	21750	4167	17583	38.6\%
01	0.008	0.114	-0.106	72480	94049	-21569	-23.2\%
M4	0.031	0.020	0.011	18460	8662	9798	43.8\%
M6	0.024	0.012	0.012	11550	13397	-1847	-12.4\%
K1	0.026	0.117	-0.091	69710	72991	-3281	-3.8\%

Cape Fear at Navassa							
	Tidal Amplitude (m)		Tidal Phase (sec)				
Comp- onent	Model Predicted	Observed	Difference	Model Predicted	Observed	Difference	Diff. (\% per.)
M2	0.557	0.562	-0.005	41100	34391	6709	15.0%
S2	0.066	0.060	0.006	37580	32623	4957	11.5%
N2	0.081	0.123	-0.042	33640	28586	5054	11.1%
O1	0.072	0.095	-0.023	56840	55404	1436	1.5%
M4	0.026	0.031	-0.005	13340	2786	10554	47.2%
M6	0.033	0.044	-0.011	14210	8497	5713	38.3%
K1	0.073	0.076	-0.003	19560	41820	-22260	-25.8%

Northeast Cape Fear at Wilmington							
	Tidal Amplitude (m)			Tidal Phase (sec)			
Component	Model Predicted	Observed	Difference	Model Predicted	Observed	Difference	Diff. (\% per.)
M2	0.548	0.589	-0.041	41030	40571	459	1.0\%
S2	0.064	0.081	-0.017	37360	39184	-1824	-4.2\%
N2	0.080	0.135	-0.055	33300	37145	-3845	-8.4\%
01	0.072	0.141	-0.069	56930	48996	7934	8.5\%
M4	0.030	0.020	0.010	13650	6138	7512	33.6\%
M6	0.026	0.014	0.012	14440	14044	396	2.7\%
K1	0.076	0.121	-0.045	19880	42858	-22978	-26.7\%

Cape Fear at Marker 12							
	Tidal Amplitude (m)			Tidal Phase (sec)			
Component	Model Predicted	Observed	Difference	Model Predicted	Observed	Difference	Diff. (\% per.)
M2	0.646	0.669	-0.023	36410	36955	-545	-1.2\%
S2	0.083	0.086	-0.003	31750	31720	30	0.1\%
N2	0.105	0.028	0.077	28200	27412	788	1.7\%
01	0.097	0.115	-0.018	50370	83053	-32683	-35.2\%
M4	0.024	0.036	-0.012	5872	23125	5872	26.3\%
M6	0.024	0.017	0.007	6672	10884	-4212	-28.3\%
K1	0.085	0.163	-0.078	32120	35812	-3692	-4.3\%

Cape Fear at NOAA Tide Gage Wilmington							
	Tidal Amplitude (m)			Tidal Phase (sec)			
Component	Model Predicted	Observed	Difference	Model Predicted	Observed	Difference	Diff. (\% per.)
M2	0.589	0.637	-0.048	40000	40207	-207	-0.5\%
S2	0.068	0.084	-0.016	36270	36576	-306	-0.7\%
N2	0.089	0.124	-0.035	32350	34988	-2638	-5.8\%
01	0.078	0.072	0.006	55550	55541	9	0.0\%
M4	0.022	0.053	-0.031	12060	10217	1843	8.2\%
M6	0.020	0.002	0.018	13240	10066	3174	21.3\%
K1	0.079	0.090	-0.011	18820	34973	-16153	-18.7\%

4.2.2 Modeled and Observed Salinities

To assess the model's ability to simulate the transport of a conservative substance, twice daily predictions of salinity were compared to observed data at twenty-one sites that spanned the entire model region, and included all three rivers within the estuary (Figure 20). The observed data set included information collected by both the US Geological Survey and Lower Cape Fear River Program. The USGS data came from the in-situ water quality monitors that collected salinity data every fifteen minutes. For this model/data comparison, the USGS observed data were hourly averaged, and two data points per day were taken for the calibration data set. The Lower Cape Fear River Program data was collected at more stations but less frequently. The frequency of sampling varied from season to season. The summer sampling frequency was as often as weekly at some stations. Most of the Lower Cape Fear River Program stations were sampled at a monthly interval during the winter months.

While statistical measures of model fit used all the available data, as described above, here we show time history comparison of model predictions and observations only at the USGS in the lower parts of the estuary. The three USGS sites omitted here (Cape Fear at Lock and Dam 1, Black at Currie, Northeast Cape Fear at Burgaw) all had salinities, both observed and predicted that were always near zero. Two of the sites shown here are in the impaired region (Cape Fear at Navassa, Northeast Cape Fear at Wilmington), and both sites show an excellent agreement between the model predicted and observed salinity (Figure 34). At both sites the salinities are quite dynamic, being near zero during the high flow periods late February and March and also September, and increasing to 10 to 15 ppth in the intervening time periods. Swings in salinity of approximately 5 ppth happen in about a week's time in both June and July 2004. The model predictions track the changes seen in the observed data quite nicely. While rather difficult to see with this particular data presentation, it appears that the model underpredicts somewhat the stratification seen in the observed data. At the Northeast Cape Fear station, the observed data often shows surface salinities that are approximately two ppth lower than the bottom values, but model predictions show essentially no difference between the surface and bottom values (Figure 34).

Figure 32. Model Predictions and Observed Water Surface Elevations During June 2004 (Day $900=6 / 19 / 2004$) at the NE Cape Fear at Burgaw.

Figure 33. Model Predictions and Observed Water Surface Elevations During June 2004 (Day $897=6 / 16 / 2004)$ at the Black River at Currie and the Cape Fear R. at Lock and Dam 1.

Figure 34. Model Predictions (lines) and Observed (symbols) Salinities During 2004 at the Cape River at Navassa and the NE Cape Fear River at Wilmington.

Salinities at the one station downstream of Wilmington (Cape Fear at Marker 12) are even more dynamic than the two upstream stations. As for the two other stations, salinities approach zero during the high flow periods in Spring and Fall (Figure 35). In mid-May the salinities also approach zero, which does correspond with a high flow event that is seen upstream at the Cape Fear River model boundary earlier in the month (Figure 18). During the summer, a regular variation in salinity can be seen on approximately a two-week period, which likely corresponds to the variations due the neap/spring tide cycle. As at the other two sites the model agrees with the observed data to an excellent extent, showing all of the dynamic features seen in the observed data. Once again, however, it does appear that the model underpredicts somewhat the magnitude of salinity stratification in this lower part of the estuary (Figure 35).

Figure 35. Model Predictions (lines) and Observed (symbols) Salinities During 2004 at the Cape River at Marker 12.

As mentioned earlier, statistical measures of the model's ability to simulate salinity distributions used all of the available salinity observations. A total of 5308 model/data comparisons were made during the 2004 calibration period, with the following statistical measures used to quantify model fit to the data (see Thomann 1982 or Tetra Tech 2001 for explanation of the measures):

- Mean error (absolute and normalized by mean of observations)
- Mean absolute error (absolute and normalized by mean of observations)
- Root mean square error (absolute and normalized by mean of observations)
- Correlation r^{2}
- Bias corrected r^{2}, also known as model efficiency

These comparisons indicated that the model slightly overpredicted salinity in the estuary by 0.112 ppth, which corresponds to a normalized mean error of 2.2% (Table 15). Two measures were used to quantify the typical magnitude of the prediction error. The root mean square error was 2.48 ppth and the mean absolute error (mean of the absolute value of each error) was 1.45 ppth (Table 15). The corresponding normalized errors for these two statistical measures of model fit were 50.1% and 29.1%. The correlation R^{2} was used as an aggregate measure of model fit. For salinity the correlation R^{2} was 87.6%, and the R^{2} corrected for model bias was 85.7%. This level of calibration performance compares favorable with other hydrodynamic models of North Carolina estuaries (e.g. Bowen 2000).

Table 15. Calibration Statistics, Salinity

Parameter	Value	Units
Mean Error (predicted observed)	0.112	ppth
Normalized Mean Error	2.2	\%
Root Mean Square Error	2.48	ppth
Normalized Root Mean Square Error	50.1	\%
Mean Absolute Error	1.45	ppth
Normalized Mean Absolute Error	29.1	\%
Correlation \mathbf{R}^{2}	87.6	\%
Number of Model/Data Comparisons	5308	-
$\mathbf{R}^{\mathbf{2}}$ Corrected for Bias	85.7	\%

Statistical measures of model fit were also calculated at each site where observed data were available. Each of the measures given in Table 15 were calculated at fourteen stations where salinity data were collected either by the USGS or as part of the Lower Cape Fear Program (Table 16). Mean errors were quite variable, with relatively large values in the Wilmington area, at stations such as the Northeast Cape Fear at Wilmington and Marker 54. Mean errors at sites upstream of Wilmington generally decreased. Both root-mean-square errors and mean absolute errors were generally more uniform, and were less than 2.0 ppth at most sites (Table 16).

Table 16. Model Calibration Statistics for Salinity at Monitoring Sites Within the Model Region

Station	Mean Error (ppth)	\%	$\begin{aligned} & \text { RMSE } \\ & \text { (ppth) } \quad \text { \% } \end{aligned}$		Mean Absolute Error (ppth)	\%	$\mathbf{R}^{\mathbf{2}}$	No. data points
CF L\&D1	-0.05	100.0%	0.05	100.0\%	0.05	101.8\%	0.4\%	572
Blk Currie	-0.03	100.0\%	0.03	100.0\%	0.03	102.1\%	9.6\%	653
NE Burgaw	-0.05	$\begin{array}{r} - \\ 100.0 \% \\ \hline \end{array}$	0.05	100.0\%	0.05	102.2\%	20.5\%	689
NCF6, NECF	0.13	5.9\%	2.51	116.6\%	3.55	165.0\%	0.0\%	12
USGS, Navassa	0.72	44.7\%	1.42	88.4\%	2.35	146.4\%	47.4\%	510
CF @ Nav	1.77	128.3\%	2.15	155.7\%	2.81	202.9\%	27.9\%	12
USGS, NECF Wilm	-1.46	-29.4\%	1.94	39.1\%	2.80	56.3\%	68.9\%	1439
Brnswk Riv	0.25	7.5\%	1.74	52.2\%	2.54	76.2\%	30.3\%	12
$\begin{aligned} & \text { CF, Mrkr } \\ & 61 \end{aligned}$	-0.04	-0.6\%	1.92	28.2\%	2.52	37.0\%	71.4\%	13
M54, CFM54	2.34	27.6\%	2.61	30.7\%	3.60	42.4\%	79.7\%	13
M42, CFM42	2.43	22.8\%	2.76	25.8\%	3.35	31.4\%	81.5\%	13
$\begin{aligned} & \text { USGS, CF } \\ & \text { Mrkr } 12 \end{aligned}$	1.76	13.6\%	2.84	21.9\%	3.61	27.9\%	76.8\%	1344
$\begin{aligned} & \text { M35, } \\ & \text { CFM35 } \end{aligned}$	0.55	3.8\%	2.12	14.3\%	2.73	18.5\%	75.9\%	13
$\begin{aligned} & \text { M23, } \\ & \text { CFM23 } \end{aligned}$	-3.92	-18.1\%	4.80	22.1\%	5.60	25.8\%	43.9\%	13

Scatter plots of observed vs. predicted salinity also give an indication of the relatively good fit of the model to the observed data. Little bias is seen in the predictions overall, with the points shown to be evenly distributed around the 45 -degree line indicating observation $=$ prediction (Figure 36). Model error seems not to vary with the magnitude of model prediction, as the magnitude of the error is similar for relatively low and high salinities. At the low salinity
values, there are many points where zero salinity is predicted but not observed or vice-versa, but there doesn't exist more of one type of error as opposed to the other. The magnitude of the residuals is significant, however, which may be due to the model's relatively poor ability at matching the temporal variations in the extent of salinity intrusion at certain times (see for example Figure 35).

Figure 36. Scatter Plot of Predicted Salinity (ppth, x-axis) vs. Corresponding Observed Salinity (ppth, y-axis).

Percentile plots of observed data and model predictions were also created for the salinity values in the estuary. These percentile plots are useful in assessing how the model predictions values and the corresponding observations are distributed relative to one another. Both model predictions and observed data have approximately 50% of the salinities at zero (Figure 37). At the higher salinity values the model both slightly under and over predicts salinity and the frequency of a particular salinity value. For instance, at the $90^{\text {th }}$ percentile value the observed salinity is 15 ppth. This same salinity value is seen in about only 85% of the model predictions. The lower percentile values, where the salinities are lower also show some error, but in this case the model predictions for a particular salinity value are slightly more frequent than seen in the observations. Over the entire range of salinities, however, there is not a very large difference between the observed and predicted salinities (Figure 37).

Figure 37. Percentile Plot of Observed and Model Predicted Salinities During the Calibration Period. The y-axis indicates the fraction of values below the corresponding salinity (ppth) indicated on the x -axis.

4.3 Temperature Model Calibration

The procedure for assessing the temperature model's calibration performance was very similar to the procedure for salinity. Observations from the twenty-one Lower Cape Fear River Program and USGS stations in the model region (Table 13) were compared. The USGS data were synthesized to produced two hourly-averaged temperatures per day. The Lower Cape Fear River program data were used without any data synthesis. While time histories comparisons were produced at all twenty-one stations, only six representative sites are shown here. Five of the six are the USGS sites where twice daily data are available. Three of the sites are near the upstream model boundary (Cape Fear at Lock and Dam 1, Black River at Currie, Northeast Cape

Fear at Burgaw), and two are in the mesohaline region of the estuary (Navassa, NE Cape Fear at Wilmington, Marker 12). One Lower Cape Fear River Program station from the Northeast Cape Fear River (NCF 117) is shown as well.

The model vs. data time history comparison at the Cape Fear station at Lock and Dam1 is typical of all of the temperature time histories. Model predictions follow the observed data to an excellent extent, with very little difference between model predictions and observed data (Figure 38). In the summertime, the model slightly overpredicts temperatures in the surface layer, but not so in the lower layers at this site. The seasonal variation in temperature from summer to winter is represented very well.

The two stations along the Northeast Cape Fear (Figure 39) and in the mesohaline portion of the estuary (Figure 40) also show an excellent fit between model predictions and observed data. Seasonal variations in temperature are nearly identical between model predictions and observations, and at only one site (Northeast Cape Fear at Wilmington) is there any observable difference between these temperatures. At this one site the model overpredicts summertime temperature by a few degrees.

This excellent degree of model fit is also seen in the other measures of model calibration. The normalized mean error in the model is less than 1%, and the normalized root mean square error is only 5.8% (Table 17). The correlation R^{2} is 97.9%, indicating an excellent fit of the model to the observed data. Statistical measures of model fit were also calculated at individual stations (Table 18). All stations had calibration R^{2} values above 97% and root mean square errors of less than 9% (Table 18). The scatter plot of observed data vs. corresponding model predictions (Figure 41) and the percentile plot (Figure 42) also indicate the excellent ability of the temperature model to match the observed temperatures.

Figure 38. Model Predicted and Observed Temperatures During 2004 at the Cape Fear River at Lock and Dam 1 and the Black River at Currie.

Figure 39. Model Predicted and Observed Temperatures During 2004 at the NE Cape Fear River at Burgaw and at Station NCF 117.

Figure 40. Model Predicted and Observed Temperatures During 2004 at the NE Cape Fear River at Wilmington and the Cape Fear River at Marker 12.

Table 17. Calibration Statistics, Temperature

Parameter	Value	Units
Mean Error (predicted - observed)	$-\mathbf{0 . 1 2}$	Deg C
Normalized Mean Error	$\mathbf{- 0 . 6 1}$	\%
Root Mean Square Error	$\mathbf{1 . 1 2}$	Deg C
Normalized Root Mean Square Error	5.8	\%
Mean Absolute Error	0.81	Deg C
Normalized Mean Absolute Error	4.2	\%
Correlation R ${ }^{2}$	$\mathbf{9 8 . 4}$	\%
Number of Model/Data Comparisons	$\mathbf{6 0 4 0}$	-
R 2 Corrected for Bias	$\mathbf{9 7 . 9}$	\%

Table 18. Model Calibration Statistics for Temperature at Monitoring Sites Within the Model Region.

Station	Mean Error (ppth)	\%	RMS (ppth)	\%	MAE (ppth)	\%	$\mathbf{R}^{\mathbf{2}}$	No. data points
CF L\&D1	-0.21	-1.1\%	0.30	1.5\%	0.58	3.0\%	99.6\%	573
NC11, CF	-0.17	-0.7\%	0.59	2.7\%	0.99	4.4\%	98.3\%	75
Blk Currie	-0.31	-1.7\%	0.63	3.4\%	1.01	5.4\%	98.4\%	653
B210, Blk	-0.66	-3.8\%	0.93	5.3\%	1.26	7.2\%	97.9\%	13
AC- CF@Acme	-0.44	-2.0\%	0.65	2.9\%	0.88	3.9\%	98.9\%	75
$\begin{aligned} & \text { IC, Cape } \\ & \text { Fear } \end{aligned}$	0.26	1.1\%	0.87	3.9\%	1.07	4.7\%	99.1\%	75
NE Burgaw	0.73	4.1\%	1.23	6.8\%	1.59	8.8\%	96.9\%	690
NCF117	-0.50	-2.7\%	1.49	8.2\%	1.84	10.1\%	96.3\%	13
NCF6, NECF	0.09	0.4\%	1.78	8.8\%	2.07	10.3\%	98.6\%	47
Navassa	0.13	0.6\%	0.76	3.8\%	0.92	4.5\%	99.4\%	510
CF @ Nav	0.26	1.2\%	0.87	3.8\%	1.04	4.6\%	99.4\%	75
$\begin{aligned} & \mathrm{HB}, \\ & \text { CF@HSB } \end{aligned}$	0.14	0.6\%	1.06	4.7\%	1.36	6.0\%	98.6\%	74
NECF Wilm	-0.30	-1.6\%	1.16	6.1\%	1.39	7.3\%	99.2\%	1462
Brnswk Riv	-0.56	-3.0\%	0.92	4.9\%	1.29	6.9\%	98.9\%	39
CF, Mrkr 61	-0.73	-3.6\%	1.24	6.1\%	1.46	7.2\%	99.0\%	48
M54, CFM54	-0.63	-3.1\%	0.87	4.3\%	1.10	5.4\%	99.4\%	48
M42, CFM42	-0.58	-2.8\%	0.85	4.1\%	1.15	5.7\%	99.0\%	48
CF Mrkr 12	-0.25	-1.3\%	0.50	2.6\%	0.66	3.4\%	99.5\%	1429
M35, CFM35	-0.58	-2.8\%	0.82	4.0\%	1.15	5.6\%	98.7\%	48
M23, CFM23	-0.40	-2.0\%	0.96	4.8\%	1.22	6.1\%	97.7\%	45

Figure 41. Scatter Plot of Predicted Temperature (${ }^{\circ} \mathrm{C}$, x -axis) vs. Corresponding Observed Temperature (${ }^{\circ} \mathrm{C}, \mathrm{y}$-axis) During the 2004 Calibration Run.

Figure 42. Percentile Plot of Observed and Model Predicted Temperatures During the 2004 Calibration Period. The y-axis indicates the fraction of values below the corresponding temperature $\left({ }^{\circ} \mathrm{C}\right)$ indicated on the x -axis.

Overall the hydrodynamic model's level of calibration performance is as good, or even better than other hydrodynamic models of North Carolina estuaries (e.g. Bowen 2000). Each component of the hydrodynamic model (hydrodynamics, temperature, conservative transport) fits well the seasonal and event-related dynamics within the system. Examination of time histories in the impaired region indicate the hydrodynamic model is capable of simulating conditions in this part of the estuary. Based upon this evaluation, the hydrodynamic model seems suitable for use as part of the water quality evaluation.

4.4 Water Quality Model Calibration

Following the procedures described in section 2, the input files necessary to run the water quality model were quantified. Specifically, the loadings of all constituents from all water sources where flows were specified in the QSER.INP file were quantified in the WQPSL.INP file. A total of 37 sources of water were quantified this way (Table 9), which required quantifying loads for all 21 constituents (Table 1). These loads were calculated with a procedure that utilized conversion matrix tables that quantified how constituent loading was calculated from the available monitoring data. Twenty-three such conversion tables (Appendix A) were needed to quantify these sources. At the model southern open boundary, concentrations were specified either as a time history or in the water quality control file WQ3DWC.INP (see Appendix D).

During calibration, predicted dissolved oxygen concentrations were compared to observed data at the same twenty-one stations used for hydrodynamic model calibration (Table 14, Figure 19). The USGS continuous monitoring data were synthesized to give two hourly averaged dissolved oxygen values per day. The Lower Cape Fear River Program data were generally collected monthly during the non-summer months, and bi-weekly during the summer. These twice-daily data were combined with the LCFRP data to create an extensive calibration data set that had frequent measurements of DO at stations throughout the estuary and somewhat less frequent measures of other water quality constituents. During calibration, kinetic values in the water quality model were adjusted to improve the fit between model predicted water quality concentrations and observed data. Model/data comparisons were made of the following water quality measures:

- Dissolved oxygen (mg/L)
- Total chlorophyll-a ($\mu \mathrm{g} / \mathrm{L}$)
- Total phosphorus (mg/L as P)
- Ammonia (mg / L as N)
- Nitrite/nitrate (mg/L as N)

Multiple measures were used to quantify the model's fit to the observed data, just as was done during hydrodynamic calibration. As described earlier the following measures were analyzed for each model run during calibration, (see Thomann 1982 or Tetra Tech 2001 for explanation of the measures):

- Mean error (absolute and normalized by mean of observations)
- Mean absolute error (absolute and normalized by mean of observations)
- Root mean square error (absolute and normalized by mean of observations)
- Correlation r^{2}
- Bias corrected r^{2}, also known as model efficiency

The calibration had the following multiple objectives

- Use water quality kinetics parameter values that fall within the expected range of values for temperature estuaries (Bowie et al. 1985),
- Produce predicted water quality concentrations that qualitatively agree with the expected seasonal and spatial variations for temperature estuaries,
- Produce predicted water quality concentrations that simultaneously minimized mean error, mean absolute error, and root mean square error
- Produce predicted water quality concentrations that maximum correlation r^{2} and bias corrected r^{2},
- Produce predicted water quality concentrations with a cumulative frequency distribution that was a close approximation of the observed distribution over the full range of percentiles.

A phased approach to water quality calibration was undertaken. The calibration phasing was done in such a way that recognized the expected relative importance of processes in the estuary's dissolved oxygen budget, and the inherent dependencies between water quality constituents. Thus, special importance was given to maximizing the model's fit to observed dissolved oxygen concentrations. Calibration phasing was done as follows:

- Calibrate first the sediment oxygen demand to give a reasonably low mean error for dissolved oxygen concentrations,
- Calibrate the nitrification rate to give an acceptable value for the mean error for ammonia concentrations within the estuary,
- Calibrate the phytoplankton group specific maximum growth rates, temperature optima, and half-saturation constants for nutrient concentrations to give a reasonable seasonal pattern of total chlorophyll-a concentrations,
- Calibrate the phytoplankton stoichiometric ratios (C/Chl, C/N, C/P) to give acceptable mean errors for total P and total N concentrations
- Calibrate the benthic flux rates for nitrate/nitrite to give an acceptable value for the mean error of nitrite/nitrate concentrations in the water column,
- Calibrate again the sediment oxygen demand to give acceptable error statistics and cumulative frequency distributions for dissolved oxygen,
- Check the statistical measures of model fit for the remaining water quality constituents, and repeat the calibration procedure if warranted.

At the conclusion of this calibration procedure, a complete set of calibrated water quality kinetic parameters was produced for the base case calibration run. These water quality kinetic parameters were then used for all subsequent model confirmation and scenario testing model runs. All of these parameters except SOD are specified in EFDC's water quality control file (see file WQ3DWC.INP, Appendix D). Benthic fluxes are specified in a separate file (benflux_tser.inp, Appendix E).

Of particular interest in the water quality modeling was the point source loadings of oxygen demanding wastes. In the EFDC water quality model as applied here, three EFDC constituents present in the point source loadings accounted for the water-column oxygen demand, refractory dissolved organic carbon (RDOC - in table 1 RDOC is shown as RPOC), dissolved organic carbon (DOC), and ammonia. The RDOC load was found to come primarily from the Cape Fear River inflow, and to a lesser extent the estuary inflows (Figure 43). The

RDOC Load (kg/D)

Figure 43. Average Daily Load of Refractory Dissolved Organic Carbon to the Model Region from Various Sources
source contribution to the RDOC loading was relatively small (Figure 43). Likewise, more than half of the DOC load came from the Cape Fear River inflow, while the other four categories of sources (Black River, NE Cape Fear River, estuary inflows, and point sources) were of roughly equal magnitude (Figure 44). The ammonia loading distribution was quite different, with point sources contributing more than half of the total loading, and only small contributions from the Black and Northeast Cape Fear rivers and the estuary inflows (Figure 45).

An additional sink of dissolved oxygen results from the transport of water-column oxygen to satisfy the sediment oxygen demand (SOD). As described in previous sections, an SOD measurement program conducted by the NC Division of Water Quality collected SOD measurements at five locations (Figure 9) during the Summer and Fall of 2003 (Table 13). Initially these data were used to quantify a time-averaged SOD rate that was applied over the entire model grid. During calibration it was found that this strategy resulted in overpredictions of dissolved oxygen concentration in the summer and underprediction during the winter. For this reason, it was decided to introduce a temperature dependence to the SOD specification. The SOD data were fit with the following temperature dependent model:

$$
\begin{equation*}
\operatorname{SOD}(t)=\operatorname{SOD}(20) \times \Theta^{T-20} \tag{2}
\end{equation*}
$$

DOC Load (kg/D)

Figure 44. Average Daily Load of Dissolved Organic Carbon to the Model Region from Various Sources

NH4 Load (kg/D)

Figure 45. Average Daily Load of Ammonia to the Model Region from Various Sources.
where $\operatorname{SOD}(\mathrm{t})$ and $\operatorname{SOD}(20)$ is the sediment oxygen demands at the desired temperature and at $20^{\circ} \mathrm{C}$, and Θ is an empirical temperature multiplier. When fit to this model (Figure 46), the SOD data produced a $\operatorname{SOD}(20)$ of $0.4 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}$ and a temperature multiplier of 1.058 . Using this SOD model and spatially averaged observed temperatures, an SOD time history file was created for input to the model. Using this approach it was found during calibration that the model consistently overpredicted dissolved oxygen concentrations in all three of the Northeast Cape Fear stations. This overprediction was confined to these stations, which indicated that SOD values for these stations should be increased for the cells within the Northeast Cape Fear river basin. During calibration an additional factor was introduced that gave the ratio of SOD in the NE Cape Fear and the rest of the model region. This factor was determined during calibration to give the best fit with a value of 1.5 . In this way SODs were given temperature and spatial variation during the model

Figure 46. Natural Logarithm of Measured Sediment Oxygen Demand (y-axis) vs. Deviation from 20 Degree ${ }^{\circ} \mathrm{C}$ Measured Temperature (x-axis).

Time history comparisons of observed vs. predicted dissolved oxygen concentrations were used to assess water quality model calibration performance. Here we show these time histories at seven stations, the six USGS stations used previously, and one LCFRP station in the Northeast Cape Fear River (NCF117) that was presented earlier when showing temperature time
histories. In general the time history comparisons show an excellent calibration performance for dissolved oxygen. At the two of the USGS sites in the oligohaline sites (Cape Fear at Lock and Dam 1, Black at Currie), the model closely tracks the seasonal variation in dissolved oxygen, whereby the summertime DO concentrations are low and the wintertime DO concentrations are relatively high (Figure 47). As seen in the temperature time history, some density stratification seems to be present at the Black River site, which seems to produce a relatively low DO concentration in the bottom waters (Figure 47). The surface DO concentration value, however, follows the observed data closely throughout the 2004 calibration period (Figure 47).

The two oligohaline stations along the Northeast Cape Fear produced interesting model results. The upper site (NE Cape Fear at Burgaw) had model predictions and observations that agreed well with one another, but at the more downstream site (NCF 117), the model generally overpredicted the DO concentration (Figure 48). During the summer months at this station the observed DO concentrations were approximately four mg / L while the model predictions were approximately six mg / L. A similar discrepancy was seen further downstream along the NE Cape Fear at the Wilmington site (Figure 49). Once again the observed data, this time from a USGS continuous water quality monitor showed DO concentration through the summer of approximately $4.0 \mathrm{mg} / \mathrm{L}$. The model predictions are higher, but are closer to the observed data than at station NCF 117. The overprediction of DO concentration here is approximately $1 \mathrm{mg} / \mathrm{L}$ (Figure 49).

At the other station in the impaired area (Cape Fear at Navassa), the model fits the observed DO concentration very well (Figure 49). Both summertime and wintertime conditions are predicted well, as are more short-term changes during the summer months. The observed concentrations at the station south of Wilmington (Marker 12), showed significantly more variation in dissolved oxygen (Figure 50) than the other two sites in the mesohaline portion of the estuary. Nonetheless, the model did a good job of simulating the dynamic changes in the DO concentrations that occurred throughout the 2004 calibration period (Figure 50). In general the model predictions are somewhat less variable than the observed data, but the model does do a particularly good job of simulating the temporal changes in the minimum dissolved oxygen concentrations that occur through the summer months (Figure 50).

Figure 47. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During 2004 at the Cape Fear River at Lock and Dam1 and the Black River at Currie.

Figure 48. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During 2004 at the NE Cape Fear River at Burgaw and Station NCF 117.

Figure 49. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During 2004 at the Cape Fear River at Navassa and the NE Cape Fear River at Wilmington.

Figure 50. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During 2004 at the Cape Fear River at Marker 12.

Statistical measures of model fit demonstrate the model's ability to simulate the temporal and spatial differences in DO concentration. As for the hydrodynamic model calibration, the calibration statistics are based on model/data comparisons at all twenty-one sites. The USGS sites use hourly average values that have been sampled at two times per day, at twelve hour intervals. The Lower Cape Fear River Program data comes from boat-based sampling that occurred at a variable frequency - as often as weekly during the summer months and stretching to monthly during the winter months. A total of 5,274 model/data comparisons were used to assess model calibration performance for dissolved oxygen. The mean error for dissolved oxygen concentration (predicted - observed) was $-0.06 \mathrm{mg} / \mathrm{L}$, which represented a mean error of 0.86% (Table 19). Root mean square errors and mean absolute errors were $0.90 \mathrm{mg} / \mathrm{L}$ and 0.69 mg / L respectively, which gives normalized errors of 13.4% and 10.3% respectively. The correlation R^{2} for dissolved oxygen model predictions relative to the observed data was 85.4%, or 83.5% when the correlation coefficient is corrected for model bias (Table 19). In general this is excellent calibration performance for an estuary dissolved oxygen model.

Table 19. Calibration Statistics, Dissolved Oxygen

Parameter	Value	Units
Mean Error (predicted - observed)	$\mathbf{0 . 0 0 5}$	$\mathbf{g} / \mathbf{m}^{\mathbf{3}}$
Normalized Mean Error	$\mathbf{0 . 0 6}$	$\mathbf{\%}$
Root Mean Square Error	$\mathbf{0 . 9 2}$	$\mathbf{g} / \mathbf{m}^{3}$
Normalized Root Mean Square Error	$\mathbf{1 3 . 8}$	$\mathbf{\%}$
Mean Absolute Error	$\mathbf{0 . 7 3}$	$\mathbf{g} / \mathbf{m}^{\mathbf{3}}$
Normalized Mean Absolute Error	$\mathbf{1 3 . 8}$	$\mathbf{\%}$
Correlation R 2	$\mathbf{\%}$	
Number of Model/Data Comparisons	$\mathbf{8 4 . 4}$	-
\mathbf{R}^{2} Corrected for Bias	$\mathbf{5 2 7 4}$	$\mathbf{\%}$

Statistical measures of model fit were also calculated at individual stations (Table 20). The mean error statistics show that the majority of the stations in the Black and Cape Fear Rivers had predicted dissolved oxygen concentrations that were generally under predicted with respect to observed values, while the predictions in the Northeast Cape Fear were slightly above the observed values. Most stations had a mean error of less than $0.5 \mathrm{mg} / \mathrm{L}$. Root mean square errors were similar to that seen for the cumulative data (13.4%, Table 19). Correlation r^{2} values ranged from a low of 67.3% at station B210 to a high of 96.3% at Marker 61 in the Cape Fear. Correlation r 2 in the impaired region of the estuary near Wilmington were generally near or above 90% (Table 20).

The scatter plots of observed vs. predicted dissolved oxygen concentration also indicate the excellent agreement between model prediction and observation. There is little or no bias in the model predictions, and the residuals appear to be of uniform magnitude across the range of predicted dissolved oxygen concentrations (Figure 51). There are a few values in which the model badly overpredicts DO concentration, but compared to the more than 5,000 model/data comparisons, the number of badly predicted DO concentrations is very small (Figure 51).

Equally impressive is the close agreement between model predictions and observations as seen in the percentile plot. The distribution of DO concentrations in the model predictions matches almost exactly that seen in the observations (Figure 52). Of special interest is the fact the number of relatively low DO concentrations, say for example the percentage of values below $4.0 \mathrm{mg} / \mathrm{L}$ is near identical (10%) for both the model predictions and the observed data. Only at the very lowest DO concentrations is there any discrepancy between the two distributions. At these lowest DO concentrations, it appears the observed data have slightly higher percentiles, although the magnitude of the differences (e.g. 0% vs. 3% at $3.0 \mathrm{mg} / \mathrm{L}$) is relatively small (Figure 52).

Table 20. Model Calibration Statistics for Dissolved Oxygen at Monitoring Sites Within the Model Region.

Station	Mean Error (ppth)	\%	RMS (ppth)	\%	MAE (ppth)	\%	$\mathbf{R}^{\mathbf{2}}$	No. data points
CF @ L\&D1	-0.18	-2.3\%	0.66	8.3\%	0.89	11.2\%	81.8\%	509
NC11, CF	-0.87	11.1%	1.11	14.1\%	1.31	16.6\%	79.8\%	75
BIK. @ Currie	-0.62	10.4%	0.88	14.7\%	1.13	18.8\%	85.8\%	571
B210, Blk	-1.43	19.9%	1.59	22.2\%	2.02	28.2\%	66.9\%	13
CF @ Acme	-0.76	10.2\%	0.96	12.8\%	1.22	16.4\%	81.7\%	75
IC, CF	-0.05	-0.7\%	0.61	9.8\%	0.76	12.1\%	90.4\%	75
NE Burgaw	-0.18	-2.7\%	0.82	12.1\%	1.09	16.1\%	85.3\%	671
NCF117	1.01	15.7\%	1.05	16.4\%	1.32	20.6\%	92.7\%	13
NCF6, NECF	-0.71	11.1\%	1.03	16.0\%	1.30	20.3\%	82.5\%	47
Navassa	0.23	3.7\%	0.57	9.3\%	0.68	11.1\%	93.7\%	433
CF @ Nav	-0.43	-6.8\%	0.68	10.9\%	0.82	13.0\%	92.3\%	75
CF @ HSB	-0.15	-2.6\%	0.61	10.1\%	0.76	12.5\%	91.5\%	74
NECF Wilm	0.74	11.7\%	0.78	12.2\%	0.90	14.1\%	95.6\%	1297
Brnswk Riv	-0.45	-6.0\%	0.73	9.7\%	0.99	13.1\%	89.3\%	39
CF @ M61	0.11	1.6\%	0.46	6.8\%	0.58	8.6\%	95.7\%	48
CF @ M54	-0.24	-3.4\%	0.62	8.9\%	0.74	10.6\%	90.0\%	48
CF @ M42	-0.53	-7.3\%	0.80	11.0\%	0.92	12.7\%	86.0\%	48
CF Mrkr 12	-0.16	-2.3\%	0.59	8.5\%	0.74	10.8\%	82.4\%	1070
CF @ M35	-0.54	-7.3\%	0.79	10.7\%	0.93	12.6\%	83.4\%	48
CF @ M23	-0.40	-5.3\%	0.62	8.2\%	0.75	10.0\%	84.5\%	45

Figure 51. Scatter Plot of Predicted Dissolved Oxygen Concentrations (mg/L, x-axis) vs. Corresponding Observed Dissolved Oxygen Concentrations (mg/L, y-axis) for the 2004 Calibration Period.

Figure 52. Percentile Plot of Observed and Model Predicted Dissolved Oxygen Concentrations During the Calibration Period. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis.

On the following pages time histories comparisons are shown for several other key constituents in EFDC's water quality model:

- Ammonia nitrogen
- Nitrate+nitrite nitrogen
- Total phosphorus
- Total chlorophyll-a

These constituents were chosen for presentation because they represent key information on how organic matter is cycling between organic and inorganic pools within the estuary. Time histories are shown for each of these constituents at the following six sites:

1. Cape Fear River at NC 11
2. Black River at B210
3. Northeast Cape Fear at NCF6
4. Cape Fear River at IC
5. Cape Fear River at Navassa
6. Cape Fear River at Marker 23

These six sites, all monitored by the Lower Cape Fear River Program span the entire model region. Each set of model predicted vs. observed data time histories shows the water quality model's capability to simulate water quality dynamics within the system.

Ammonia concentrations at the six sites (Figures 53-55) are generally less than $0.5 \mathrm{mg} / \mathrm{L}$ but are occasionally higher in the summertime. The monitoring data at certain sites (e.g. Black River site B210, and Northeast Cape Fear site NCF6) shows a relatively large amount of sample-to-sample variability. In general the monitoring data are more variable in time than the model predictions. There are no significant spatial or temporal trends in either the monitoring data or model predictions. For instance, the lowest concentrations were seen upstream in the Black River and downstream at Marker 23 (Figures 53 and 55).

Nitrate + nitrate (NOx) concentrations (Figures 56-58) are generally higher in the oligohaline portion of the estuary and are always higher than total phosphorus concentrations (Figure 59-61). The lowest NOx concentrations are at station M23 (Figure 58). The model does a good job of representing these spatial trends. There are no detectable temporal trends in the monitoring data for nitrate + nitrite. Total phosphorus (TP) concentrations show a similar spatial trend, with the highest total phosphorus concentrations in the oligohaline portion of the estuary and the lowest concentrations near the estuary mouth. As for ammonia, the monitoring data shows a large amount of sample variability in total phosphorus concentration. There is no detectable temporal trend either in the monitoring data or the model predictions, although there do seem to be episodic increases in TP concentrations. As for ammonia, the model predictions are less variable in time than the observed data (Figures 59-61).

Total chl-a concentrations are always than $10 \mu \mathrm{~g} / \mathrm{L}$, but do show some significant increases during summertime events (Figures 62-64). Model predictions also show temporal variability, with two distinct peaks occurring at each station, although interestingly, the timing of the peak differs from station to station. For instance at station M23 the peaks occur in the March and July (Figure 64), whereas in the Northeast Cape Fear the peaks occur in May and October. These differences in the timing of the chlorophyll peaks are probably related to differences in timing of nutrient supply between these two areas of the estuary. The overall level of variability in the observations and in the model predictions are similar to one another (Figures 62-64).

Overall the water quality model's calibration performance was considered acceptable for its use as part of a dissolved oxygen TMDL. Calibration performance for the DO model was excellent, with statistical measures of calibration performance indicating that the model does an excellent job of capturing the observed spatial and temporal variability in dissolved oxygen concentrations. Correlation r^{2} values at individual sites and overall are comparable, if not better, than those expected for estuarine water quality models. The model's predictions of other water quality constituents are also good. While for these constituents, the model's capability to match observed spatial and temporal patterns is not as good as for dissolved oxygen, the model is able to match the overall concentration level seen across the estuary during the calibration period. Together this information provides confidence that the model is suitable for its intended use, to estimate the system's dissolved oxygen response to changes in the discharge of oxygen demanding waste.

Figure 53. Model Predicted (lines) and Observed (symbols) Ammonia Concentrations During 2004 at the Cape Fear River at Station NC 11 and the Black River at Station B210.

Figure 54. Model Predicted (lines) and Observed (symbols) Ammonia Concentrations During 2004 at the NE Cape Fear River at Station NCF6 and the Cape Fear River at Station IC.

Figure 55. Model Predicted (lines) and Observed (symbols) Ammonia Concentrations During 2004 at the Cape Fear River at Navassa and at Station M23.

Figure 56. Model Predicted (lines) and Observed (symbols) Nitrate + Nitrite Concentrations During 2004 at the Cape Fear River at Station NC 11 and the Black River at Station B210.

Figure 57. Model Predicted (lines) and Observed (symbols) Nitrate + Nitrite Concentrations During 2004 at the NE Cape Fear River at Station NCF6 and the Cape Fear River at Station IC.

Figure 58. Model Predicted (lines) and Observed (symbols) Nitrate + Nitrite Concentrations During 2004 at the Cape Fear River at Navassa and at Station M23.

Figure 59. Model Predicted (lines) and Observed (symbols) Total Phosphorus Concentrations During 2004 at the Cape Fear River at Station NC 11 and the Black River at Station B210.

Figure 60. Model Predicted (lines) and Observed (symbols) Total Phosphorus Concentrations During 2004 at the NE Cape Fear River at Station NCF6 and the Cape Fear River at Station IC.

Figure 61. Model Predicted (lines) and Observed (symbols) Total Phosphorus Concentrations During 2004 at the Cape Fear River at Navassa and at Station M23.

Figure 62. Model Predicted (lines) and Observed (symbols) Chl-a Concentrations During 2004 at the Cape Fear River at Station NC 11 and the Black River at Station B210.

Figure 63. Model Predicted (lines) and Observed (symbols) Chl-a Concentrations During 2004 at the NE Cape Fear River at Station NCF6 and the Cape Fear River at Station IC.

Figure 64. Model Predicted (lines) and Observed (symbols) Chl-a Concentrations During 2004 at the Cape Fear River at Navassa and at Station M23.

5. MODEL EVALUATION

5.1 Model Confirmation

A model confirmation run was conducted to test the calibrated model's ability to simulate water quality conditions during a time period that was not used for model calibration. The 2005 calendar year was used for a model confirmation run. The 2005 calendar year had several high flow events in January and April, but had a dry summer (Figure 18). A short period in early August had streamflows above long-term average values, but otherwise had flows that were consistently below average from mid-April until the end of the year. The Northeast Cape Fear did have one high flow event in October 2004 that was not seen in the larger watershed (Figure 18). This high flow event was the result of heavy rains from tropical storm Jeanne that hit the coastal area but not farther upstream in the watershed.

A significant challenge of the confirmation run was collecting the necessary data to run the model. For the hydrodynamic model, the water surface elevation data was not a problem as both the Sunset Beach and Southport elevation data were sufficient for creating the necessary model forcings. The flow time histories at the upstream boundary on the Cape Fear River used the same location (Lock and Dam 1) as for the calibration run. For the Black and Northeast Cape Fear Rivers, however, data from the two USGS gaging stations nearest the upstream boundary (Black at Currie, Northeast Cape Fear at Burgaw) were no longer available. Instead data from the stations farther upstream (Black at Tomahawk, Northeast Cape Fear at Chinqapin, see Table 3 and Figure 7 for location information) were used instead. The USGS continuous station at Marker 12 was also not available for establishing the downstream boundary condition during 2005. Instead, the monthly salinities at one of the Lower Cape Fear River Stations (M18) was used instead. There was also much less data that could be used for calibration. For instance, over $5000 \mathrm{model} /$ data comparisons were made when calibrating salinity, but for the 2005 confirmation run, only 96 monitored salinities were available. Because of the small amount of monitoring data available only two stations (Navassa, Marker 23) are shown here as time history plots.

Time histories of model predicted salinities and observed salinities during 2005 demonstrate that the model can simulate estuarine dynamics in the system during periods other than the calibration period. Model predicted salinities at two stations in the impaired region (Navassa and Marker 61) and at two other stations in the Northeast Cape Fear and the lower estuary (NCF6 and M35) generally follow the patterns seen in the observed data (Figures 65 and 66). In general the model predicts a somewhat higher salinity than what is observed, but the magnitude of the overprediction is not severe. In addition the model does seem capable of modeling the overall seasonal trends in salinity, and does seem to correctly freshen the estuary during high flow events. For instance early and late 2005 had relatively high flows, and the model correctly simulates the freshening of the estuary that occurs during these times (Figure 65 and Figure 66).

Figure 65. Model Predicted (lines) and Observed (symbols) Salinities During the 2005 Confirmation Run in the NE Cape Fear River at Station NCF6 and in the Cape Fear River at Navassa.

Figure 66. Model Predicted (lines) and Observed (symbols) Salinities During the 2005 Confirmation Run at the Cape Fear River at Marker 61 and at Station M35.

Compared to salinity observations, significantly more observed data were available for assessing the performance of the temperature submodel during the confirmation run. The input data files needed to run the temperature submodel (e.g. meteorological data) were also available for the full 2005 confirmation run. Here we show time history comparisons of model predicted vs. observed temperatures at four sites within the estuary; two sites near Wilmington (Navassa, NCF117), and two sites downstream of Wilmington (Marker 61) and near the mouth of the estuary (Marker 35). Overall, all sixteen of the Lower Cape Fear River Monitoring Program sites used during calibration (Table 12, Figure 20) also had temperature data that could be used for performing a model confirmation run.

At all of the sites examined, the model did a good job predicting temperature time histories. At the two sites near Wilmington, the temperature reaches its maximum value near 30° C during August and drops to approximately $10^{\circ} \mathrm{C}$ by December 1 (Figure 67). A similar seasonal pattern is seen at the other sites (Figure 68), although it seems that the peak temperature arrives just a little later (mid-August) at these two sites. The model follows the observed seasonal trend very well. At the most downstream site shown here (M35, Figure 68), the peak temperature arrives even a little later than at the other sites. Just as at the other three sites, the peak temperature is approximately $30^{\circ} \mathrm{C}$, and occurs sometime during August. At this site temperatures fall slightly less rapidly than at the other three sites. By the end of the year, model predicted temperatures were just above $10^{\circ} \mathrm{C}$ (Figure 68).

The same procedure used to assess model fit to an observed data set is used for the confirmation run. A total of 780 model/data comparisons were made for the 2005 confirmation run. Predicted temperatures had a mean value that was $0.52^{\circ} \mathrm{C}$ below that observed. The normalized mean error was only -2.3%, which attests to the model's overall ability to predict temperatures (Table 20). Likewise other measures of calibration performance (e.g. root mean square error, correlation R^{2}, Table 20) are all similar to corresponding values for the calibration run (Table 16). Likewise the scatter plot (Figure 69) and the percentile plot (Figure 70) for the confirmation run look very similar to that for the calibration run (Figures 41 and 42).

Figure 67. Model Predicted (lines) and Observed (symbols) Temperatures During the 2005 Confirmation Run for the NE Cape Fear River at Station NCF117 and the Cape Fear River at Navasssa.

Figure 68. Model Predicted (lines) and Observed (symbols) Temperatures During the 2005 Confirmation Run for the Cape Fear River at Marker 61 and at Station M35.

Table 20. Model Fit Statistics, Temperature, 2005 Confirmation Run

Parameter	Value	Units
Mean Error (predicted - observed)	$-\mathbf{0 . 5 2}$	${ }^{\mathbf{\circ}} \mathrm{C}$
Normalized Mean Error	$\mathbf{- 2 . 3}$	$\mathbf{\%}$
Root Mean Square Error	$\mathbf{1 . 5 1}$	${ }^{\mathbf{\circ}} \mathbf{C}$
Normalized Root Mean Square Error	$\mathbf{6 . 7}$	$\mathbf{\%}$
Mean Absolute Error	$\mathbf{1 . 0 8}$	${ }^{\mathbf{o}} \mathbf{C}$
Normalized Mean Absolute Error	$\mathbf{4 . 8}$	$\mathbf{\%}$
Correlation R ${ }^{2}$	$\mathbf{9 6 . 4}$	$\mathbf{\%}$
Number of Model/Data Comparisons	$\mathbf{7 8 0}$	-
\mathbf{R}^{2} Corrected for Bias	$\mathbf{9 6 . 0}$	$\mathbf{\%}$

Figure 69. Scatter Plot of Predicted Temperature (${ }^{\circ} \mathrm{C}$, x-axis) vs. Corresponding Observed Temperature $\left({ }^{\circ} \mathrm{C}, \mathrm{y}\right.$-axis) during the 2005 Confirmation Run.

Figure 70. Percentile Plot of Observed and Model Predicted Temperatures During the 2005 Confirmation Period. The y-axis indicates the fraction of values below the corresponding temperature $\left({ }^{\circ} \mathrm{C}\right)$ indicated on the x -axis.

The model also did an excellent job of simulating DO concentrations during the confirmation run. The two upstream stations examined using time history plots (NC11, B210) had minimum dissolved oxygen concentrations that occurred near early September. The model simulates well the timing and magnitude of the minimum DO concentration (Figure 71). Likewise the recovery that occurs in the subsequent months as the water cools is simulated well by the model. At both upstream sites the model predicts a rise to a DO concentration of about 10 mg / L by December 2005. Observed DO concentrations at the upstream sites in late 2005 closely match the model predictions (Figure 71).

Figure 71. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During the 2005 Confirmation Run for the Cape Fear River at Station NC11 and the Black River at Station B210.

Like the calibration run, the model overpredicts somewhat the DO concentrations in the Northeast Cape Fear during the early summer months. The model does a good job, however, at predicting the minimum dissolved oxygen concentration of approximately $3 \mathrm{mg} / \mathrm{L}$ (Figure 72). The duration of low dissolved oxygen ($<4 \mathrm{mg} / \mathrm{L}$) at this site is somewhat underpredicted by the model. The model does a better job predicting DO concentration at this site during late Fall, when the water is cooler and DO concentrations are higher. The model does a better job predicting DO concentrations at Navassa, as both the observed and model predicted minimum DO concentrations are below $4 \mathrm{mg} / \mathrm{L}$ (Figure 72). The model does an equally good job matching the observed data at the Brunswick River station and at station M35 (Figure 73). At station M35, the model nicely predicts the timing of the DO minimum concentration, but overpredicts slightly the DO concentration at this time. Both the descent to the minimum DO concentration and the recovery later in the Fall are nicely represented by the model (Figure 73).

Model performance statistics for dissolved oxygen are very similar to those for the calibration run. Again, a total of 780 monitored DO concentrations were compared to the corresponding model prediction at that time and place (Table 21). The normalized mean error was slightly higher as compared with the calibration run (-2.0% vs. 0.06%, see Table 18), but the normalized root mean square error and normalized mean absolute error are both in the range of $10-15 \%$, which is quite good for an estuary DO model.

The excellent fit to observed DO data during the 2005 model confirmation run can also been seen in the scatter and percentile plots. The scatter plot has a fairly tight distribution (Figure 74) and little bias is evident. Likewise the percentile plot for the confirmation run (Figure 75) looks very similar to the corresponding plot for the calibration run (Figure 52).

Figure 72. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During the 2005 Confirmation Run for the NE Cape Fear River at Station NCF117 and the Cape Fear River at Navasssa.

Figure 73. Model Predicted (lines) and Observed (symbols) Dissolved Oxygen Concentrations During the 2005 Confirmation Run for the Cape Fear River at the Brunswick River Station and at Station M35.

Table 21. Model Fit Statistics, Dissolved Oxygen, 2005 Confirmation Run

Parameter	Value	Units
Mean Error (predicted - observed)	$\mathbf{- 0 . 1 3}$	$\mathbf{m g} / \mathrm{L}$
Normalized Mean Error	$\mathbf{- 2 . 0}$	$\mathbf{\%}$
Root Mean Square Error	$\mathbf{1 . 2 0}$	$\mathbf{m g} / \mathrm{L}$
Normalized Root Mean Square Error	$\mathbf{1 8 . 2}$	$\mathbf{\%}$
Mean Absolute Error	$\mathbf{0 . 9 2}$	$\mathbf{m g} / \mathrm{L}$
Normalized Mean Absolute Error	$\mathbf{1 4 . 1}$	$\mathbf{\%}$
Correlation R 2	$\mathbf{\%}$	
Number of Model/Data Comparisons	$\mathbf{7 3 . 8}$	-
\mathbf{R}^{2} Corrected for Bias	$\mathbf{7 3 . 0}$	$\mathbf{\%}$

Figure 74. Scatter Plot of Predicted Dissolved Oxygen Concentrations (mg/L, x-axis) vs.
Corresponding Observed Dissolved Oxygen Concentrations ($\mathrm{mg} / \mathrm{L}, \mathrm{y}$-axis) for the 2005 Confirmation Period.

Figure 75. Percentile Plot of Observed and Model Predicted Dissolved Oxygen Concentrations During the 2005 Confirmation Period. The y-axis indicates the fraction of values below the corresponding DO concentration $(\mathrm{mg} / \mathrm{L})$ indicated on the x -axis.

5.2 Sensitivity Testing

Model evaluation also included sensitivity testing. During calibration it was realized that the DO results were quite sensitive to the choice of the sediment oxygen demand. The SOD rate was determined during calibration to give a percentile plot that matched the observed data while giving good values for the numerical measures of calibration performance. Here we show how changing the SOD rate at $20^{\circ} \mathrm{C}$ from the calibrated value of $0.4 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}$ to a value 25% higher $\left(0.5 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}\right)$ and a value 25% lower $\left(0.3 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}\right)$. While we examined the model results several different ways (e.g. time history plots, statistical measures of model fit), here we show only the percentile plot and the scatter plot for the high SOD and low SOD cases. These figures can be
compared to the corresponding scatter (Figure 51) and percentile plots (Figure 52) for DO using the calibrated SOD value of $0.4 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}$.

The most noticeable difference between the three runs is in the percentage of low DO concentrations. The scatter plots show more subtle differences. The three scatter plots for low, medium, and high SOD rate (Figures 51, 76, 77) are very similar in overall shape. The higher SOD seems to simply raise predicted DO concentrations without affecting the overall distribution, such that the predicted DO's are moved to the left on the figure (lower predicted DO) without changing the shape or tightness of the distribution. The percentile plots are also very similar, but there is a marked increase in the number of low DO value as the SOD rate is increased (Figures 52, 76, 77). For instance, with the SOD of $0.3 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}$ the percentage of values below $4 \mathrm{mg} / \mathrm{L}$ is approximately 7%, while at an SOD rate of $0.5 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}$ the percentage of DO concentrations below is approximately 12%. For this higher SOD rate, there is noticeable difference between the observed and model predicted distribution of data. This offset, where the model predicted frequency exceeds the observed data by approximately 5% exists in the lower range of the distribution, up to a percentile of approximately 65%.

The sensitivity testing did show that the model results are sensitive to the calibrated SOD value. Additional runs were made to determine how changing the SOD rate might change the estuary's sensitivity to changes in organic matter loading. This set of runs, which examined if scenario results were sensitive to the SOD rate used is presented in the following section with the other scenario tests.

Figure 76. Scatter Plot and Percentile Plot, DO, $\mathrm{SOD}=0.3$

Figure 77. Scatter Plot and Percentile Plot, DO, $\mathrm{SOD}=0.5$

6. SCENARIO TESTING

6.1 Description of Base and Scenario Cases

A number of scenario tests were conducted to investigate the system's sensitivity to loading changes or to other possible changes in the system. For each scenario, model runs were conducted to estimate the time varying dissolved oxygen concentrations during the summer period of 2004 (April 1 - October 31) within the state designated impaired region of the estuary. For the base case run and each of the various scenario cases, twice-daily dissolved oxygen snapshots were recorded from all eight vertical layers at eighteen sites within the impaired region (Figure 78). This data collection method gave a total of $61,920 \mathrm{DO}$ concentration values for a particular model run (215 days x 18 stations x 8 layers per station x 2 snapshots per day). The distribution of these DO concentration values was then compared between the base case and the various scenario cases by making percentile plots. In the following sections, the following eight different scenarios are examined:

1. Eliminating wastewater point source loadings
2. Reducing river, creek, and wetland loadings
3. Changing wastewater loadings for various values of sediment oxygen demand
4. Reducing river, creek, and wetland loadings and sediment oxygen demand
5. Eliminating ammonia inputs from wastewater point sources
6. Increasing wastewater inputs to maximum permitted values
7. Deepening of the navigation channel
8. Changing Brunswick County wastewater loadings

The final section provides an analysis of the relative magnitudes of the processes that produce a dissolved oxygen deficit in the impaired region of the Lower Cape Fear River Estuary during the summer months.

6.2 Effect of Eliminating Wastewater Point Source Loadings

Three model runs were made to investigate the effect of completely turning off the discharges from the twenty wastewater treatment plants that discharge directly to the Lower Cape Fear River Estuary (see Table 9 for a list of wastewater point sources). These scenarios were run, not because completely eliminating pollutant discharges was considered achievable or advisable, but instead to investigate the system's sensitivity to WWTP loads. For this analysis, the river loads arriving at the model boundary, plus the creek and wetland inputs within the estuary were maintained at the base condition levels. To model the elimination of wastewater loads it was assumed that organic matter (refractory particulate carbon, nitrogen, and phosphorus; dissolved carbon, nitrogen, and phosphorus) and ammonia concentrations in the wastewater inputs would be decreased to $0.0 \mathrm{mg} / \mathrm{L}$.

Figure 78. Eighteen Locations Used to Determine Model Predicted Dissolved Oxygen Concentrations for the Scenario Tests

When all WWTP loads were eliminated, the $10^{\text {th }}$ percentile DO concentration increased by approximately $0.3 \mathrm{mg} / \mathrm{L}$, from 4.3 to $4.6 \mathrm{mg} / \mathrm{L}$ (Figure 79). In general the effect of eliminating the wastewater input had a larger impact on the lower dissolved oxygen concentrations than it did on the higher DO concentrations. Whereas the $10^{\text {th }}$ percentile DO
concentration increased by $0.3 \mathrm{mg} / \mathrm{L}$, the median value DO concentration increased by about $0.10 \mathrm{mg} / \mathrm{L}$, from 5.6 to $5.7 \mathrm{mg} / \mathrm{L}$ when all point source discharges were removed. The distribution of dissolved oxygen concentrations above $6.0 \mathrm{mg} / \mathrm{L}$ was only slightly changed (<0.1 mg / L) by eliminating wastewater inputs of organic matter and ammonia (Figure 79). Selectively turning off individual WWTP loads, as expected, had a smaller effect. Turning off the International Paper WWTP had an effect that was roughly $2 / 3$ of that when all the plants were turned off. Turning off both Wilmington domestic wastewater treatment plants had an effect that was roughly $1 / 3$ of that when all discharges were turned off (Figure 79). It was also found that eliminating the wastewater point sources results in only a small decrease in the percentage of DO concentrations below $5.0 \mathrm{mg} / \mathrm{L}$. For the base case, with discharges from all twenty wastewater

Figure 79. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and Three Wastewater Treatment Plant Load Reduction Scenarios. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis.
treatment plants, approximately 32% of the estimated DO concentrations in the impaired region during the summer months are below $5.0 \mathrm{mg} / \mathrm{L}$. When the oxygen demanding wastes from these point sources are completely eliminated, approximately 27% of summertime DO concentrations are below $5.0 \mathrm{mg} / \mathrm{L}$ (Figure 79).

6.3 Effect of Reducing River, Creek, and Wetland Loadings

The impact of changing the loadings that entered the model region from rivers, creeks, and wetlands was also investigated. Loading reductions of either $30 \%, 50 \%$, or 70% were assumed for the three river inputs (Cape Fear, Black, and Northeast Cape Fear), and from the fourteen creek and wetland inputs into the estuary. To reduce the loadings, flows were maintained at the base case levels, but concentrations were reduced by $30 \%, 50 \%$, or 70% from the base case values. Identical reduction percentages were assumed for the organic matter (refractory particulate carbon, nitrogen, and phosphorus; dissolved carbon, nitrogen, and phosphorus) and ammonia constituents. Loadings for the twenty wastewater point sources were maintained at the levels in the base case scenario. As with all scenarios, twice-daily DO concentration snapshots were analyzed for all eight model layers, at eighteen sites within the impaired region for 215 days during 2004 (April 1, 2004 - October 31, 2004).

The load reductions of riverine, creek, and wetland inputs were found to have a significant impact on the estimated dissolved oxygen concentrations during the summer months in the impaired region of the Lower Cape Fear River Estuary. At the $10^{\text {th }}$ percentile level, DO concentrations for the three load reduction scenarios increased by $0.2,0.3$, and $0.4 \mathrm{mg} / \mathrm{L}$ respectively, from $4.3 \mathrm{mg} / \mathrm{l}$ to either $4.5,4.6$, or $4.7 \mathrm{mg} / \mathrm{L}$ (Figure 80). Unlike the scenarios described in the previous section in which wastewater loading decreases were investigated, the level of increase in DO concentration was maintained at the higher percentiles when reductions in the river, creek, and wetland loadings were made. In fact, for this "clean river" scenario, the median DO concentration increased to even a greater extent than the $10^{\text {th }}$ percentile value, increasing from 5.6 to $5.85 \mathrm{mg} / \mathrm{L}$ for the 30% reduction (an increase of $0.25 \mathrm{mg} / \mathrm{L}$), and from 5.6 to $6.2 \mathrm{mg} / \mathrm{L}$ (an increase of $0.6 \mathrm{mg} / \mathrm{L}$) for the 70% reduction scenario (Figure 80). Nonetheless, even at this largest assumed loading reduction amount of 70%, a significant fraction (approximately 19%) of DO concentrations are below $5.0 \mathrm{mg} / \mathrm{L}$. For the base case, approximately 32% of DO concentrations during the summer months are below $5.0 \mathrm{mg} / \mathrm{L}$ (Figure 80).

Figure 80. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and two Scenarios that Reduce Loading from Rivers and Creeks by $30 \%, 50 \%$, and 70%. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis.

6.4 Effect of Changing Sediment Oxygen Demand

Additional water quality model runs were conducted to investigate the sensitivity of the results to the choice of model kinetic parameters. Because of its relative importance in determining dissolved oxygen concentrations, the sensitivity analysis focused on the impact of various choices for the sediment oxygen demand. During calibration it was found that this parameter had a significant impact on dissolved oxygen concentrations in the estuary. In addition to the calibrated SOD value $\left(0.4 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}\right.$ at $\left.20^{\circ} \mathrm{C}\right)$, runs were made at a lower value (0.3 $\mathrm{g} / \mathrm{m}^{2} / \mathrm{d}$ at $20^{\circ} \mathrm{C}$) and a higher value ($0.5 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}$ at $20^{\circ} \mathrm{C}$). Model fit to the observed data set was compared for these three cases. All three cases (SOD @ $20 \operatorname{deg} \mathrm{C}=0.3,0.4,0.5$) had similar correlation r^{2} values (83.4%, and 84.5%, and 83.4%), but on average the low SOD case overpredicted DO concentrations by $0.11 \mathrm{mg} / \mathrm{L}$, while the high SOD case underpredicted DO concentrations by a similar amount $(0.09 \mathrm{mg} / \mathrm{L})$.

The impact of turning off the organic matter and ammonia loadings from all wastewater treatment plants was investigated for each of these three SOD cases. Each scenario produced a very similar change in DO concentration when all point sources were turned off (Figure 81). Even though DO concentrations were changed with the different SOD cases, in each scenario, turning off the sources increased DO concentrations by approximately $0.25 \mathrm{mg} / \mathrm{L}$ at the $10^{\text {th }}$ percentile level (Figure 81). Likewise the percentage of DO values below $5.0 \mathrm{mg} / \mathrm{L}$ decreased by a similar amount using the three different sediment oxygen demand values. For the base case SOD value $\left(0.4 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}\right.$ at $\left.20^{\circ} \mathrm{C}\right)$ turning off the wastewater sources decreased the percentage of DO values below $5.0 \mathrm{mg} / \mathrm{L}$ from 45% to 40%. For the lower SOD value ($0.3 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}$ at $20^{\circ} \mathrm{C}$), removing the wastewater sources decreased the percentage of values below $5.0 \mathrm{mg} / \mathrm{L}$ from 37% to 29%. Using the higher SOD value $\left(0.5 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{d}\right.$ at $\left.20^{\circ} \mathrm{C}\right)$ removing the wastewater sources decreased the percentage of values below $5.0 \mathrm{mg} / \mathrm{L}$ from 54% to 49% (Figure 81). The magnitude of change in the percentage of values below $5.0 \mathrm{mg} / \mathrm{L}$ changes only slightly for these three SOD values. It is expected that changes in other model parameters would have a qualitatively similar result. Although absolute concentrations are affected by changes in parameter values, relative changes in concentration are less affected by changing parameter values.

Figure 81. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and a No WWTP Loading Scenario for Three Different Values of Sediment Oxygen Demand. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis.

6.5 Cumulative Effect of Lower Sediment Oxygen Demand and Reduced Loadings from Rivers, Creeks, and Wetlands

It has been shown (section 6.3) that even a 70% loading reduction in the organic matter inputs from rivers, creeks, and wetlands sources is not enough to completely eliminate violations of the state water quality standard of $5.0 \mathrm{mg} / \mathrm{L}$ (see Figure 80), even though these sources constitute the majority of inputs of oxygen demanding wastes into the Lower Cape Fear Estuary (see Figures 42 and 43). In this scenario we examine what conditions would be necessary to produce summertime DO concentrations above $5.0 \mathrm{mg} / \mathrm{L}$. In addition, one limitation of the analysis done previously is that it ignores possible changes that might occur in the benthos if organic matter loadings were reduced. For instance, it is likely that a reduction of 30% or 50% or 70% in organic matter loading would in the long-term also result in lower sediment oxygen demands. The cumulative effect of decreasing both organic matter loading and sediment oxygen demand are examined in this scenario.

In this scenario a total of six additional runs were made and compared to the base case. As done previously, three runs assumed that the oxygen demanding wastes (organic matter and ammonia) from the three rivers (Cape Fear, Black, Northeast Cape Fear) and from the fourteen creek and wetland inputs to the estuary were reduced by $30 \%, 50 \%$, or 70%. These reductions were made by holding steady the freshwater inflows while reducing the concentrations by the appropriate amount. For these three runs, wastewater inputs and the sediment oxygen demand were held at the values used in the base case. Three additional runs were made that assumed $30 \%, 50 \%$, or 70% reductions both in the oxygen demanding waste input and the sediment oxygen demands. These reductions in sediment oxygen demand were made by assuming a constant percentage reduction in sediment oxygen demand while retaining the assumed time variations in these values. As described in the calibration section of the report, sediment oxygen demand was assumed to vary seasonally, with higher values in the summer when the benthic layer is warmer and the biota more active as compared with the winter months.

As expected reducing the sediment oxygen demand along with the waste inputs had a larger effect than when only the waste inputs were reduced. For the case with a 30% reduction in SOD and loadings from rivers, creeks, and wetlands, the percentage of summertime DO concentrations below $5.0 \mathrm{mg} / \mathrm{L}$ was reduced to 22%, as compared to 45% for the base case and 33% when only the oxygen demanding wastes are decreased (Figure 82). The 50% reduction case had an even lower rate of water quality violations, but these were not completely eliminated. With both SOD and oxygen demanding wastes decreased, approximately 7% of summertime DO concentrations in the impaired region are below $5.0 \mathrm{mg} / \mathrm{L}$, as compared to 27% when only the oxygen demanding wastes are decreased (Figure 82). There is also a large increase in the minimum predicted DO concentration for this case. The base case had a minimum predicted DO concentration of approximately $3.2 \mathrm{mg} / \mathrm{L}$, whereas the minimum when SOD and oxygen demanding wastes are reduced by 50% is approximately $4.6 \mathrm{mg} / \mathrm{L}$ (Figure 82). A decrease in SOD of 70% and a reduction in river load of 70%, however, does almost completely eliminate dissolved oxygen concentrations below $5.0 \mathrm{mg} / \mathrm{L}$ (Figure 82). For this case, only about 1% of the predicted dissolved oxygen concentrations are below the water quality standard value.

April through October Simulated Dissolved Oxygen Concentrations in the Impaired Area, Lower Cape Fear River Estuary: Clean Rivers Scenarios

Figure 82. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and two Scenarios that Reduce Loading from Rivers and Creeks by 30% and 50%. The dashed lines show the corresponding changes in dissolved oxygen when SOD is also reduced by 30% or 50%. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis.

6.6 Effect of Eliminating Ammonia Inputs from Wastewater Point Sources

A fifth scenario considered eliminating the ammonia loading for all wastewater treatment plants. As for the other scenarios, loading reductions were achieved by decreasing the effluent concentrations, while keep the discharges at that specified in the base case. For this scenario the ammonia concentration in all twenty wastewater point sources was set to zero. The wastewater loadings from all other constituents was held constant, as was the loading from the seventeen other point sources that provided contributions from the rivers, creeks, and wetlands that discharge directly to the estuary.

This scenario produced an increase in dissolved oxygen concentrations that was detectable but not dramatic. As expected, the magnitude of the increase was less than when both the organic matter and ammonia loadings were eliminated from wastewater sources. At the $10^{\text {th }}$ percentile level, dissolved oxygen concentrations increased by about $0.1 \mathrm{mg} / \mathrm{L}$, from about 4.3 mg / L for the base case to about $4.4 \mathrm{mg} / \mathrm{L}$ when the ammonia loading was eliminated (Figure 83). The magnitude of the increase generally decreased for higher percentile values. For instance, the median dissolved oxygen concentration in the base case ($5.6 \mathrm{mg} / \mathrm{L}$) increased by only about 0.05 mg / L, with concentrations in the upper part of the distribution ($>6.0 \mathrm{mg} / \mathrm{L}$) increasing by an even lesser amount. A small, but detectable drop in percentage of DO concentrations less than $5.0 \mathrm{mg} / \mathrm{L}$ was seen when ammonia discharges from wastewater treatment plants was eliminated. In the base case approximately 32% of summertime DO concentrations in the impaired region are below the water quality standard of $5.0 \mathrm{mg} / \mathrm{L}$, whereas approximately 30% are below 5.0 mg / L when ammonia discharges are eliminated (Figure 83).

April through October Simulated Dissolved Oxygen Concentrations in the Impaired Area, Lower Cape Fear River Estuary

Figure 83. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and a no Ammonia Loading Scenario. The y-axis indicates the fraction of values below the corresponding DO concentration (mg/L) indicated on the x -axis.

6.7 Effect of Increasing Wastewater Inputs to Maximum Permitted Values

The base case scenario used facility discharge monitoring records to establish the loadings of oxygen demanding wastes from each of the twenty wastewater point sources that discharge directly to the Lower Cape Fear Estuary. In several instances, the actual loadings were considerably below permitted maximum values. Of interest is how increasing all 20 wastewater inputs to the permitted maximum values would affect the dissolved oxygen conditions in the estuary. In this scenario, those permitted maximum discharges are assumed for each of the sources where that information is available.

Of the twenty wastewater point sources in the model, thirteen had maximum permitted discharges for either BOD, flow, or ammonia that exceeded the loadings in the base case (Table 23). For each of these sources, modifications were made to the EFDC water quality point source input file (WQPSL.INP) to simulate a continuous discharge at the maximum permitted value. The permit limits for these thirteen sources (Table 24) were provided by the NC Division of Water Quality (DWQ). In keeping with the DWQ's rules for these permits, winter limits were used for five months (January, February, March, November, December) and summer limits for the remaining seven months. In creating the scenario all other sources and parameters were held at the base case levels.

Table 23. Model Point Sources That Were Adjusted to Maximum Permitted Values

Source No.	NPDES Permit No.	Name of Source

The scenario with the thirteen wastewater sources at their permitted maximum values produced dissolved oxygen concentrations that were slightly lower than the corresponding base values by approximately $0.1 \mathrm{mg} / \mathrm{L}$ (Figure 84). This decrease of approximately $0.1 \mathrm{mg} / \mathrm{L}$ was seen throughout the distributions, with both the $10^{\text {th }}$ percentile DO concentration value and the
median value decrease by a similar amount. More low DO concentrations were predicted for the maximum permit case as opposed to the base case. The percentage of DO concentration below the water quality permit value of $5.0 \mathrm{mg} / \mathrm{L}$ increased from 32% to approximately 34% for the maximum permit case (Figure 84). Approximately 4% of the base case DO concentrations in the impaired region during the Summer were expected to be below $4.0 \mathrm{mg} / \mathrm{L}$, while the maximum permit case had approximately 7% below $4.0 \mathrm{mg} / \mathrm{L}$ (Figure 84).

Table 24. Total Maximum Monthly Permitted Values for the Point Sources in the Lower Cape Fear Estuary.

Permit \#	Constituents	Outfall 1		Outfall 2		Outfall 3		Outfall 4	
		Monthly	Unit	Monthly	Unit	Monthly	Unit	Monthly	Unit
NC0000663	Flow	3.5	MGD						
1	BOD, 5-Day (20 Deg. C)	493.3	Ibs/day						
	Solids, Total Suspended	786	lb/day	75	mg/L				
NC0001112	Flow			1.25	MGD				
5 (2)	BOD, 5-Day (20 Deg. C) Summer			215.7	lb/day				
	Solids, Total Suspended	30	mg/L	329	lb/day				
NC0003298	Flow	50	MGD						
6	BOD, 5-Day (20 Deg. C) Winter	10,000	Ibs/day						
	BOD, 5-Day (20 Deg. C) Summer	5,000	Ibs/day						
	Solids, Total Suspended	65,720	lbs/day	30	mg/L				
NC0021334	Flow	0.8	MGD						
7	BOD, 5-Day (20 Deg. C)	30	mg/L						
	Solids, Total Suspended	30	mg/L						
NC0023256	Flow	3	MGD						
8	BOD, 5-Day (20 Deg. C) Winter	10	mg/L						
	BOD, 5-Day (20 Deg. C) Summer	5	mg/L						
	Nitrogen, Ammonia Total (as N) winter	4	mg / L						
	Nitrogen, Ammonia Total (as N) summer	2	mg / L						
NC0023965	Flow	16	MGD						
9	BOD, 5-Day (20 Deg. C)	30	mg / L						
	Solids, Total Suspended	30	mg / L						
	Nitrogen, Ammonia Total (as N) winter	2	mg / L						
	Nitrogen, Ammonia Total (as N) summer	1	mg / L						

April through October Simulated Dissolved Oxygen Concentrations in the Impaired Area, Lower Cape Fear River Estuary: Maximum Permitted Discharge Scenario

Figure 84. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and a Scenario Where all WWTP's are Set to the Their Maximum Permitted Discharge. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis.

6.8 Effect of Deepening of the Navigation Channel

An ongoing navigation channel deepening project is underway in the Lower Cape Fear River Estuary. This project is being conducted by the Wilmington district of the US Army Corps of Engineers. The Wilmington Harbor Project will deepen 37 miles of channel by 4 feet in the Cape Fear River up to the State Port of Wilmington, and into the Northeast Cape Fear River. Project information is available www.saw.usace.army.mil/wilmington-harbor/main.htm. Information from this site was used to modify the water depths given in the EFDC grid file DXDY.INP. Each grid cell in the navigation channel was deepened according to the plan described by the Army Corps of Engineers. No other changes were made from the base case values in defining the various input files needed to run the model.

The channel deepening had a noticeable, and slightly negative effect on dissolved oxygen concentrations during the summertime in the Lower Cape Fear River Estuary. Deepening of the channel slightly decreased dissolved oxygen concentrations. The reduction in dissolved oxygen concentrations was similar across the distribution of dissolved oxygen values. At the $10^{\text {th }}$ percentile value, the dissolved oxygen was decreased by about $0.2 \mathrm{mg} / \mathrm{L}$, from $4.3 \mathrm{mg} / \mathrm{L}$ to 4.1 mg / L. Near the median dissolved oxygen concentration, the dissolved oxygen decreased by about $0.1 \mathrm{mg} / \mathrm{L}$, from $5.6 \mathrm{mg} / \mathrm{L}$ to $5.5 \mathrm{mg} / \mathrm{L}$ (Figure 85). The effect of deepening the channel is also seen when comparing the frequency of DO concentrations below $5.0 \mathrm{mg} / \mathrm{L}$. For the base case the percentage below $5.0 \mathrm{mg} / \mathrm{L}$ was 32%, for the deepened channel the percentage was approximately 34%. Thus there is an effect with the channel deepening, which slightly lowers dissolved oxygen concentrations, but the magnitude of the effect is small ($<0.2 \mathrm{mg} / \mathrm{L}$ difference, $>5 \%$ difference in DO concentrations below a particular value).

Figure 85. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and a Scenario Where the Navigation Channel is Deepened by Dredging. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis.

6.9 Effect of Changing Brunswick County Wastewater Loadings

Three model scenarios considered the impact of changing the wastewater flow of a single discharger (Brunswick County wastewater treatment plant). Based on the discharge monitoring reports for the model period (2003-2005), the base condition had a time-averaged flow of 0.38 MGD. The three alternate scenarios tested had time-averaged flows of 1.65, 4.65 and 15 MGD. These scenarios therefore represented the effect of changing the wastewater treatment flow by factors of 4.3, 12.1, and 39.1. In these alternate loading scenarios, each discharge flow was increased by a constant factor. All concentrations were assumed to be constant. Thus the wastewater loadings had identical patterns of time variation, but had time-averaged flows that equaled the values given above. As for the other scenarios, twice daily dissolved oxygen concentrations were collected and compared to the base case at eighteen sites within the impaired region, from all eight layers of the model and from every day within the summertime period (April 1 - October 31, 2004).

Despite the relatively large changes in the assumed wastewater flow, there were only very small differences in the predicted dissolved oxygen concentrations, for summertime conditions in the impaired region. Across the entire range of dissolved oxygen concentrations, the differences between the base case and each of the three scenarios was always less than 0.05 mg / L (Figure 86). Thus there was essentially no effect of changing the wastewater flow. One limitation of this analysis is the assumption that loading would increase solely by increasing the flow. Since the organic matter concentrations were only slightly higher than the receiving waters, it is not surprising that changing the loading by holding effluent concentrations constant while increasing the flows had a very small effect on dissolved oxygen concentrations.

Figure 86. Percentile Plot of Model Predicted Dissolved Oxygen Concentrations During the Summer 2004 for the Base Case and Three Brunswick County WWTP Loading Scenarios. The y-axis indicates the fraction of values below the corresponding DO concentration (mg / L) indicated on the x -axis.

6.10 Analysis of the Summer Dissolved Oxygen Deficit in the Impaired Region

One conclusion that results from the previous scenarios is that depressed summertime dissolved oxygen concentrations in the Lower Cape Fear River Estuary can possibly be the result from one or more processes. Sediment oxygen demand, water-column decomposition of organic matter, or oxidation of ammonia can all result in dissolved oxygen depletion. Furthermore, there are several sources of organic matter in the water column (e.g. wastewater point sources, riverine inputs, inputs from creeks and rivers). An important consideration in the analysis of water quality in the Lower Cape Fear River Estuary is the relative importance of these various sources and processes to the dissolved oxygen concentrations in the impaired region of the Estuary.

To investigate the relative importance of these sources and processes, an analysis was performed to quantitatively compare the rates of oxygen consumption in the water-column due to riverine, estuarine, and wastewater sources, and to compare this consumption to sediment oxygen demand. The analysis focused on three sites within the impaired region where monitoring data were available: Cape Fear at Navassa (see Figure 6, Station NAV), Northeast Cape Fear River at Wilmington (see Figure 7, USGS Station 02108690), and Cape Fear River at Horseshoe Bend (see Figure 6, Station HB). Twice daily model predicted dissolved oxygen concentration, temperature, and salinity values were recorded near the surface (layer 7 of 8) at these three stations. Temperature and salinity values were used to calculate dissolved oxygen saturation concentration (Chapra 1997), and then the DO concentrations were plotted as a fraction of the DO saturation concentration (Figure 87) for a fourteen-month period beginning December 1, 2003. At all three stations, the DO saturation fraction is highest during the winter months and lowest during the summer months, probably as a result of temperature related differences in the consumption rate of water-column dissolved oxygen. At all three stations DO saturation percentages peak at about 90% in early March but then decline steady until August, when DO saturation percentages are less than 60% at all three stations. Beginning in early April, DO saturation values go below 70% at all stations, and do go back above 70% until late October (Figure 87).

Clearly oxygen consumption and under-saturated DO concentrations are a persistent feature during the summer at these three stations within the impaired region of the Lower Cape Fear Estuary, but what is the relative importance of the processes that produce this under saturation of dissolved oxygen in the water-column? To investigate this question, a first-order sensitivity analysis was performed to determine the relative importance of these three processes:

1. Discharge of oxygen demanding wastes by the 20 wastewater treatment plants that discharge directly to the estuary,
2. Discharge of oxygen demanding wastes by the three rivers in the basin (Cape Fear, Black, Northeast Cape Fear) as well as the creek and wetlands areas that discharge directly to the estuary, and
3. Sediment oxygen demand.

Figure 87. Model Predicted Dissolved Oxygen Concentrations in the Surface Waters as a Percentage of Saturation Concentration at Two Cape Fear Locations (Navassa and Horseshoe Bend) and one NE Cape Fear Station (Wilmington).

Three separate runs were made to determine the sensitivity of the time-averaged DO concentration at the three test sites to changes in one of the processes listed above. In each run, a prescribed relative change (e.g. 10% of the base case) in one of the loadings or the sediment oxygen demand rate was made, while holding all other rates and parameters at the values set in the base case. These three runs were then compared to the base case and the relatively sensitivity of each process was determined by comparing the change in dissolved oxygen
concentration between the cases. The time-averaged mean oxygen depletion at each site was then apportioned based upon the relative sensitivity of the three processes.

There were slight differences in the magnitudes of the oxygen depletion attributable to the three different factors at the three different sites (Figure 88). In general, however, the dissolved oxygen deficit caused by SOD and the river loadings of organic matter were significantly greater than that caused by the WWTP loadings. Time averaged dissolved oxygen concentrations were slightly different at the three sites, ranging from $5.65 \mathrm{mg} / \mathrm{L}$ at Navassa to $5.45 \mathrm{mg} / \mathrm{L}$ at the Northeast Cape Fear at Wilmington site. At each site the time-averaged dissolved oxygen saturation concentration was approximately $8.2 \mathrm{mg} / \mathrm{L}$, thus each site had a time-averaged dissolved oxygen depletion of approximately $2.7 \mathrm{mg} / \mathrm{L}$. Of the three processes compared, the wastewater treatment plant discharges had by far the smallest dissolved oxygen depletion effect. At each wastewater treatment plants accounted for approximately $0.2 \mathrm{mg} / \mathrm{L}$ of the total dissolved oxygen depletion. This amount of depletion represents approximately 7 to 9% of the total depletion. Of the remaining DO depletion (approximately $2.5 \mathrm{mg} / \mathrm{L}$, which is more than 90% of the total), roughly similar amounts could be attributable to SOD or riverine loadings of organic matter. The exception to this was the Northeast Cape Fear at Wilmington site, where more of the depletion (56% vs. 37%) was due to the SOD. These findings are consistent with earlier estimates of organic matter loading that show that rivers, creeks, and wetlands are the dominant sources of oxygen demanding wastes to the estuary (e.g. see Figures 43, 44, and 45).

Figure 88. Bar Graphs of Summer Season (April through October) Time-Averaged Model Predicted Dissolved Oxygen Concentrations (green) and the Dissolved Oxygen Deficit Caused by Wastewater Treatment Plants (black) Riverine Discharges (blue), and Sediment Oxygen Demand (pink) at Two Cape Fear Locations (Navassa and Horseshoe Bend) and one NE Cape Fear Station (Wilmington).

7. SUMMARY, DISCUSSION, AND CONCLUSIONS

The three-dimensional water quality model EFDC (Environmental Fluid Dynamics Code) was applied to simulate hydrodynamic and water conditions for the Lower Cape Fear River Estuary, North Carolina. The model region included the tidally affected portions of the Cape Fear, Black, and Northeast Cape Fear Rivers near Wilmington, North Carolina, and extended southward to the mouth of the Cape Fear River near Southport, North Carolina. A multi-agency monitoring program was used to gather the necessary data to run and calibrate the model. A fourteen-month period from November 2003 until January 2005 was used for model calibration. The model was created in such a way so that it separately accounted for the oxygen demanding loadings to the estuary from the three major rivers, tidal creeks and fringing wetlands within the estuary, wastewater treatment plant discharges, and sediment oxygen demand within the estuary. A phased multi-objective calibration procedure was implemented that sought to maximize the model's fit to multiple water quality constituents. The calibration phasing was accomplished in such a way that recognized the primary importance of dissolved oxygen prediction. The calibrated model simulated well the temporal and spatial patterns of dissolved oxygen concentration within the estuary. Model confirmation testing was performed for a twelve-month period from January 2005 to January 2006. The model's ability to simulate dissolved oxygen during the confirmation run was similar to that for the calibration period.

The model was used to investigate the effects of various organic matter and ammonia load reduction scenarios on the dissolved oxygen concentrations within the estuary. Various scenarios investigated the system response to reductions in wastewater and watershed loadings. Of the three primary constituents that contribute to oxygen depletion, only ammonia had a load that was contributed primarily from the wastewater sources. For organic matter loadings, the majority of the load was contributed by the incoming rivers and local tidal creeks and wetlands discharging directly to the estuary. Reducing these watershed loads had a significant impact on the dissolved concentrations within the estuary. Despite the sensitivity of the system to changes in these loadings, elimination of violations of the water quality standard for dissolved oxygen (5 mg / L) would require a 70% reduction both in riverine loadings but also a similar reduction in sediment oxygen demand.

Reducing wastewater loads generally had a smaller, but still noticeable impact on dissolved oxygen concentrations. Generally the magnitude of the increase in dissolved oxygen concentration followed the relative importance of the discharge to the overall loading to the estuary. An additional scenario tested the degree to which parameter variation, in this case sediment oxygen demand, could change the system's sensitivity to load reductions. This case demonstrated that the change in DO concentrations for a particular load reduction did not vary appreciably as the SOD used by the model was changed. Other scenarios investigated the system's sensitivity, with regard to dissolved oxygen concentrations to changes in the estuary that might result from dredging of the navigation channel or increases in wastewater treatment plant loadings up to the maximum permitted values. These two scenarios had a relatively minor effect on dissolved oxygen concentrations.

The model was designed to allow for relatively simple specification of additional scenarios. The results of the scenario tests, strategic choices made in creating the model, and results from previous modeling work on the estuary (e.g. Tetra Tech 2001), indicate that further refinement of the benthic flux model is justified. Both this study and the previous modeling effort demonstrate the significance of benthic fluxes to the overall dissolved oxygen budget. While special efforts were undertaken to rationally specify the temporal and spatial variation in SOD, the method by which benthic fluxes are prescribed rather than predicted from a sediment diagenesis model does limit the predictive ability of this model. For instance, it was recognized that reductions in river loading would probably also reduce sediment oxygen demand in the longterm, but with the prescribed SOD there was no way to predict the magnitude of the changes in SOD, or the time scale of those changes. Also, the monitoring data indicated that spatial differences in SOD probably exist within the estuary, but the DO monitoring data alone don't provide sufficient information to rationally prescribe the spatial variation in sediment quality.

The results of the analysis are qualitatively similar to that of the previous modeling study (Tetra Tech 2001), despite the conceptual differences in the two models. Both models indicate the importance of the wetland areas within the estuary, even though conceptualization of this portion of the water body differs between the two models. The previous model only considered the wetlands to be a sink of dissolved oxygen; consideration of organic matter loadings from these areas was not considered. In the model described here, the tidal creeks and wetlands were considered sinks of dissolved oxygen as well as a source of organic matter and freshwater. In the previous modeling work the "marsh effect" was estimated by completely removing these cells from the model, which had both water quality and circulation effects. In the modeling work described here, the effects of the wetlands were lumped together with that of the major rivers that drain to the estuary. These effects were quantified by varying the loadings from the all of the riverine and non-point sources, and then observing the resulting effects on dissolved oxygen concentrations within the estuary. With the analysis done this way, it is not possible to distinguish between the effect caused by the riverine sources and that from the wetlands and tidal creeks. One good aspect of this model, however, is that a scenario that looks separately at the effects of the rivers and the wetlands could be easily formulated and may be warranted in the future.

It is hoped that the model will be used as a tool for the rational water quality management of the system. The model was created with the objective of considering all sources of oxygen demanding waste to the estuary. A second objective was to quantify these sources in such way so that additional scenario testing would not be overly burdensome. Considering the complexity of the system, the importance of the natural resource, and the importance of the economy supported by the estuary's resources, further analysis in the future using this model seems warranted.

8. REFERENCES

Banks, R. B., and Herrera, F. F. (1977). "Effect of wind and rain on surface reaeration." J. Environ. Engr. Div. ASCE, 103(EE3): 489-504.

Bennett, A. F., and P. C. McIntosh. (1982). Open ocean modeling as an inverse problem: tidal theory. J. Physical Oceanography, 12, 1004-1018.

Blumberg, A. F., and L. H. Kantha. (1985). Open boundary condition for circulation models. J. Hydraulic Engineering., 111, 237-255.

Bowen, James D. (2000). Calibration Performance of a Two-Dimensional, Laterally-Averaged Eutrophication Model of a Partially Mixed Estuary. In Estuarine and Coastal Modeling: Proceedings of the $6^{\text {th }}$ International Conference, Spaulding, Malcolm L., and Butler, H. Lee (ed.), pp. 1244-1258. American Society of Civil Engineers, New York, NY.

Bowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L., Pagenkopf, J. R., Rupp, G. L., Johnson, K. M., Chan, P. W. H., Gherini, S. A. \& Chamberlin, C. E. (1985). Rates, constants, and kinetic formulations in surface water quality modeling (Second Edition). U.S. Environmental Protection Agency, ORD, Athens, GA, ERL, EPA/600/3-85/040. 455 pp .

Cahoon, L.B., J.A. Mickucki and M.A. Mallin. (1999). Nutrient imports to the Cape Fear and Neuse River basins to support animal production. Environmental Science and Technology 33:410-415.

Chapra, S. C. (1997). "Surface Water Quality Modeling." WCB McGraw-Hill, Boston, MA, 844 pp.

Cole, T., and Buchack, E. (1995). "CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, version 2.0." Technical Report E1-95-1. U.S. Army Engineer Waterways Experiment Station. Vicksburg, MS.

Duclaud, B. R. (2007). "Improved reaeration prediction for the Lower Cape Fear River Estuary, North Carolina." MS Thesis, University of North Carolina at Charlotte, Charlotte, NC.

Ensign, S. H., Halls, J. N., and Mallin, M. A. (2004). "Application of digital bathymetry data in an analysis of flushing times of two large estuaries." Computers \& Geosciences, 30, 501511.

Hamrick, J. M. (1992). "A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects." The College of William and Mary, Virginia Institute of Marine Science, Special Report 317, 63 pp.

Hamrick, J. M. (1996). "Users manual for the Environmental Fluid Dynamic Code." The College of William and Mary, Virginia Institute of Marine Science, Special Report 328, 224 pp .

Lin, J., Xie, L., Pietrafesa, L. J., Shen, J., Mallin, M. A, and Durako M. J. (2006). "Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries." Estuarine, Coastal and Shelf Science, 70, 423-437.

Mallin, M. A., McIver, M. R., Wells, H. A., Williams, M. S., Lankford, T. E., and Merrit, J.F. (2003). "Environmental assessment of the lower Cape Fear River system, 2002-2003." CMS Report Number 03, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, NC.

Mellor, G. L., and Yamada, T. (1982) "Development of a turbulence closure model for geophysical fluid problems." Rev. Geophys. Space Phys., 20, 851-875.

NC Division of Coastal Management. (1999). DCM Wetland Mapping in Coastal North Carolina. Published online at http://www.nccoastalmanagement.net/Wetlands/WTYPEMAPDOC.pdf.

NC Division of Water Quality. (2008). North Carolina 303(d) List, Draft for Public Review, January 10, 2008, http://h2o.enr.state.nc.us/tmdl/General_303d.htm

NCDEHNR. (1994). Water Quality Progress in North Carolina, 1992-1993. 305(b) Report. Report No. 94-07, North Carolina Department of Environment, Health, and Natural Resources, Division of Environmental Management, Water Quality Section, Raleigh, NC.

O'Connor, D. J., and Dobbins, W.E. (1958). "Mechanism of Reaeration in Natural Streams." Transactions of the American Society of Civil Engineers, 123, 641-666.

Park, K., Kuo, A.Y, Shen, J., and Hamrick, J.M. (1995). "A three-dimensional hydrodynamiceutrophication model (HEM3D): description of water quality and sediment processes submodels." The College of William and Mary, Virginia Institute of Marine Science. Special Report 327, 113 pp.

Redfield, A. C. (1934). On the proportions of organic derivative in sea water and their relation to the composition of plankton. In Daniel, R. J. [Ed.] James Johnstone Memorial Volume. University Press of Liverpool, pp. 177-192.

Roberts, J., and Roberts, T. D. (1978). Use of the butterworth low-pass filter for oceanographic data. Journal of Geophysical Research, 83(C11), 5510-5514.

Streeter, H. W., and Phelps. E. B. (1925). "A study of the pollution and natural purification of the Ohio River." Public Health Bulletin No. 146. Public Health Service. Washington, D.C.

Tennekes H., and Lumley J. L. (1972). "A First Course in Turbulence." The MIT Press. Cambridge, MA. 300pp.

Tetra Tech. (2001). 3-Dimensional EFDC Water Quality Model of the Lower Cape Fear River and its Estuary. Prepared for the City of Wilmington and New Hanover County. 174 pp.

Tetra Tech, Inc. (2002a). Theoretical and computational aspects of sediment and contaminant transport in EFDC. A report to the U. S. Environmental Protection Agency, Fairfax, VA.

Tetra Tech, Inc. (2002b). Hydrodynamic and transport extension to the EFDC model. A report to the U. S. Environmental Protection Agency, Fairfax, VA.

Thomann R. V., and Fitzpatrick JF. (1982). "Calibration and verification of a mathematical model of the eutrophication of the Potomac Estuary." Report by Hydroqual, Inc. Mahwah, NJ, to DES, Dist. Col.

Thomann, R. V. (1982). Verification of water quality models. J. Environ. Engrg. Div., ASCE. 108, 923-940.

| Parameters Used to Calculate Loads | Value | Units |
| :--- | ---: | :--- | Notes | Name | N7257 |
| :--- | :--- |
| Starting Day | days |
| Day $0=1 / 1 / 2002$ | |
| Sample Day | 15.5 days |

Starting Day
Sample Day
37257 days Day $0=1 / 1 / 2002$
15.5 days

Load Calculation Matrix (to get results in kg/day)

Multiply by Flow to get Daily Load?
no no no no no no

	Each con	nstituent v	value is lin	nearly relat	ted to the	following	7 measur	ements	a			concen	ntratio	flow.					g	factor	䢒	stituent			
	BC	Bd	Bg	RPOC	LPOC	DOC	POP	LPOP	DOP	PTO4	RPON	LPON	DON	NH4	NO3	su		SA		COD	DO	TAM	FCB	Flow	
00300 - DO, Oxygen, Dissolved, g/m3	0.0	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.0	3.79	0.00	0.00		. 00
00310 - BOD, 5-Day (20 Deg_ C) Ib/day	0.00	0.00	0.00	0.00	0.00	0.32	0.0	00	0.00	0.00	0.00	0.00	0.00	0.0	0.00		0.00		0.00	0.00	. 00	0.0	0.00		0.00
00530 - Solids, Total Suspended, Ib/day	0.00	, 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.0	0.00		0.00
00600 - Nitrogen, Total (as N), lb/day	. 00	0.00	0.00	. 00	0.00	. 00	0.00	0.00	0.0157	-0.0157	0.00	0.00	0.1134	0.00	0.3402		0.00		0.00	0.00	0.00	0.00	0.00		0.0
00610 - Nitrogen, Ammonia Total (as N), Ib/day	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.0	-0.0157	0.015	0.00	0.00	-0.1134	0.45	-0.3402		0.00		0.00	0.0	0.00	0.0	0.00		0.0
00665 - Phosphorus, Total (as P), Ib/day	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.45	0.00	0.00	0.00	0.00	0.00		0.0		0.00	0.00	0.0	0.00	0.0		0.0
50050 - Flow, in conduit or thru treatment plant, MGD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00		1.0

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to lb ratio	0.4536	0.4536	0.4536	0.4536	0.4536	0.4536	0.4536	
BOD5 to BODU scaleup	1.9	1.9						
C to O 2 molecular weight ratio (12/32)	0.3745	0.3745						
kilograms per gram								0.001
m3 per million gallon								3786.2
fraction of non-ammonia nitrogen that is DON			0.25	0.25	0.25			
fraction of non-ammonia nitrogen that is NOX							0.75	
P to N mass ratio			0.1389	0.1389				
LPOC/DOC split (see jdb_1485)	0.0\%	100.0\%						
Fraction Remaining	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Resulting Unit in Computed Data		kg/d	kg/d	kg/d	kg/d	kg/d	kg/d	kg/MG

kg/d
$\mathrm{DON}=(\mathrm{TN}-\mathrm{NH} 4) * .25$
NO3 $=($ TN - NH4) $* 0.75$
DOP $=$ DON * (Redfield P to N mass ratio)
PO4T = TP - DOP

Parameters Used to Calculate Loads			
Name	Value	Units	Notes
Starting Day	37257	days	Day $0=1 / 1 / 2002$
Sample Day	15.5	days	Noon on the 15th of the month

Load Calculation Matrix (to get results in kg/day)

Multiply by Flow to get Daily Load?
no no no no no
no no
no
no
no
no
no
no
no
no
no
no
yes
no
no

	BC	Bd	1 Bg	RPOC	LPOC	IDOC	RPOP	LPOP	DOP	PTO4	RPON	ILPON	DON	NH4	NO3	SU	SA	COD	IDO	ITAM	FCB
00300 - DO, Oxygen, Dissolved	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\begin{gathered} 00310 \text { - BOD, 5-Day (20 Deg_C }) \\ \text { Ib/day } \end{gathered}$	0.00	0.00	0.00	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
00530 - Solids, Total Suspended	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
00600 - Nitrogen, Total (as N)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0157	-0.0157	0.00	0.00	0.11	0.00	0.34	0.00	0.00	0.00	0.00	0.00	0.00
00610 - Nitrogen, Ammonia Total (as N)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.0157	0.0157	0.00	0.00	-0.11	0.45	-0.34	0.00	0.00	0.00	0.00	0.00	0.00
00665 - Phosphorus, Total (as P)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50050 - Flow, in conduit or thru treatment plant		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DO * flow (g/m3 MGD)	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.79	0.00	0.00

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to lb ratio
BOD5 to BODU scaleup
C to O 2 molecular weight ratio (12/32)

0.4536
1.9
0.3745

kilograms per gram
m3 per million gallon
fraction of non-ammonia nitrogen that is DON
to N mass ratio
Fraction Remaining
$0.25 \quad 0.25$
0.25

0.13890 .1389

0.4536	0.4536

100%	100%

Assumptions

DOC $=$ BODu * C to O 2 molecular weight ratio
DON $=(\mathrm{TN}-\mathrm{NH} 4) * .25$
NO3 $=($ TN - NH4 $4 * * .75$
PO4T = TP - DOP

Parameters Used to Calculate Loads			
Name	Value	Units	Notes
Starting Day	37257	days	Day $0=1 / 1 / 2002$
Sample Day	15.5	days	Noon on the 15th of the month

Load Calculation Matrix (to get results in kg/day)

Multiply by Flow to get Daily Load?
no no no no no
no no
no
no
no
no
no
no
no
no
no
no
no
yes
no
no

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to lb ratio
BOD5 to BODU scaleup
C to O 2 molecular weight ratio (12/32)

0.4536
1.9
0.3745

kilograms per gram
m3 per million gallon
fraction of non-ammonia nitrogen that is DON
to N mass ratio
Fraction Remaining
$0.25 \quad 0.25$
0.25

0.13890 .1389

0.4536	0.4536

100%	100%

Assumptions

DOC $=$ BODu * C to O 2 molecular weight ratio
DON $=(\mathrm{TN}-\mathrm{NH} 4) * .25$
NO3 $=($ TN - NH4 $4 * * .75$
PO4T = TP - DOP

arameters Used to Calculate Loads

Name
Starting Day
Sample Day
$\begin{array}{cl}\text { Value } & \text { Units } \\ 37257 & \text { dotes } \\ \text { days } & \text { Day } 0=1 / 1 / 2002\end{array}$
15.5 days $\quad \begin{aligned} & \text { Doon on the } 15 \text { th of the month }\end{aligned}$

Load Calculation Matrix (to get results in kg/day)

	Multiply by no	no to	$\begin{aligned} & \text { get Daily } \\ & \text { no } \end{aligned}$		no	no	yes	no		no	no	yes	no	no										
	Each constituent concentration is linearly related to the following 8 measurements (6 loads, 1 conc. (DO), 1 flow) Each column gives weighting factors for each constituent																							
	BC		Bg	RPOC	LPOC	DOC	RPOP	LPOP	DOP	PTO4	RPON	LPON	DON	NH4	NO3	SU		SA	COD	DO	TAM	IFCB	Flow	
00300 - DO, Oxygen, Dissolved, g/m3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		. 00	0.00	0.00	3.79	0.00	0.00		0.00
00310 - BOD, 5-Day (20 Deg_C), lb/day	0.00	0.00	0.00	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		. 00	0.00	0.00	0.00	0.00	0.00		0.00
00530 - Solids, Total Suspended, lib/day	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		. 00	0.00	0.00	0.00	0.00	0.00		0.00
00600 - Nitrogen, Total (as N), g/m3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1315	-0.1315	0.00	0.00	0.95	0.00	2.84		. 00	0.00	0.00	0.00	0.00	0.00		0.00
00610 - Nitrogen, Ammonia Total (as N), g/m3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.1315	0.1315	0.00	0.00	-0.95	3.79	-2.84		0.00	0.00	0.00	0.00	0.00	0.00		0.00
00665 - Phosphorus, Total (as P), g/m3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.79	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.00
50050 - Flow, in conduit or thru treatment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00		1.00

\section*{Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)
 | Kg to lb ratio | 0.4536 | |
| :--- | :--- | ---: |
| BOD5 to BODU scaleup | | 1.9 |
| C to O2 molecular weight ratio (12/32) | | 0.3745 |}

kilograms per gram
m3 per million gallon
fraction of non-ammonia nitrogen that is DON
fraction of non-ammonia nitrogen that is NOX

0.001	0.001
3786.2	3786.2
$\mathbf{0 . 2 5}$	$\mathbf{0 . 2 5}$

0.001	0.001	0.001
3786.2	3786.2	3786.2
$\mathbf{0 . 2 5}$		

fraction of non-ammonia nitrogen that is NOX
$0.1389 \quad 0.1389$

Fraction Remaining

$\mathrm{OC}=\mathrm{BODu}$ * C to O 2 molecular weight ratio
DON = (TN - NH4) *. 25
NO3 $=($ TN - NH4 $) * 0.75$
NO3 $=(T N-$ NH4 $4 * 0.75$
DOP $=$ DON $*$ (Redfield P to N mass ratio)
PO4T $=T P$ - DOP

arameters Used to Calculate Loads

Name
Starting Day
Sample Day
$\begin{array}{cl}\text { Value } & \text { Units } \\ 37257 & \text { dotes } \\ \text { days } & \text { Day } 0=1 / 1 / 2002\end{array}$
15.5 days $\quad \begin{aligned} & \text { Doon on the } 15 \text { th of the month }\end{aligned}$

Load Calculation Matrix (to get results in kg/day)

	Multiply by no	no to	$\begin{aligned} & \text { get Daily } \\ & \text { no } \end{aligned}$		no	no	yes	no		no	no	yes	no	no										
	Each constituent concentration is linearly related to the following 8 measurements (6 loads, 1 conc. (DO), 1 flow) Each column gives weighting factors for each constituent																							
	BC		Bg	RPOC	LPOC	DOC	RPOP	LPOP	DOP	PTO4	RPON	LPON	DON	NH4	NO3	SU		SA	COD	DO	TAM	IFCB	Flow	
00300 - DO, Oxygen, Dissolved, g/m3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		. 00	0.00	0.00	3.79	0.00	0.00		0.00
00310 - BOD, 5-Day (20 Deg_C), lb/day	0.00	0.00	0.00	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		. 00	0.00	0.00	0.00	0.00	0.00		0.00
00530 - Solids, Total Suspended, lib/day	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		. 00	0.00	0.00	0.00	0.00	0.00		0.00
00600 - Nitrogen, Total (as N), g/m3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1315	-0.1315	0.00	0.00	0.95	0.00	2.84		. 00	0.00	0.00	0.00	0.00	0.00		0.00
00610 - Nitrogen, Ammonia Total (as N), g/m3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.1315	0.1315	0.00	0.00	-0.95	3.79	-2.84		0.00	0.00	0.00	0.00	0.00	0.00		0.00
00665 - Phosphorus, Total (as P), g/m3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.79	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.00
50050 - Flow, in conduit or thru treatment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00		1.00

\section*{Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)
 | Kg to lb ratio | 0.4536 | |
| :--- | :--- | ---: |
| BOD5 to BODU scaleup | | 1.9 |
| C to O2 molecular weight ratio (12/32) | | 0.3745 |}

kilograms per gram
m3 per million gallon
fraction of non-ammonia nitrogen that is DON
fraction of non-ammonia nitrogen that is NOX

0.001	0.001
3786.2	3786.2
$\mathbf{0 . 2 5}$	

0.001	0.001	0.001	
3786.2	3786.2	3786.2	
$\mathbf{0 . 2 5}$			

fraction of non-ammonia nitrogen that is NOX
$0.1389 \quad 0.1389$

Fraction Remaining

$\mathrm{OC}=\mathrm{BODu}$ * C to O 2 molecular weight ratio
DON = (TN - NH4) *. 25
NO3 $=($ TN - NH4 $) * 0.75$
NO3 $=(T N-$ NH4 $4 * 0.75$
DOP $=$ DON $*$ (Redfield P to N mass ratio)
PO4T $=T P$ - DOP

arameters Used to Calculate Loads

Name
Starting Day
Sample Day
Value Units Notes
37257 days
37257 days $\quad \begin{aligned} & \text { Notes } \\ & \text { Day } 0\end{aligned}=1 / 1 / 2002$
15.5 days Noon on the 15 th of the month

Load Calculation Matrix (to get results in kg/day)

Multiply by Flow to get Daily Load?
Each constituent concentration is linearly related to the following 8 measurements (6 loads, 1 conc. (DO), 1 flow) Each column gives weighting factors for each constituent

	Eac	uent	concentratio	dion is linealy	dPar related	DOC	following 8	measure	ments	loads, 1 con	conc. (DO),	, 1 flow)	ach	umn gives	weighting	g factors	for each co	onstituent					
00300 - DO, Oxygen, Dissolved, g/m3	BC 0.00		Bg	RPOC	LPOC	DOC	RPOP	LPOP	DOP	PTO4	RPON	LPON	DON	NH 4	1 NO	SU	SA	COD	DO	TAM	FCB	Flow	0.00
00310 - BOD, 5-Day (20 Deg_ C), Ib/day	0.00	0.00	0.00	0.78	0.00	0.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
00530 - Solids, Total Suspended, Ib/day	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
00600 - Nitrogen, Total (as N), g/m3	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.03	-0.13	0.71	0.00	0.24	0.00	2.84	0.00	0.00	0.00	0.00	0.00	0.00		0.00
00610 - Nitrogen, Ammonia Total (as N), $\mathrm{g} / \mathrm{m} 3$	0.00	0.00	0.00	0.00	0.00	0.00	-0.10	0.00	-0.03	0.13	-0.71	0.00	-0.24	3.79	-2.84	0.00	0.00	0.00	0.00	0.00	0.00		0.00
00665 - Phosphorus, Total (as P), g/m3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
50050 - Flow, in conduit or thru treatment plant, mg/D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		1.00

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to lb ratio	0.4536	0.4536	
BOD5 to BODU scaleup	6.11	6.11	
C to O 2 molecular weight ratio (12/32)	0.3745	0.3745	
kilograms per gram			0.001
m3 per million gallon			3786.2
fraction of non-ammonia nitrogen that is ON			0.25
fraction of non-ammonia nitrogen that is NOX			
P to N mass ratio			0.1389
LPOC/DOC split (see jdb_1485)	75.0\%	25.0\%	75.0\%
Fraction Remaining	100\%	100\%	100\%

0.001	0.001	0.001
3786.2	3786.2	3786.2
$\mathbf{0 . 2 5}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 2 5}$

0.001	0.001	0.001
3786.2	3786.2	3786.2
$\mathbf{0 . 2 5}$		

$\mathbf{0 . 1 3 8 9}$	0.1389	
25.0%		75.0%
100%	100%	100%

25.0%		
100%	100%	100%

100%
Assumptions
DOC $=\mathrm{BODu}$ C_{C} to O 2 molecular weight ratio
DON $=(\text { TN }- \text { NH4 })^{*} .25$
DON $=(\text { TN }- \text { NH4 })^{*} .25$
NO3 $=($ TN - NH4 0.75
DOP $=$ DON * (Redfield P to N mass ratio)
PO4T = TP - DOP

Parameters Used to Calculate Loads				
Name	Value	Units	Notes	Notes
:---				
Starting Day				
Sample Day				

Load Calculation Matrix (to get results in kg/day)

$$
\begin{aligned}
& \text { Multiply by Flow to get Daily Load? } \\
& \text { no no no no no yes yes ye }
\end{aligned}
$$

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to Ib ratio
BOD5 to BODU scaleup
C to O2 molecular weight ratio (12/32)
kilograms per gram
m 3 per million gallon
fraction of non-ammonia nitrogen that is DON
fraction of non-ammonia nitrogen that is NOX
P to N mass ratio
Fraction Remaining
Assumptions
DOC $=$ BODu ${ }^{*} \mathrm{C}$ to O 2 molecular weight ratio
DON $=(\mathrm{TN}-\mathrm{NH} 4)^{*} .25$
NO3 $=\left(\mathrm{TN}-\mathrm{NH}^{*}\right)^{*} 0.75$
DOP $=$ DON * (Redfield P to N mass ratio)
PO4T $=T \mathrm{TP}-$ DOP

Parameters Used to Calculate Loads				
Name	Value	Units	Notes	Notes
:---				
Starting Day				
Sample Day				

Load Calculation Matrix (to get results in kg/day)

$$
\begin{aligned}
& \text { Multiply by Flow to get Daily Load? } \\
& \text { no no no no no yes yes ye }
\end{aligned}
$$

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to Ib ratio
BOD5 to BODU scaleup
C to O2 molecular weight ratio (12/32)
kilograms per gram
m 3 per million gallon
fraction of non-ammonia nitrogen that is DON
fraction of non-ammonia nitrogen that is NOX
P to N mass ratio
Fraction Remaining
Assumptions
DOC $=$ BODu ${ }^{*} \mathrm{C}$ to O 2 molecular weight ratio
DON $=(\mathrm{TN}-\mathrm{NH} 4)^{*} .25$
NO3 $=\left(\mathrm{TN}-\mathrm{NH}^{*}\right)^{*} 0.75$
DOP $=$ DON * (Redfield P to N mass ratio)
PO4T $=T \mathrm{TP}-$ DOP

Parameters Used to Calculate Loads				
Name	Value	Units	Notes	Notes
:---				
Starting Day				
Sample Day				

Load Calculation Matrix (to get results in kg/day)

```
Multiply by Flow to get Daily Load?
```

no no no yes no yes yes yes

Each constuent concentration is

$00300-$ DO, Oxygen, Dissolved,
$\mathrm{q} / \mathrm{m} 3$

0.00	0.00
	0.00
	0.00
0.3315	0.0
0.315	0.00
3.79	0.00

0.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00

0.00
ighting fa
no
no
yes

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)
Kg to Ib ratio
BOD5 to BODU scaleup

C to O 2 molecular weight ratio (12/32)
kilograms per gram
m 3 per million gallon
fraction of non-ammonia nitrogen that is DON

| 3.51 |
| ---: | ---: |
| 0.3745 |
| 0.001 |
| 3786.2 |\quad| 3.51 | |
| ---: | ---: |
| 0.3745 | |
| 0.001 | 0.001 |
| 3786.2 | 3786.2 |

0.001	0.001	0.001
3786.2	3786.2	3786.2
0	0.25	

0.75

P to N mass ratio
RPOC/DOC split (see jdb_1485)
Fraction Remaining
Assumptions
DOC $=\mathrm{BODu}$ * C to O 2 molecular weight ratio
DON $=($ TN - NH 4$) * .25$
NO3 $=($ TN - NH4 $) * 0.75$
DOP $=$ DON * (Redfield P to N mass ratio
PO4T = TP - DOP

Parameters Used to Calculate Loads				
Name	Value	Units	Notes	Notes
:---				
Starting Day				
Sample Day				

Load Calculation Matrix (to get results in kg/day)

$$
\begin{aligned}
& \text { Multiply by Flow to get Daily Load? } \\
& \text { no no no yo no yes yes ye }
\end{aligned}
$$

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it) \qquad
Kg to lb ratio
BOD5 to BODU scaleup
C to O 2 molecular weight ratio (12/32)
kilograms per gram
m3 per million gallon
fraction of non-ammonia nitrogen that is DON
fraction of non-ammonia nitrogen that is NOX

0.25

100.0%		
100%	100%	100%

Rema
Assumptions
DOC $=\mathrm{BODu} * \mathrm{C}$ to O 2 molecular weight ratio
DON $=(\mathrm{TN}-\mathrm{NH} 4)^{*} .25$
DOP $=$ DON * (Redfield P to N mass ratio)
POP = DON $=$ TP - DOP

Parameters Used to Calculate Loads				
Name	Value	Units	Notes	Notes
:---				
Starting Day				
Sample Day				

Load Calculation Matrix (to get results in kg/day)

```
Multiply by Flow to get Daily Load?
```

no no no yes no yes yes yes

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to lb ratio
BOD5 to BODU scaleup
C to O 2 molecular weight ratio (12/32)
kilograms per gram
m3 per million gallon

1.9
0.3745
0.001
3786.2
---:
0.3745
0.001
3786.2

0.001	0.001				
3786.2	3786.2	\quad	0.001	0.001	0.001
---:	---:	---:			
3786.2	3786.2	3786.2			

$$
\begin{array}{|r|}
\hline 0.001 \\
\hline 3786.2 \\
\hline
\end{array}
$$

fraction of non-ammonia nitrogen that is DON
fraction of non-ammonia nitrogen that is NOX
$0.25 \quad 0.25$
0.25
0.75

LPOC/DOC split (see jdb_1485)
Fraction Remaining

		0.1389	0.1389
0.0\%	100.0\%		
100\%	100\%	100\%	100\%

100%	100%	100%

Assumptions
DOC $=\mathrm{BODu}$ * C to O 2 molecular weight ratio
DON $=($ TN - NH 4$) * .25$
NO3 $=($ TN - NH4 $) * 0.75$
DOP $=$ DON * (Redfield P to N mass ratio
PO4T = TP - DOP

Parameters Used to Calculate Loads					
Name	Value	Units	Notes	Starting Day	37257
:---	:---				
days	Day $0=1 / 1 / 2002$				
Sample Day	15.5 days				

Load Calculation Matrix (to get results in kg/day)

Multiply by Flow to get Daily Load?

$$
\begin{aligned}
& \text { Hultiply by } \\
& \text { no low to get Daily Load? } \\
& \text { no no no no no no no no no }
\end{aligned}
$$

no no no no

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to lb ratio	0.4536			0.4536	0.4536	0.4536	
BOD5 to BODU scaleup	1.9						
C to O 2 molecular weight ratio (12/32)	0.3745						
kilograms per gram		0.001	0.001				0.00
m3 per million gallon		3786.2	3786.2				3786.2

fraction of non-ammonia nitrogen that is DON
fraction of non-ammonia nitrogen that is NOX
$3786.2 \quad 3786.2$
0.001
fraction of non-ammonia nitrogen that is NOX
0.5
0.25
0.75

Fraction Remaining

100\%

100%	100%

Assumptions

DOC $=\mathrm{BODu} * \mathrm{C}$ to O 2 molecular weight ratio
$\mathrm{ON}=(\mathrm{TN}-\mathrm{NH} 4) * .25$
NO3 $=(\mathrm{TN}-\mathrm{NH} 4) * 0.75$
DOP $=1 / 2 \mathrm{TP}$
$\mathrm{PO} 4=1 / 2 \mathrm{TP}$

Parameters Used to Calculate Loads				
Name	Value	Units	Notes	Notes
:---				
Starting Day				
Sample Day				

Load Calculation Matrix (to get results in kg/day)

$$
\begin{aligned}
& \begin{array}{l}
\text { Multiply by } \\
\text { no low to get Daily Load? } \\
\text { no no no no no no } \\
\text { no no }
\end{array} \text { yes }
\end{aligned}
$$

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to lb ratio
BOD5 to BODU scaleup
C to O 2 molecular weight ratio (12/32) \square
kilograms per gram
m3 per million gallon
fraction of non-ammonia nitrogen that is DON
raction of non-ammonia nitrogen that is NOX

0.001	0.001
3786.2	3786.2
0.25	0.25

0.001	0.001	0.001
3786.2	3786.2	3786.2
$\mathbf{0}$		

0.001
3786.2

P to N mass ratio
Fraction Remaining
\longrightarrow

100%

0.75

Assumptions

DOC $=\mathrm{BODu} * \mathrm{C}$ to O 2 molecular weight ratio
ON $=(\mathrm{TN}-\mathrm{NH} 4)^{*} .25$
$D \mathrm{P}=\mathrm{DON}$
PO4T = TP - DOP

Parameters Used to Calculate Loads				
Name	Value	Units	Notes	Notes
:---				
Starting Day				
Sample Day				

Load Calculation Matrix (to get results in kg/day)

$$
\begin{aligned}
& \begin{array}{l}
\text { Multiply by Flow to get Daily Load? } \\
\text { no no no no no no yes yo }
\end{array}
\end{aligned}
$$

Parameters Used to Get Values Above (each coefficient is the product of the numbers

Kg to Ib ratio	0.4536
BOD5 to BODU scaleup	1.9
C to O2 molecular weight ratio (12/32)	0.3745

C to O2 molecular weight ratio (12/32)	0.3745			
kilograms per gram		0.001	0.001	
m3 per million gallon		\begin{tabular}{\|l	r	r
\hline				
\end{tabular}	0.001	0.001		
fraction of non-ammonia nitrogen that is DON	0.00			

fraction of non-ammonia nitrogen that is DON
$0.25 \quad 0.25$
0.25

fraction of non-ammonia nitrogen that is NOX
0.13890 .1389

P to N mass ratio

	100%

$\mathrm{OOC}=\mathrm{BODu}{ }^{*} \mathrm{C}$ to O 2 molecular weight ratio
DON = (TN - NH4) * 25
NO3 $=($ TN - NH4 $) * 0.75$
DOP $=$ DON * (Redfield P to N mass ratio)
PO4T = TP - DOP

Parameters Used to Calculate Loads				
Name	Value	Units	Notes	Notes
:---				
Starting Day				
Sample Day				

Load Calculation Matrix (to get results in kg/day)

$$
\begin{aligned}
& \text { Multiply by Flow to get Daily Load? } \\
& \text { no no no no no yes yes ye }
\end{aligned}
$$

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to lb ratio							
BOD5 to BODU scaleup $\quad 1.9$							
C to O 2 molecular weight ratio (12/32)	0.3745						
kilograms per gram	0.001	0.001	0.001	0.001	0.001	0.001	0.001
m3 per million gallon	3786.2	3786.2	3786.2	3786.2	3786.2	3786.2	3786.2
fraction of non-ammonia nitrogen that is DON		$\begin{array}{ll}0.25 & 0.25\end{array}$		0.25			
fraction of non-ammonia nitrogen that is NOX						0.75	
P to N mass ratio		0.1389	0.1389				
Fraction Remaining	100\%			100\%	100\%		

Assumptions

DOC $=\mathrm{BODu}$ * C to O 2 molecular weight ratio

(TN - NH4) *. 25

DOP $=$ DON * (Redfield P to N mass ratio)

PO4T = TP - DOP

Parameters Used to Calculate Loads				
Name	Value	Units	Notes	Notes
:---				
Starting Day				
Sample Day				

Load Calculation Matrix (to get results in kg/day)

$$
\begin{aligned}
& \text { Multiply by Flow to get Daily Load? } \\
& \text { no no no no no yes yes ye }
\end{aligned}
$$

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to lb ratio							
BOD5 to BODU scaleup $\quad 1.9$							
C to O 2 molecular weight ratio (12/32)	0.3745						
kilograms per gram	0.001	0.001	0.001	0.001	0.001	0.001	0.001
m3 per million gallon	3786.2	3786.2	3786.2	3786.2	3786.2	3786.2	3786.2
fraction of non-ammonia nitrogen that is DON		0.25	0.25	0.25			
fraction of non-ammonia nitrogen that is NOX						0.75	
P to N mass ratio		0.1389	0.1389				
Fraction Remaining	100\%			100\%	100\%		

[^0]PO4T = TP - DOP

Parameters Used to Calculate Loads					
Name	Value	Units	Notes	Starting Day	37257
:---	:---				
days	Day $0=1 / 1 / 2002$				
Sample Day	15.5 days				

Load Calculation Matrix (to get results in kg/day)

> Multiply by Flow to get Daily Load?
no no no

$$
\text { Each constituent concentration is linearly related to the following } 8 \text { measurements (} 6 \text { loads, } 1 \text { conc. (DO), } 1 \text { flow) Each column gives weighting factors for each constituent }
$$

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Param			
Name	Value	Units	Notes
Starting Day	37257	days	Day $0=1 / 1 / 2002$
Sample Day			Noon on the 15th of the

_oad Calculation Matrix (to get results in kg/day)

Multiply by Flow to get Daily Load?
no no no no
no no no no yes yes yes yes
yes yes
s yes
no
no
no
yes
no
no

	Eac											v)										
		Bd	Bg	RPOC	LPOC	DOC	RPOP	LPOP	DOP	PTO4	RPON	LPON	DON	NH4	NO3	su	SA	COD	DO	TAM	FCB	Flow
00300 - DO, Oxygen, Dissolved,	0.0E+00	$3.8 \mathrm{E}+00$	0.0E+00	0.0E+00	.0E+00																	
$\begin{aligned} & 00310-\text { BOD, } 5 \text {-Day (20 Deg_C), } \\ & \text { q/m3 } \end{aligned}$	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.7E+00	0.0E+00															
$\begin{gathered} 00530 \text { - Solids, Total Suspended, } \\ \mathrm{g} / \mathrm{m} 3 \end{gathered}$	E+00	0.0E+00	0.0E+00	0.0E+00	E+00	E+00	0.0E+00	+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+	0.0E+00	0.0E+00	0						
00600 - Nitrogen, Total (as N),	0.0E+00	E+0	E+0	0.0E+00	0	0	0	0.0E+00	3E-01	-1.3E-01	0.0E+00	0.0E+00	9.5E-01	0.0E+00	$2.8 \mathrm{E}+00$	0.0E+00	0.0E+0	0.0E+00	0.0E+00	0.0E+	E+00	0.0E+00
00610 - Nitrogen, Ammonia Total (as N), $\mathrm{a} / \mathrm{m} 3$	0.0E+00	-1.3E-01	1.3E-01	0.0E+00	0.0E+00	-9.5E-0	3.8E+00	-2.8E+00	0.0E+00													
00665 - Phosphorus, Total (as P), $\mathrm{g} / \mathrm{m} 3$	0.0E+00	3.8E+00	0.0E+00	OE+	$0.0 \mathrm{E}+00$																	
50050 - Flow, in conduit or thru treatment plant, mg / D	0.0E+00	1.0E+00																				

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to lb ratio	
BOD5 to BODU scaleup	1.9 C to O2 molecular weight ratio (12/32)
kilograms per gram	0.3745

3 per million gallon

fraction of non-ammonia nitrogen that is DON

0.001	0.001	0.001
3786.2	3786.2	3786.18
0.25		

fraction of non-ammonia nitrogen that is NOX
0.25

P to N mass ratio
$0.1389 \quad 0.1389$
Fraction Remaining

100\%

100%	100%

Assumptions

$\mathrm{DOC}=\mathrm{BODu} * \mathrm{C}$ to O 2 molecular weight ratio
DON $=(\mathrm{TN}-\mathrm{NH} 4) * .25$
NO3 $=(\mathrm{TN}-\mathrm{NH} 4) *$.
$\mathrm{DOP}=\mathrm{DON} *$ (Redfield P to N mass ratio $)$
PO4T = TP - DOP

Param			
Name	Value	Units	Notes
Starting Day	37257	days	Day $0=1 / 1 / 2002$
Sample Day			Noon on the 15th of the

_oad Calculation Matrix (to get results in kg/day)

Multiply by Flow to get Daily Load?
no no no no
no no no no yes yes yes yes
yes no
no
no
no
no
no
yes no
no

	Eac											v)										
		Bd	Bg	RPOC	LPOC	DOC	RPOP	LPOP	DOP	PTO4	RPON	LPON	DON	NH4	NO3	su	SA	COD	DO	TAM	FCB	Flow
00300 - DO, Oxygen, Dissolved, 9/m3	0.0E+00	3.8E+00	0.0E+00	0.0E+00	.0E+00																	
$00310-B O D, 5-$ Day (20 Deg_ C), q/m3	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.7E+00	0.0E+00	0.0E+0	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E	0.0E+00						
00530 - Solids, Total Suspended, lb/day	0.0E+00	0.0E+00	0.0E+00	0.0E+	0.0E+00																	
00600 - Nitrogen, Total (as N),	0.0E+00	1.3E-01	-1.3E-01	0.0E+00	0.0E+00	-01	0.0E+00	3.4E-0	OE+00	0.0E+00	0.0E+00	0.0E+	0.0E+	0.0E	.0E+00							
00610 - Nitrogen, Ammonia Total (as N), lb/day	0.0E+00	-1.3E-01	1.3E-01	0.0E+00	0.0E+	1E-0	4.5E-0	-3.4E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+	0.0E+	0.0E+00	.0E+00							
$\begin{gathered} 00665 \text { - Phosphorus, Total (as P), } \\ \mathrm{q} / \mathrm{m} 3 \end{gathered}$	0.0E+00	3.8E+00	0.0E+00	E+	$0.0 \mathrm{E}+00$																	
50050 - Flow, in conduit or thru treatment plant, mg / D	0.0E+00	1.0E+00																				

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Assumptions
DOC $=$ BODu C to O 2 molecular weight ratio
DON $=(\mathrm{TN}-\mathrm{NH} 4) * .25$

DOP $=$ DON * (Redfield P to N mass ratio)
PO4T = TP - DOP

Param			
Name	Value	Units	Notes
Starting Day	37257	days	Day $0=1 / 1 / 2002$
Sample Day			Noon on the 15th of the

_oad Calculation Matrix (to get results in kg/day)

Multiply by Flow to get Daily Load?
no no no no
no no no no yes yes yes yes
yes yes
s yes
no
no
no
yes
no
no

	Eac											v)										
		Bd	Bg	RPOC	LPOC	DOC	RPOP	LPOP	DOP	PTO4	RPON	LPON	DON	NH4	NO3	su	SA	COD	DO	TAM	FCB	Flow
00300 - DO, Oxygen, Dissolved,	0.0E+00	$3.8 \mathrm{E}+00$	0.0E+00	0.0E+00	.0E+00																	
$\begin{aligned} & 00310-\text { BOD, } 5 \text {-Day (20 Deg_C), } \\ & \text { q/m3 } \end{aligned}$	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.7E+00	0.0E+00															
$\begin{gathered} 00530 \text { - Solids, Total Suspended, } \\ \mathrm{g} / \mathrm{m} 3 \end{gathered}$	E+00	0.0E+00	0.0E+00	0.0E+00	E+00	E+00	0.0E+00	+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+	0.0E+00	0.0E+00	0						
00600 - Nitrogen, Total (as N),	0.0E+00	E+0	E+0	0.0E+00	0	0	0	0.0E+00	3E-01	-1.3E-01	0.0E+00	0.0E+00	9.5E-01	0.0E+00	$2.8 \mathrm{E}+00$	0.0E+00	0.0E+0	0.0E+00	0.0E+00	0.0E+	E+00	0.0E+00
00610 - Nitrogen, Ammonia Total (as N), $\mathrm{a} / \mathrm{m} 3$	0.0E+00	-1.3E-01	1.3E-01	0.0E+00	0.0E+00	-9.5E-0	3.8E+00	-2.8E+00	0.0E+00													
00665 - Phosphorus, Total (as P), $\mathrm{g} / \mathrm{m} 3$	0.0E+00	3.8E+00	0.0E+00	OE+	$0.0 \mathrm{E}+00$																	
50050 - Flow, in conduit or thru treatment plant, mg / D	0.0E+00	1.0E+00																				

Parameters Used to Get Values Above (each coefficient is the product of the numbers below it)

Kg to lb ratio	
BOD5 to BODU scaleup	1.9 C to O2 molecular weight ratio (12/32)
kilograms per gram	0.3745

3 per million gallon

fraction of non-ammonia nitrogen that is DON

0.001	0.001	0.001
3786.2	3786.2	3786.18
0.25		

fraction of non-ammonia nitrogen that is NOX
0.25

P to N mass ratio
$0.1389 \quad 0.1389$
Fraction Remaining

100\%

100%	100%

Assumptions

$\mathrm{DOC}=\mathrm{BODu} * \mathrm{C}$ to O 2 molecular weight ratio
DON $=(\text { TN }- \text { NH } 4)^{*} .25$
NO3 $=\left(\mathrm{TN}-\right.$ NH4 $4 * 0 .{ }^{*} \mathrm{~F}$
$\mathrm{DOP}=\mathrm{DON} *$ (Redfield P to N mass ratio)
PO4T = TP - DOP

C cell.inp file, i columns and j rows, for Cape Fear River
C 1 2 3 4
C
1234567890123456789012345678901234567890123456
C
9900
9800099990
9700095590
9600095590
9500095590
9400095590
9300095590
9200095590
9100095590
90095590
8900095590
8800095590
8700095590
860099990000000000000000000000000000000000095590
850095590000000000000000000000000000000000095590
840095590000000000000000000000000000000000095590
830095590000000000000000000000000000000000095590
820095590000000000000999999000000000000000095590
810095590000000000000955959000000000000000095590
800095590000000000000955959000000000000000095590
790095590000000000099995559000000000000000095590
780095590000000000995999959000000000000000095590
770095590000000000955909459000000000000000095590
760095590000000000955909559000000000000000095590
750095590000000000955909559000000000000000095590
740095590000000000995909559000000000000000095590
730095599900000000955909559000000000000000095590
720095595990000009955909559000000000000000095590
710095595590000009555909559000000000000000095590
700095595590000009555909559000000000000000095590
690095595590000009555909359000000000000000095590
680095595590000009955999959000000000000000095590
670095595590000000955199555900000000000000095590
660095595590000000995355555999000000000000095590
650095595590000000099995555519900000000000095590
640095595590000000000995555251900000000000095590
630095595590000000000955555155990000000000095590
620095595590000000000955555955190000000000095590
610095595590000000000955555955290000000000095590
600095595590000000009955555552990000000000095590
590095595590000000009545555559900000000000095590
580095595590000000009555555299000000000000095590
570095595590000000009555555199000000000000095590
560095595590000000009555355519000000000000095590
550095595590000000009559955559000000000000095590
540095595590000000009559955559900000000000095590
530095595590000000009351455251900000000000095590
520095595590000000009955555955900000000000095590
510095595590000000000955555955900000000000095590
500095595590000000000955455455900000000000095590
490095595590000000000952555555900000000000095590

CELL.INP
0995590000000000000009555955555559000000000000
110955590000000000000009555155555559000000000000
10099559000000000000000935555555555900000000000
90095590000000000000009955555555559000000000000
80095590000000000000000955559955559000000000000
70095590000000000000000955299955559000000000000
60099990000000000000000999990955559000000000000
50000000000000000000000000000955559000000000000
40000000000000000000000000000999999000000000000
300
200
100
C
C
C

0095595590000000000931555552900000000000095590 0095595590000000000993555559900000000000095590 0095595590000000000094555551999000000000095590 0095595590000000000093555155519999990000095590 0095595590000000000099555555551955590000095590 0095595590000000000099555535552999990000095590 0095595590000000000095555595559900000000095590 0095595590000000000099555595551900000000095590 0095595590000000000099555555555990000000095590 0095595590000000000994555523555190000000095590 0095995590000000009945555555555290000000095590 0095555990000000009455555555955990000000095590 0095999900000000094555555555519900000000095590 0095590000000000095555555525529000000000095590 0095590000000000095523555593519000000000095590 0095590000000000093555555594529000000000095590 0095590000000000099555555595519000000000095590 0095590000000000009555555555559000000000095590 0095590000000000009355555555559900000000095590 0095590000000000009935555555551900000000095590 0095590000000000999995555555529900000000095590 0095590000000009945555555555299000000000095590 0095590000000009599959555555999900000000095590 0095590000000009599959555555555900000000095590 0095590000000009590959555555599990000000095590 0095590000000009599954555555555590000000095590 0095590000000009319355555555555599000000095590 0095590000000009931955555555555559000000095590 0095590000000000995555555255555559900000995590 0095590000000000099355555455555551990000945590 0095590000000000009995555555555293199000955590 0095590000000000000093555555295555519900955590 0095590000000000000099555555193599451900955590 0095590000000000000009555555524594555900995990 0095590000000000000009555555255545999900099900 0095590000000000000009555355155559900000000000 0995590000000000000009555955555559000000000000 0955590000000000000009555155555559000000000000 0995590000000000000009355555555559000000000000 0095590000000000000009955555555559000000000000 0095590000000000000000955559955559000000000000 0095590000000000000000955299955559000000000000 0099990000000000000000999990955559000000000000 0000000000000000000000000000955559000000000000 0000000000000000000000000000999999000000000000 00 000
100 1234567890123456789012345678901234567890123456

CELL.INP

C dxdy.inp file, in free format across columns

32	10	396.96	388.02	4.83	-4.53	0.015
33	10	401.39	402.40	4.00	-3.70	0.015
3	11	102.96	519.71	4.00	-3.70	0.015
4	11	102.96	519.71	6.50	-6.20	0.015
5	11	952.46	519.71	0.30	0.00	0.035
23	11	308.45	565.33	6.65	-6.35	0.015
24	11	224.53	549.10	12.62	-12.32	0.015
25	11	231.61	553.22	7.84	-7.54	0.015
26	11	389.53	547.83	3.08	-2.78	0.015
27	11	406.39	518.22	3.50	-3.20	0.015
28	11	425.67	506.80	3.50	-3.20	0.015
29	11	444.94	495.38	3.50	-3.20	0.015
30	11	422.60	496.68	3.50	-3.20	0.015
31	11	397.62	507.27	3.04	-2.74	0.015
32	11	395.98	499.86	3.00	-2.70	0.015
33	11	396.09	488.63	3.00	-2.70	0.015
4	12	150.75	524.62	6.50	-6.20	0.015
5	12	943.54	524.62	0.30	0.00	0.035
23	12	273.34	598.81	9.55	-9.25	0.015
24	12	189.10	603.06	12.50	-12.20	0.015
25	12	293.87	594.69	4.29	-3.99	0.015
27	12	371.39	591.58	3.00	-2.70	0.015
28	12	390.67	580.90	3.00	-2.70	0.015
29	12	409.95	570.22	3.00	-2.70	0.015
30	12	408.75	562.23	3.00	-2.70	0.015
31	12	400.95	556.47	2.67	-2.37	0.015
32	12	400.20	556.03	2.50	-2. 20	0.015
33	12	402.23	563.44	2.50	-2. 20	0.015
4	13	141.42	672.68	6.50	-6.20	0.015
5	13	735.86	672.68	0.30	0.00	0.035
23	13	252.41	613.21	6.29	-5.99	0.015
24	13	189.10	623.44	12.50	-12.20	0.015
25	13	304.58	623.26	5.18	-4.88	0.015
26	13	345.10	606.82	2.50	-2. 20	0.015
27	13	345.10	606.82	2.50	-2. 20	0.015
28	13	365.60	605.64	2.50	-2. 20	0.015
29	13	351.93	606.43	2.50	-2. 20	0.015
30	13	358.77	606.03	2.50	-2. 20	0.015
31	13	393.13	597.25	2.50	-2. 20	0.015
32	13	395.63	597.47	2.74	-2.44	0.015
33	13	397.70	603.03	2.00	-1.70	0.015
4	14	185.00	600.19	6.98	-6.68	0.015
5	14	824.74	600.19	0.30	0.00	0.035
23	14	252.41	585.68	3.63	-3.33	0.015
24	14	189.10	575.05	12.54	-12.24	0.015
25	14	292.16	568.85	6.93	-6.63	0.015
26	14	305.24	580.07	2.00	-1.70	0.015
27	14	323.03	593.24	2.00	-1.70	0.015
28	14	341.53	604.50	2.00	-1.70	0.015
29	14	357.97	612.25	1.90	-1.60	0.015
30	14	370.67	616.44	1.82	-1.52	0.015
31	14	379.72	618.02	2.00	-1.70	0.015
32	14	386.09	617.78	2.11	-1.81	0.015
33	14	389.81	613.75	1.50	-1.20	0.015
34	14	398.29	590.09	1.71	-1.41	0.015

4	15	70.71	514.78	6.98	-6.68	0.015
5	15	961.58	514.78	0.30	0.00	0.035
23	15	232.72	518.62	3.48	-3.18	0.015
24	15	203.73	519.01	12.50	-12.20	0.015
25	15	267.28	527.85	7.38	-7.08	0.015
26	15	287.84	567.41	1.74	-1.44	0.015
27	15	307.36	591.25	1.70	-1.40	0.015
28	15	325.26	606.47	1.70	-1.40	0.015
29	15	341.16	616.62	3.00	-2.70	0.015
30	15	354.76	623.64	2.00	-1.70	0.015
31	15	366.10	628.97	1.50	-1.20	0.015
32	15	375.52	633.99	1.50	-1.20	0.015
34	15	391.31	651.94	1.50	-1.20	0.015
35	15	362.71	665.69	1.50	-1.20	0.015
36	15	345.64	649.55	1.50	-1.20	0.015
37	15	410.70	617.62	1.50	-1.20	0.015
43	15	175.40	625.58	9.50	-9.20	0.015
4	16	111.80	585.23	7.31	-7.01	0.015
5	16	845.82	585.23	0.30	0.00	0.035
23	16	213.90	573.56	4.69	-4.39	0.015
24	16	181.95	606.08	12.50	-12.20	0.015
25	16	265.58	631.76	7.57	-7.27	0.015
26	16	285.37	618.71	2.33	-2.03	0.015
27	16	301.78	614.69	1.70	-1.40	0.015
28	16	316.24	615.38	1.74	-1.44	0.015
29	16	316.24	615.38	1.74	-1.44	0.015
31	16	352.89	627.91	1.50	-1.20	0.015
32	16	363.04	634.16	1.50	-1.20	0.015
35	16	373.09	661.76	1.50	-1.20	0.015
36	16	372.83	678.98	1.50	-1.20	0.015
37	16	409.99	701.91	1.50	-1.20	0.015
42	16	173.30	664.97	2.47	-2.17	0.015
43	16	178.85	690.47	8.50	-8.20	0.015
44	16	1200.00	690.47	0.30	0.00	0.035
4	17	152.40	619.05	6.00	-5.70	0.015
5	17	1200.00	619.05	0.30	0.00	0.035
22	17	277.60	558.33	1.50	-1.20	0.015
23	17	208.15	576.02	5.38	-5.08	0.015
24	17	142.13	569.94	12.71	-12.41	0.015
25	17	283.37	576.10	7.21	-6.91	0.015
26	17	290.40	586.29	2.20	-1.90	0.015
27	17	299.13	593.15	2.20	-1.90	0.015
28	17	308.69	598.64	1.50	-1.20	0.015
29	17	318.78	603.66	1.50	-1.20	0.015
31	17	340.33	613.76	1.50	-1.20	0.015
32	17	351.86	619.24	1.93	-1.63	0.015
33	17	363.60	625.06	1.72	-1.42	0.015
34	17	374.06	631.04	1.50	-1.20	0.015
35	17	379.64	639.75	1.50	-1.20	0.015
36	17	357.64	645.77	1.50	-1.20	0.015
42	17	163.91	628.06	6.45	-6.15	0.015
43	17	175.85	615.84	8.50	-8.20	0.015
44	17	1200.00	615.84	0.30	0.00	0.035
4	18	103.08	689.66	5.00	-4.70	0.015
5	18	1200.00	689.66	0.30	0.00	0.035

22	18	256.33	572.13	1.50	-1.20	0.015
23	18	208.47	572.13	6.95	-6.65	0.015
24	18	142.13	569.94	12.50	-12.20	0.015
25	18	294.34	571.37	6.83	-6.53	0.015
26	18	292.72	574.87	3.07	-2.77	0.015
27	18	295.64	579.22	2.87	-2.57	0.015
28	18	301.17	583.82	1.99	-1.69	0.015
29	18	308.49	588.38	1.50	-1.20	0.015
30	18	317.43	592.80	1.50	-1.20	0.015
31	18	328.33	597.05	1.50	-1.20	0.015
32	18	342.06	600.95	1.50	-1.20	0.015
34	18	382.56	595.98	1.50	-1.20	0.015
35	18	369.92	536.08	1.50	-1.20	0.015
42	18	147.00	548.72	4.15	-3.85	0.015
43	18	181.02	574.22	8.50	-8.20	0.015
44	18	1100.00	574.22	0.30	0.00	0.035
4	19	143.96	561.89	4.00	-3.70	0.015
5	19	1100.00	561.89	0.30	0.00	0.035
20	19	1200.00	606.11	0.30	0.00	0.035
21	19	268.74	591.33	1.50	-1.20	0.015
22	19	242.74	575.98	1.50	-1.20	0.015
23	19	214.36	572.58	7.41	-7.11	0.015
24	19	160.70	587.76	13.03	-12.73	0.015
25	19	290.92	595.87	5.56	-5.26	0.015
26	19	288.52	582.50	1.69	-1.39	0.015
27	19	289.64	578.92	3.44	-3.14	0.015
28	19	292.95	579.41	2.73	-2.43	0.015
29	19	298.09	581.74	1.74	-1.44	0.015
30	19	305.21	585.07	1.55	-1.25	0.015
31	19	315.05	589.42	1.60	-1.30	0.015
32	19	329.66	596.24	1.50	-1.20	0.015
33	19	355.08	611.71	1.50	-1.20	0.015
34	19	391.49	599.21	2.27	-1.97	0.015
42	19	160.82	683.53	2.49	-2.19	0.015
43	19	187.33	706.38	8.50	-8.20	0.015
44	19	700.76	706.38	0.30	0.00	0.035
4	20	125.00	497.02	4.00	-3.70	0.015
5	20	497.97	497.02	0.30	0.00	0.035
19	20	522.22	544.85	0.30	0.00	0.035
20	20	520.46	563.13	0.30	0.00	0.035
21	20	247.16	578.30	1.50	-1.20	0.015
22	20	232.22	589.15	1.50	-1.20	0.015
23	20	217.55	599.84	6.54	-6.24	0.015
24	20	177.84	570.44	12.50	-12.20	0.015
25	20	272.68	548.08	5.51	-5.21	0.015
26	20	278.30	566.47	1.50	-1.20	0.015
27	20	280.92	573.68	1.97	-1.67	0.015
28	20	283.23	577.77	3.64	-3.34	0.015
29	20	286.59	581.73	2.37	-2.07	0.015
30	20	291.66	586.42	1.73	-1.43	0.015
31	20	298.83	591.48	1.52	-1.22	0.015
32	20	308.33	594.99	1.50	-1.20	0.015
43	20	321.25	592.33	1.50	-1.20	0.015
	20	980.00	493.03	0.50	-7.20	0.015
20.30	0.00	0.035				
23						

Appendix B

4	21	163.48	636.97	4.00	-3.70	0.015
5	21	777.12	636.97	0.30	0.00	0.035
18	21	543.88	559.19	0.30	0.00	0.035
19	21	924.48	545.94	0.30	0.00	0.035
21	21	238.38	558.01	1.50	-1.20	0.015
22	21	226.86	564.47	1.50	-1.20	0.015
23	21	214.85	568.55	5.19	-4.89	0.015
24	21	161.25	588.38	12.50	-12.20	0.015
25	21	279.99	595.49	6.85	-6.55	0.015
26	21	274.83	580.73	3.94	-3.64	0.015
27	21	272.02	577.38	2.00	-1.70	0.015
28	21	270.92	579.52	2.75	-2.45	0.015
29	21	271.63	585.15	2.84	-2.54	0.015
30	21	274.38	594.03	1.50	-1.20	0.015
31	21	279.21	607.06	1.50	-1.20	0.015
32	21	285.25	625.55	1.50	-1.20	0.015
33	21	307.14	640.88	1.50	-1.20	0.015
43	21	159.14	686.53	6.50	-6.20	0.015
44	21	1200.00	686.53	0.30	0.00	0.035
4	22	125.00	548.29	4.00	-3.70	0.015
5	22	902.80	548.29	0.30	0.00	0.035
17	22	482.46	505.75	0.30	0.00	0.035
18	22	482.46	505.75	0.30	0.00	0.035
20	22	482.54	516.75	0.30	0.00	0.035
21	22	235.11	523.47	2.04	-1.74	0.015
22	22	227.95	530.67	1.50	-1.20	0.015
23	22	218.67	534.34	3.13	-2.83	0.015
24	22	142.84	534.77	12.50	-12.20	0.015
25	22	287.61	540.45	9.28	-8.98	0.015
26	22	268.32	552.92	5.09	-4.79	0.015
27	22	259.86	565.91	2.45	-2.15	0.015
28	22	255.71	577.68	2.46	-2.16	0.015
29	22	253.83	587.67	2.34	-2.04	0.015
30	22	254.30	596.42	1.56	-1.26	0.015
31	22	259.21	606.91	1.50	-1.20	0.015
32	22	267.68	615.01	1.50	-1.20	0.015
43	22	133.14	474.05	5.50	-5.20	0.015
44	22	900.00	474.05	0.30	0.00	0.035
4	23	145.77	637.38	4.00	-3.70	0.015
5	23	776.62	637.38	0.30	0.00	0.035
17	23	485.30	419.43	0.30	0.00	0.035
21	23	333.07	467.21	1.50	-1.20	0.015
22	23	236.64	486.00	1.50	-1.20	0.015
23	23	250.57	515.23	1.96	-1.66	0.015
24	23	142.84	534.77	12.50	-12.20	0.015
25	23	254.17	543.71	10.15	-9.85	0.015
26	23	248.18	565.59	5.56	-5.26	0.015
27	23	245.71	589.65	2.42	-2.12	0.015
28	23	243.18	611.71	2.46	-2.16	0.015
29	23	238.70	629.28	1.90	-1.60	0.015
30	23	228.74	627.96	1.50	-1.20	0.015
31	23	236.34	639.74	1.50	-1.20	0.015
42	23	290.26	652.64	1.50	-1.20	0.015
44	23	160.08	656.22	4.50	-4.20	0.015
		1300.00	656.22	0.30	0.00	0.035
23						0

4	24	175.00	654.31	4.00	-3.70	0.015
5	24	1000.00	654.31	0.30	0.00	0.035
17	24	552.30	324.88	0.30	0.00	0.035
21	24	329.94	434.94	1.50	-1.20	0.015
23	24	255.88	468.59	1.56	-1.26	0.015
24	24	160.70	490.37	12.50	-12.20	0.015
25	24	216.28	532.57	11.08	-10.78	0.015
26	24	229.52	582.31	5.39	-5.09	0.015
27	24	238.30	621.92	3.02	-2.72	0.015
28	24	243.31	654.04	2.01	-1.71	0.015
29	24	244.31	677.03	1.50	-1.20	0.015
43	24	201.56	638.85	4.00	-3.70	0.015
44	24	1200.00	638.85	0.30	0.00	0.035
4	25	206.16	667.08	4.00	-3.70	0.015
5	25	1200.00	667.08	0.30	0.00	0.035
17	25	546.10	363.99	0.30	0.00	0.035
21	25	228.08	481.03	1.50	-1.20	0.015
23	25	220.85	548.87	2.20	-1.90	0.015
24	25	146.29	578.54	12.50	-12.20	0.015
25	25	218.41	602.23	10.98	-10.68	0.015
26	25	229.55	626.21	5.65	-5.35	0.015
27	25	241.98	657.39	2.68	-2.38	0.015
28	25	253.89	694.36	1.65	-1.35	0.015
29	25	267.85	730.59	1.74	-1.44	0.015
30	25	237.07	769.45	1.89	-1.59	0.015
31	25	280.18	793.17	1.50	-1.20	0.015
43	25	237.17	617.45	4.00	-3.70	0.015
44	25	801.68	617.45	0.30	0.00	0.035
4	26	201.56	627.00	4.00	-3.70	0.015
5	26	1200.00	627.00	0.30	0.00	0.035
17	26	800.00	442.85	0.30	0.00	0.035
21	26	231.49	534.05	1.50	-1.20	0.015
23	26	211.17	596.25	4.28	-3.98	0.015
24	26	112.25	611.44	12.50	-12.20	0.015
25	26	214.55	618.01	12.58	-12.28	0.015
26	26	229.21	631.30	3.87	-3.57	0.015
27	26	249.96	640.47	1.90	-1.60	0.015
28	26	278.35	639.12	1.50	-1.20	0.015
43	26	227.71	613.88	4.00	-3.70	0.015
44	26	1200.00	613.88	0.30	0.00	0.035
4	27	180.28	631.59	4.00	-3.70	0.015
5	27	1200.00	631.59	0.30	0.00	0.035
18	27	907.14	457.00	0.30	0.00	0.035
19	27	504.02	485.41	0.30	0.00	0.035
20	27	497.56	513.00	0.30	0.00	0.035
21	27	244.65	543.95	1.50	-1.20	0.015
22	27	221.05	564.90	1.77	-1.47	0.015
23	27	210.12	573.31	7.07	-6.77	0.015
24	27	127.57	608.89	12.50	-12.20	0.015
25	27	196.57	649.51	10.84	-10.54	0.015
26	27	227.48	664.59	2.33	-2.03	0.015
27	27	260.00	677.77	1.66	-1.36	0.015
28	27	300.82	699.04	1.50	-1.20	0.015
29	27	369.52	732.80	1.50	-1.20	0.015
43	27	196.47	693.18	4.00	-3.70	0.015

44	27	1200.00	693.18	0.30	0.00	0.035
4	28	180.28	758.22	4.00	-3.70	0.015
5	28	1300.00	758.22	0.30	0.00	0.035
22	28	220.33	556.60	2.87	-2.57	0.015
23	28	201.66	595.76	9.07	-8.77	0.015
24	28	139.75	587.33	12.50	-12.20	0.015
25	28	236.87	573.35	9.32	-9.02	0.015
26	28	258.18	598.68	1.50	-1.20	0.015
27	28	287.31	619.34	1.50	-1.20	0.015
28	28	326.60	638.21	1.50	-1.20	0.015
29	28	382.93	655.65	1.50	-1.20	0.015
30	28	537.69	682.65	1.50	-1.20	0.015
43	28	222.99	690.015	4.00	-3.70	0.015
44	28	1200.00	690.015	0.30	0.00	0.035
4	29	125.00	703.58	4.00	-3.70	0.015
5	29	1300.00	703.58	0.30	0.00	0.035
21	29	237.07	616.81	2.51	-2.21	0.015
22	29	222.71	584.61	6.02	-5.72	0.015
23	29	212.54	566.87	8.25	-7.95	0.015
24	29	134.63	560.24	12.50	-12.20	0.015
25	29	300.91	558.19	7.62	-7.32	0.015
26	29	301.39	561.70	1.50	-1.20	0.015
27	29	320.51	573.01	1.50	-1.20	0.015
28	29	355.82	585.93	1.50	-1.20	0.015
29	29	412.04	596.97	1.50	-1.20	0.015
30	29	495.77	597.43	1.50	-1.20	0.015
31	29	364.42	592.89	1.50	-1.20	0.015
43	29	276.09	789.45	4.00	-3.70	0.015
44	29	1300.00	789.45	0.30	0.00	0.035
4	30	191.64	580.28	4.00	-3.70	0.015
5	30	1100.00	580.28	0.30	0.00	0.035
20	30	227.49	531.80	5.20	-4.90	0.015
21	30	225.31	519.01	7.46	-7.16	0.015
22	30	221.45	535.00	2.64	-2.34	0.015
23	30	217.91	522.32	3.81	-3.51	0.015
24	30	152.07	538.11	12.50	-12.20	0.015
25	30	322.64	570.13	6.90	-6.60	0.015
26	30	325.67	572.98	1.50	-1.20	0.015
27	30	340.06	571.48	1.50	-1.20	0.015
28	30	366.83	569.34	1.50	-1.20	0.015
29	30	412.52	563.71	1.50	-1.20	0.015
30	30	499.28	538.03	1.50	-1.20	0.015
43	30	302.08	575.54	4.00	-3.70	0.015
44	30	1100.00	575.54	0.30	0.00	0.035
4	31	176.71	666.13	4.00	-3.70	0.015
5	31	1300.00	666.13	0.30	0.00	0.035
20	31	235.34	770.17	8.26	-7.96	0.015
21	31	231.35	726.78	7.02	-6.72	0.015
22	31	225.06	711.81	1.75	-1.45	0.015
23	31	215.77	720.88	2.87	-2.57	0.015
24	31	162.50	728.36	12.50	-12.20	0.015
25	31	325.08	685.99	5.92	-5.62	0.015
26	31	335.30	625.33	1.50	-1.20	0.015
27	31	335.30	625.33	1.50	-1.20	0.015
28	31	366.85	584.47	1.50	-1.20	0.015

29	31	397.56	590.72	1.50	-1.20	0.015
30	31	510.41	612.57	1.50	-1.20	0.015
43	31	214.71	733.55	4.00	-3.70	0.015
44	31	1400.00	733.55	0.30	0.00	0.035
4	32	90.14	548.29	4.00	-3.70	0.015
5	32	1080.00	548.29	0.30	0.00	0.035
20	32	235.44	611.75	6.75	-6.45	0.015
21	32	228.95	601.48	6.05	-5.75	0.015
22	32	223.75	592.29	4.71	-4.41	0.015
23	32	219.85	583.35	5.29	-4.99	0.015
24	32	152.15	554.19	12.50	-12.20	0.015
25	32	331.01	536.81	5.62	-5.32	0.015
26	32	334.64	550.15	1.50	-1.20	0.015
28	32	434.64	600.15	1.50	-1.20	0.015
29	32	399.67	618.24	1.50	-1.20	0.015
30	32	399.67	618.24	1.50	-1.20	0.015
43	32	131.24	627.00	4.00	-3.70	0.015
44	32	1200.00	627.00	0.30	0.00	0.035
4	33	176.78	637.38	4.00	-3.70	0.015
5	33	1200.00	637.38	0.30	0.00	0.035
19	33	249.63	512.48	3.93	-3.63	0.015
20	33	226.63	497.43	8.50	-8.20	0.015
21	33	220.16	496.84	3.39	-3.09	0.015
22	33	217.70	490.62	1.50	-1.20	0.015
23	33	222.09	479.36	2.31	-2.01	0.015
24	33	134.82	467.11	12.50	-12.20	0.015
25	33	327.40	478.91	6.58	-6.28	0.015
26	33	322.66	511.83	1.50	-1.20	0.015
28	33	399.13	544.22	1.50	-1.20	0.015
29	33	399.13	544.22	1.50	-1.20	0.015
30	33	338.54	550.21	1.50	-1.20	0.015
43	33	143.96	508.94	4.00	-3.70	0.015
44	33	1000.00	508.94	0.30	0.00	0.035
4	34	106.07	686.04	4.00	-3.70	0.015
5	34	1300.00	686.04	0.30	0.00	0.035
19	34	255.29	434.56	8.39	-8.09	0.015
20	34	232.33	468.82	6.01	-5.71	0.015
21	34	218.89	489.13	1.50	-1.20	0.015
22	34	211.57	502.76	1.50	-1.20	0.015
23	34	210.35	512.93	2.55	-2.25	0.015
24	34	123.31	519.82	12.50	-12.20	0.015
25	34	279.83	533.34	7.64	-7.34	0.015
26	34	296.11	568.27	1.50	-1.20	0.015
28	34	459.92	646.01	1.50	-1.20	0.015
29	34	401.90	617.07	1.50	-1.20	0.015
30	34	404.01	618.20	1.50	-1.20	0.015
43	34	200.06	752.08	4.00	-3.70	0.015
44	34	1400.00	752.08	0.30	0.00	0.035
4	35	158.11	707.74	4.00	-3.70	0.015
5	35	1400.00	707.74	0.30	0.00	0.035
19	35	280.38	507.76	6.02	-5.72	0.015
20	35	237.79	518.99	2.58	-2.28	0.015
21	35	214.96	549.70	1.50	-1.20	0.015
22	35	198.12	589.87	1.50	-1.20	0.015
23	35	182.35	636.76	3.34	-3.04	0.015

Appendix B

24	35	134.54	661.85	12.50	-12.20	0.015
25	35	186.65	662.57	12.50	-12.20	0.015
26	35	244.99	662.91	3.73	-3.43	0.015
27	35	403.62	643.10	1.50	-1.20	0.015
28	35	459.92	646.01	1.50	-1.20	0.015
29	35	434.88	689.59	1.50	-1.20	0.015
30	35	405.87	741.94	1.50	-1.20	0.015
43	35	154.03	642.83	4.00	-3.70	0.015
44	35	1200.00	642.83	0.30	0.00	0.035
4	36	182.00	594.24	4.00	-3.70	0.015
19	36	271.75	432.19	3.24	-2.94	0.015
20	36	233.35	466.32	4.99	-4.69	0.015
21	36	211.96	484.98	1.50	-1.20	0.015
22	36	198.55	493.62	1.79	-1.49	0.015
23	36	191.37	490.80	4.34	-4.04	0.015
24	36	127.57	512.62	12.50	-12.20	0.015
25	36	158.41	553.88	9.76	-9.46	0.015
26	36	200.015	580.32	4.10	-3.80	0.015
27	36	476.04	637.67	1.50	-1.20	0.015
28	36	486.04	637.67	1.50	-1.20	0.015
29	36	478.18	665.86	1.50	-1.20	0.015
30	36	398.21	716.00	1.50	-1.20	0.015
43	36	164.92	626.26	4.00	-3.70	0.015
44	36	1200.00	626.26	0.30	0.00	0.035
4	37	150.00	500.00	4.00	-3.70	0.015
5	37	750.42	375.00	4.00	-3.70	0.015
6	37	627.00	201.56	4.00	-3.70	0.015
7	37	400.00	200.00	4.00	-3.70	0.015
20	37	227.35	480.86	10.46	-10.16	0.015
21	37	214.29	487.70	8.12	-7.82	0.015
22	37	207.59	495.04	4.70	-4.40	0.015
23	37	209.05	500.69	5.79	-5.49	0.015
24	37	126.00	504.00	12.50	-12.20	0.015
25	37	194.49	505.31	6.39	-6.09	0.015
26	37	177.01	506.07	3.08	-2.78	0.015
27	37	151.51	520.49	1.50	-1.20	0.015
28	37	269.56	510.51	1.50	-1.20	0.015
30	37	287.10	513.43	1.50	-1.20	0.015
31	37	458.65	517.80	1.50	-1.20	0.015
43	37	217.83	647.65	4.00	-3.70	0.015
44	37	1200.00	647.65	0.30	0.00	0.035
4	38	152.07	682.37	4.00	-3.70	0.015
7	38	254.95	471.70	4.00	-3.70	0.015
8	38	1399.20	471.70	0.30	0.00	0.035
21	38	209.45	602.09	2.96	-2.66	0.015
22	38	205.82	591.46	4.32	-4.02	0.015
23	38	203.09	582.59	5.79	-5.49	0.015
24	38	126.00	581.00	12.50	-12.20	0.015
25	38	199.45	582.66	6.18	-5.88	0.015
26	38	178.19	587.13	2.68	-2.38	0.015
27	38	151.51	590.49	1.50	-1.20	0.015
28	38	269.56	587.51	1.50	-1.20	0.015
29	38	262.32	582.20	1.50	-1.20	0.015
30	38	334.06	587.41	1.50	-1.20	0.015
31	38	396.13	598.20	1.50	-1.20	0.015

Appendix B

32	38	328.00	605.56	1.50	-1.20	0.015
43	38	195.26	811.25	4.00	-3.70	0.015
44	38	1400.00	811.25	0.30	0.00	0.035
4	39	155.24	869.60	4.00	-3.70	0.015
5	39	999.00	869.60	0.30	0.00	0.035
7	39	151.33	615.55	4.00	-3.70	0.015
8	39	1072.22	615.55	0.30	0.00	0.035
22	39	202.11	562.70	1.50	-1.20	0.015
23	39	201.60	575.19	3.88	-3.58	0.015
24	39	126.00	580.00	12.50	-12.20	0.015
25	39	184.55	578.93	7.32	-7.02	0.015
26	39	192.10	577.31	3.26	-2.96	0.015
27	39	205.95	579.39	1.50	-1.20	0.015
28	39	234.43	585.48	1.50	-1.20	0.015
29	39	268.40	588.73	1.50	-1.20	0.015
30	39	317.31	584.27	1.50	-1.20	0.015
31	39	388.41	567.45	1.50	-1.20	0.015
32	39	328.00	605.56	1.50	-1.20	0.015
43	39	145.77	617.45	4.00	-3.70	0.015
44	39	1068.92	617.45	0.30	0.00	0.035
4	40	91.24	723.30	4.00	-3.70	0.015
5	40	999.00	723.30	0.30	0.00	0.035
7	40	202.24	637.89	4.00	-3.70	0.015
8	40	1200.00	637.89	0.30	0.00	0.035
23	40	201.50	605.00	4.29	-3.99	0.015
24	40	126.50	605.00	12.50	-12.20	0.015
25	40	179.16	608.68	6.49	-6.19	0.015
26	40	194.24	612.52	1.61	-1.31	0.015
27	40	211.95	610.54	1.59	-1.29	0.015
28	40	234.60	604.35	2.32	-2.02	0.015
29	40	265.08	593.56	1.71	-1.41	0.015
30	40	311.23	575.37	1.50	-1.20	0.015
31	40	396.48	534.45	1.50	-1.20	0.015
43	40	168.00	592.22	4.00	-3.70	0.015
44	40	1114.46	592.22	0.30	0.00	0.035
4	41	102.96	652.76	4.00	-3.70	0.015
5	41	900.00	652.76	0.30	0.00	0.035
7	41	125.00	450.69	4.00	-3.70	0.015
8	41	732.21	450.69	0.30	0.00	0.035
23	41	201.50	707.00	7.60	-7.30	0.015
24	41	114.00	707.12	12.50	-12.20	0.015
25	41	192.42	694.87	4.82	-4.52	0.015
26	41	206.01	670.20	1.50	-1.20	0.015
28	41	239.39	622.55	1.50	-1.20	0.015
29	41	264.90	601.93	2.61	-2.31	0.015
30	41	310.28	591.34	1.50	-1.20	0.015
31	41	430.95	576.15	1.66	-1.36	0.015
43	41	168.00	733.64	4.00	-3.70	0.015
44	41	899.62	733.64	0.30	0.00	0.035
4	42	127.48	571.18	4.00	-3.70	0.015
5	42	750.00	571.18	0.30	0.00	0.035
7	42	134.63	536.77	4.00	-3.70	0.015
8	42	614.79	536.77	0.30	0.00	0.035
22	42	278.08	735.33	2.40	-2.10	0.015
23	42	189.50	707.00	7.26	-6.96	0.015

24	42	116.22	682.03	12.52	-12.22	0.015
25	42	224.51	647.62	3.31	-3.01	0.015
26	42	228.81	627.93	1.50	-1.20	0.015
28	42	248.37	588.73	1.50	-1.20	0.015
29	42	266.94	566.00	2.54	-2.24	0.015
30	42	300.32	534.15	1.50	-1.20	0.015
43	42	134.63	770.15	4.00	-3.70	0.015
44	42	856.98	770.15	0.30	0.00	0.035
4	43	130.00	715.89	4.00	-3.70	0.015
5	43	999.00	715.89	0.30	0.00	0.035
7	43	125.00	419.08	4.00	-3.70	0.015
8	43	787.44	419.08	0.30	0.00	0.035
23	43	189.50	616.05	5.46	-5.16	0.015
24	43	124.23	616.05	12.50	-12.20	0.015
25	43	248.72	606.75	6.05	-5.75	0.015
26	43	245.29	595.90	1.50	-1.20	0.015
27	43	247.72	588.13	1.50	-1.20	0.015
28	43	255.01	581.60	1.89	-1.59	0.015
29	43	267.24	575.40	2.11	-1.81	0.015
30	43	284.14	568.12	1.50	-1.20	0.015
31	43	295.31	569.01	2.05	-1.75	0.015
43	43	150.33	741.69	4.00	-3.70	0.015
44	43	889.86	741.69	0.30	0.00	0.035
4	44	183.44	649.04	4.00	-3.70	0.015
5	44	900.00	649.04	0.30	0.00	0.035
7	44	201.56	340.035	4.00	-3.70	0.015
8	44	970.47	340.035	0.30	0.00	0.035
23	44	183.45	569.01	2.93	-2.63	0.015
24	44	126.62	556.71	12.50	-12.20	0.015
25	44	251.81	600.98	5.83	-5.53	0.015
26	44	251.29	602.14	1.50	-1.20	0.015
27	44	253.29	602.81	1.50	-1.20	0.015
23	45	45	193.07	682.91	4.29	-3.99

44	45	998.14	661.23	0.30	0.00	0.035
4	46	131.53	634.11	4.00	-3.70	0.015
5	46	900.00	634.11	0.30	0.00	0.035
7	46	145.77	382.43	4.00	-3.70	0.015
8	46	862.90	382.43	0.30	0.00	0.035
22	46	290.60	624.83	1.50	-1.20	0.015
23	46	250.88	591.85	3.24	-2.94	0.015
24	46	101.83	611.92	12.50	-12.20	0.015
25	46	268.16	659.53	7.89	-7.59	0.015
26	46	255.09	683.69	2.72	-2.42	0.015
27	46	248.08	710.82	3.29	-2.99	0.015
28	46	225.96	719.10	1.50	-1.20	0.015
43	46	201.56	665.68	4.00	-3.70	0.015
44	46	991.46	665.68	0.30	0.00	0.035
4	47	122.58	677.66	4.00	-3.70	0.015
5	47	900.00	677.66	0.30	0.00	0.035
7	47	230.49	654.31	4.00	-3.70	0.015
8	47	1008.70	654.31	0.30	0.00	0.035
22	47	286.12	586.77	1.50	-1.20	0.015
23	47	275.88	649.52	2.20	-1.90	0.015
24	47	116.22	683.86	12.50	-12.20	0.015
25	47	236.80	697.98	9.06	-8.76	0.015
26	47	240.86	723.27	3.57	-3.27	0.015
27	47	241.82	746.05	2.00	-1.70	0.015
43	47	111.80	538.52	4.00	-3.70	0.015
44	47	612.79	538.52	0.30	0.00	0.035
4	48	133.14	719.81	4.00	-3.70	0.015
5	48	900.00	719.81	0.30	0.00	0.035
7	48	195.26	529.74	4.00	-3.70	0.015
8	48	622.95	529.74	0.30	0.00	0.035
21	48	303.16	601.49	1.50	-1.20	0.015
22	48	287.20	642.65	1.50	-1.20	0.015
23	48	267.57	687.69	1.81	-1.51	0.015
24	48	114.19	698.39	12.50	-12.20	0.015
25	48	238.08	691.62	8.72	-8.42	0.015
26	48	239.88	701.04	2.10	-1.80	0.015
27	48	241.58	710.49	1.80	-1.50	0.015
28	48	251.32	724.31	1.50	-1.20	0.015
43	48	175.00	760.35	4.00	-3.70	0.015
44	48	1200.00	760.35	0.30	0.00	0.035
4	49	166.51	691.47	4.00	-3.70	0.015
5	49	900.00	691.47	0.30	0.00	0.035
23	49	103.08	477.62	4.00	-3.70	0.015
24	49	690.93	477.62	0.30	0.00	0.035
27	49	49	291.88	671.42	1.50	-1.20

5	50	900.00	678.12	0.30	0.00	0.035
7	50	160.08	427.93	4.00	-3.70	0.015
8	50	771.15	427.93	0.30	0.00	0.035
21	50	321.20	721.48	1.50	-1.20	0.015
22	50	302.75	713.41	1.50	-1.20	0.015
23	50	289.30	714.29	1.70	-1.40	0.015
24	50	126.00	717.64	12.50	-12.20	0.015
25	50	285.19	713.74	6.35	-6.05	0.015
26	50	250.09	712.00	1.50	-1.20	0.015
27	50	222.49	715.63	1.50	-1.20	0.015
28	50	222.49	715.63	1.50	-1.20	0.015
43	50	127.48	480.88	4.00	-3.70	0.015
44	50	686.24	500.00	0.30	0.00	0.035
4	51	167.63	659.24	4.00	-3.70	0.015
5	51	900.00	678.12	0.30	0.00	0.035
7	51	127.48	395.28	4.00	-3.70	0.015
8	51	834.85	395.28	0.30	0.00	0.035
21	51	340.15	764.48	1.50	-1.20	0.015
22	51	304.35	721.37	1.50	-1.20	0.015
23	51	276.82	683.32	2.45	-2.15	0.015
24	51	138.50	663.05	12.50	-12.20	0.015
25	51	300.43	656.66	5.25	-4.95	0.015
27	51	242.78	620.65	1.50	-1.20	0.015
28	51	242.78	620.65	1.50	-1.20	0.015
43	51	141.42	509.90	4.00	-3.70	0.015
44	51	970.78	509.90	0.30	0.00	0.035
4	52	175.00	550.015	4.00	-3.70	0.015
5	52	600.00	550.015	0.30	0.00	0.035
7	52	167.71	648.56	4.00	-3.70	0.015
8	52	1017.64	648.56	0.30	0.00	0.035
21	52	344.26	732.63	1.50	-1.20	0.015
22	52	300.63	725.85	1.50	-1.20	0.015
23	52	263.39	716.70	2.88	-2.58	0.015
24	52	151.00	711.00	12.50	-12.20	0.015
25	52	313.52	689.92	3.01	-2.71	0.015
27	52	264.23	622.67	1.50	-1.20	0.015
28	52	264.23	622.67	1.50	-1.20	0.015
43	52	115.00	601.02	4.00	-3.70	0.015
44	52	1100.00	601.02	0.30	0.00	0.035
4	53	191.64	659.34	4.00	-3.70	0.015
5	53	900.00	659.34	0.30	0.00	0.035
7	53	145.77	728.87	4.00	-3.70	0.015
8	53	905.52	728.87	0.30	0.00	0.035
20	53	737.40	618.99	0.30	0.00	0.035
21	53	339.51	639.88	2.65	-2.35	0.015
22	53	304.13	665.46	1.50	-1.20	0.015
23	53	275.04	696.38	1.78	-1.48	0.015
24	53	151.56	699.79	12.50	-12.20	0.015
25	53	324.27	693.28	4.56	-4.26	0.015
26	53	282.14	712.66	1.50	-1.20	0.015
27	53	252.88	744.61	1.50	-1.20	0.015
28	53	252.88	744.61	1.50	-1.20	0.015
43	53	99.25	578.66	4.00	-3.70	0.015
44	53	1100.00	578.66	0.30	0.00	0.035
4	54	140.00	542.31	4.00	-3.70	0.015

5	54	750.00	542.31	0.30	0.00	0.035
7	54	160.08	585.77	4.00	-3.70	0.015
8	54	1126.72	585.77	0.30	0.00	0.035
20	54	742.66	409.16	0.30	0.00	0.035
21	54	742.66	409.16	0.30	0.00	0.035
24	54	126.00	584.53	12.50	-12.20	0.015
25	54	316.45	637.57	3.83	-3.53	0.015
26	54	290.22	674.67	1.50	-1.20	0.015
27	54	275.62	672.76	1.50	-1.20	0.015
43	54	111.80	570.09	4.00	-3.70	0.015
44	54	1100.00	570.09	0.30	0.00	0.035
4	55	100.00	602.08	4.00	-3.70	0.015
5	55	800.00	602.08	0.30	0.00	0.035
7	55	176.78	807.00	4.00	-3.70	0.015
8	55	613.38	807.00	0.30	0.00	0.035
20	55	702.32	439.24	0.30	0.00	0.035
21	55	702.32	439.24	0.30	0.00	0.035
24	55	107.62	739.19	12.50	-12.20	0.015
25	55	301.07	803.61	8.09	-7.79	0.015
26	55	296.45	926.21	1.50	-1.20	0.015
27	55	292.41	1095.30	1.50	-1.20	0.015
43	55	100.00	471.70	4.00	-3.70	0.015
44	55	524.70	500.00	0.30	0.00	0.035
4	56	87.46	728.87	4.00	-3.70	0.015
5	56	900.00	728.87	0.30	0.00	0.035
7	56	167.71	627.00	4.00	-3.70	0.015
8	56	789.48	627.00	0.30	0.00	0.035
20	56	2600.00	507.24	0.30	0.00	0.035
21	56	322.59	545.33	1.69	-1.39	0.015
22	56	334.89	591.26	1.50	-1.20	0.015
23	56	368.54	648.71	1.50	-1.20	0.015
24	56	118.73	692.69	12.50	-12.20	0.015
25	56	314.73	720.21	7.40	-7.10	0.015
26	56	317.38	748.33	1.50	-1.20	0.015
27	56	286.57	765.79	1.50	-1.20	0.015
43	56	111.80	602.08	4.00	-3.70	0.015
44	56	1100.00	602.08	0.30	0.00	0.035
4	57	77.62	499.52	4.00	-3.70	0.015
5	57	700.00	499.52	0.30	0.00	0.035
7	57	134.63	783.02	4.00	-3.70	0.015
8	57	632.16	783.02	0.30	0.00	0.035
20	57	2600.00	596.43	0.30	0.00	0.035
21	57	304.70	620.97	1.50	-1.20	0.015
22	57	300.81	660.73	1.53	-1.23	0.015
23	57	300.55	706.79	1.58	-1.28	0.015
24	57	154.55	725.96	12.50	-12.20	0.015
25	57	313.78	735.26	6.06	-5.76	0.015
26	57	274.30	777.83	1.50	-1.20	0.015
43	57	70.71	626.50	4.00	-3.70	0.015
44	57	790.10	626.50	0.30	0.00	0.035
4	58	100.00	670.30	4.00	-3.70	0.015
5	58	900.00	670.30	0.30	0.00	0.035
7	58	145.77	649.04	4.00	-3.70	0.015
8	58	762.66	649.04	0.30	0.00	0.035
20	58	2600.00	728.30	0.30	0.00	0.035

21	58	263.49	728.27	1.50	-1.20	0.015
22	58	263.96	690.15	1.50	-1.20	0.015
23	58	257.00	644.65	2.32	-2.02	0.015
24	58	171.71	625.42	12.50	-12.20	0.015
25	58	272.94	617.26	3.98	-3.68	0.015
26	58	245.19	571.37	1.50	-1.20	0.015
43	58	125.00	760.35	4.00	-3.70	0.015
44	58	1200.00	760.35	0.30	0.00	0.035
4	59	90.00	606.71	4.00	-3.70	0.015
5	59	800.00	606.71	0.30	0.00	0.035
7	59	145.77	571.18	4.00	-3.70	0.015
8	59	866.62	571.18	0.30	0.00	0.035
20	59	2400.00	640.74	0.30	0.00	0.035
21	59	241.35	640.74	1.50	-1.20	0.015
22	59	253.27	629.91	1.50	-1.20	0.015
23	59	152.32	630.25	1.50	-1.20	0.015
24	59	157.54	606.79	12.50	-12.20	0.015
25	59	260.57	570.62	4.56	-4.26	0.015
26	59	282.40	557.67	1.84	-1.54	0.015
27	59	349.95	531.00	1.50	-1.20	0.015
43	59	125.00	548.29	4.00	-3.70	0.015
44	59	1000.00	548.29	0.30	0.00	0.035
4	60	90.00	629.36	4.00	-3.70	0.015
5	60	900.00	629.36	0.30	0.00	0.035
7	60	106.07	617.45	4.00	-3.70	0.015
8	60	801.68	617.45	0.30	0.00	0.035
21	60	1000.00	520.78	0.30	0.00	0.035
22	60	233.22	520.78	1.50	-1.20	0.015
23	60	152.32	509.49	1.50	-1.20	0.015
24	60	147.15	532.78	12.50	-12.20	0.015
25	60	276.16	553.69	5.14	-4.84	0.015
26	60	293.30	534.01	1.50	-1.20	0.015
27	60	317.05	518.21	1.97	-1.67	0.015
28	60	287.74	494.07	1.50	-1.20	0.015
43	60	167.71	742.04	4.00	-3.70	0.015
44	60	667.08	742.04	0.30	0.00	0.035
4	61	100.00	618.47	4.00	-3.70	0.015
5	61	900.00	618.47	0.30	0.00	0.035
7	61	103.08	682.37	4.00	-3.70	0.015
8	61	725.42	682.37	0.30	0.00	0.035
21	61	1100.00	556.15	0.30	0.00	0.035
22	61	219.82	556.16	1.50	-1.20	0.015
23	61	276.79	533.25	1.50	-1.20	0.015
24	61	153.97	499.11	12.50	-12.20	0.015
25	61	285.54	478.25	3.83	-3.53	0.015
27	61	292.58	472.78	1.50	-1.20	0.015
28	61	291.38	485.85	1.73	-1.43	0.015
29	61	291.38	485.85	1.73	-1.43	0.015
43	61	145.77	637.38	4.00	-3.70	0.015
44	61	517.74	637.38	0.30	0.00	0.035
4	62	100.00	701.78	4.00	-3.70	0.015
5	62	1000.00	701.78	0.30	0.00	0.035
7	62	103.08	581.49	4.00	-3.70	0.015
8	62	851.26	581.49	0.30	0.00	0.035
21	62	1200.00	618.07	0.30	0.00	0.035

22	62	243.07	618.06	1.50	-1.20	0.015
23	62	227.88	569.34	2.05	-1.75	0.015
24	62	135.47	532.57	12.50	-12.20	0.015
25	62	329.32	490.13	4.66	-4.36	0.015
27	62	284.02	390.73	1.50	-1.20	0.015
28	62	301.69	313.49	1.88	-1.58	0.015
29	62	301.69	313.49	1.88	-1.58	0.015
43	62	175.00	654.31	4.00	-3.70	0.015
44	62	504.34	654.31	0.30	0.00	0.035
4	63	87.32	754.80	4.00	-3.70	0.015
5	63	900.00	754.80	0.30	0.00	0.035
7	63	103.08	682.37	4.00	-3.70	0.015
8	63	725.42	682.37	0.30	0.00	0.035
21	63	1600.00	814.38	0.30	0.00	0.035
22	63	228.48	814.38	1.50	-1.20	0.015
23	63	213.04	738.12	1.88	-1.58	0.015
24	63	113.19	673.54	12.50	-12.20	0.015
25	63	319.79	579.71	3.70	-3.40	0.015
26	63	288.26	494.28	1.50	-1.20	0.015
27	63	285.07	428.07	1.50	-1.20	0.015
28	63	309.26	350.09	1.57	-1.27	0.015
43	63	150.00	626.50	4.00	-3.70	0.015
44	63	526.74	626.50	0.30	0.00	0.035
4	64	120.42	596.41	4.00	-3.70	0.015
5	64	800.00	596.41	0.30	0.00	0.035
7	64	100.00	694.62	4.00	-3.70	0.015
8	64	712.62	694.62	0.30	0.00	0.035
22	64	1200.00	622.28	0.30	0.00	0.035
23	64	203.11	622.29	2.19	-1.89	0.015
24	64	158.75	622.29	12.50	-12.20	0.015
25	64	234.32	619.28	5.12	-4.82	0.015
26	64	271.12	595.81	1.50	-1.20	0.015
27	64	297.73	556.52	1.63	-1.33	0.015
28	64	310.33	522.29	1.50	-1.20	0.015
43	64	106.07	664.27	4.00	-3.70	0.015
44	64	496.78	664.27	0.30	0.00	0.035
4	65	122.98	659.34	4.00	-3.70	0.015
5	65	900.00	659.34	0.30	0.00	0.035
7	65	103.08	673.15	4.00	-3.70	0.015
8	65	735.34	673.15	0.30	0.00	0.035
22	65	1200.00	625.13	0.30	0.00	0.035
23	65	192.29	625.13	1.99	-1.69	0.015
24	65	165.40	638.07	12.50	-12.20	0.015
25	65	198.69	660.10	7.73	-7.43	0.015
26	65	283.05	662.64	1.83	-1.53	0.015
27	65	200.00	520.00	1.83	-1.53	0.015
43	65	145.77	675.46	4.00	-3.70	0.015
44	65	488.56	675.46	0.30	0.00	0.035
4	66	147.14	686.48	4.00	-3.70	0.015
5	66	900.00	686.48	0.30	0.00	0.035
7	66	125.00	800.39	4.00	-3.70	0.015
8	66	618.44	800.39	0.30	0.00	0.035
19	66	1000.00	536.71	0.30	0.00	0.035
20	66	215.46	536.71	6.00	-5.70	0.015
21	66	303.07	538.75	6.00	-5.70	0.015

22	66	252.31	551.62	6.00	-5.70	0.015
23	66	195.15	561.99	6.00	-5.70	0.015
24	66	152.01	547.83	6.00	-5.70	0.015
25	66	189.45	547.32	6.00	-5.70	0.015
43	66	111.80	626.50	4.00	-3.70	0.015
44	66	526.74	626.50	0.30	0.00	0.035
4	67	150.08	678.40	4.00	-3.70	0.015
5	67	900.00	678.40	0.30	0.00	0.035
7	67	111.80	570.09	4.00	-3.70	0.015
8	67	868.28	570.09	0.30	0.00	0.035
18	67	1400.00	742.71	0.30	0.00	0.035
19	67	210.42	755.70	6.00	-5.70	0.015
20	67	239.33	774.61	6.00	-5.70	0.015
23	67	600.00	495.63	0.30	0.00	0.035
24	67	164.97	521.85	12.50	-12.20	0.015
25	67	163.50	534.32	6.54	-6.24	0.015
43	67	140.00	551.45	4.00	-3.70	0.015
44	67	598.42	551.45	0.30	0.00	0.035
4	68	108.17	617.41	4.00	-3.70	0.015
5	68	900.00	617.41	0.30	0.00	0.035
7	68	100.00	715.89	4.00	-3.70	0.015
8	68	691.44	715.89	0.30	0.00	0.035
18	68	1500.00	798.26	0.30	0.00	0.035
19	68	400.00	798.26	6.00	-5.70	0.015
24	68	177.00	762.64	12.50	-12.20	0.015
43	68	166.88	590.64	4.00	-3.70	0.015
44	68	558.72	590.64	0.30	0.00	0.035
4	69	95.53	584.23	4.00	-3.70	0.015
5	69	800.00	584.23	0.30	0.00	0.035
7	69	134.63	800.39	4.00	-3.70	0.015
8	69	618.44	800.39	0.30	0.00	0.035
17	69	653.04	757.99	0.30	0.00	0.035
18	69	1500.00	757.99	0.30	0.00	0.035
19	69	400.00	757.99	6.00	-5.70	0.015
23	69	386.50	486.34	0.30	0.00	0.035
24	69	185.63	510.73	12.50	-12.20	0.015
43	69	167.71	583.63	4.00	-3.70	0.015
44	69	565.42	583.63	0.30	0.00	0.035
4	70	97.08	301.04	4.00	-3.70	0.015
5	70	400.00	301.04	0.30	0.00	0.035
7	70	160.08	687.84	4.00	-3.70	0.015
8	70	719.64	687.84	0.30	0.00	0.035
17	70	650.92	760.46	0.30	0.00	0.035
18	70	1500.00	760.46	0.30	0.00	0.035
19	70	400.00	760.46	6.00	-5.70	0.015
23	70	214.62	555.64	2.26	-1.96	0.015
24	70	175.41	556.18	12.50	-12.20	0.015
43	70	180.28	756.90	4.00	-3.70	0.015
44	70	435.98	756.90	0.30	0.00	0.035
4	71	99.25	472.07	4.00	-3.70	0.015
5	71	700.00	472.07	0.30	0.00	0.035
7	71	111.80	750.00	4.00	-3.70	0.015
8	71	660.00	750.00	0.30	0.00	0.035
17	71	626.62	789.96	0.30	0.00	0.035
18	71	1500.00	789.96	0.30	0.00	0.035

19	71	400.00	789.96	6.00	-5.70	0.015
23	71	223.32	539.75	2.97	-2.67	0.015
24	71	169.02	503.35	12.50	-12.20	0.015
43	71	167.71	706.77	4.00	-3.70	0.015
44	71	700.36	706.77	0.30	0.00	0.035
4	72	129.03	637.38	4.00	-3.70	0.015
5	72	800.00	637.38	0.30	0.00	0.035
7	72	103.08	608.79	4.00	-3.70	0.015
18	72	1400.00	768.70	0.30	0.00	0.035
19	72	400.00	768.70	6.00	-5.70	0.015
23	72	212.06	465.57	5.72	-5.42	0.015
24	72	188.46	450.09	12.50	-12.20	0.015
43	72	158.11	583.10	4.00	-3.70	0.015
44	72	848.92	583.10	0.30	0.00	0.035
4	73	138.29	593.49	4.00	-3.70	0.015
5	73	750.00	593.49	0.30	0.00	0.035
18	73	1500.00	920.98	0.30	0.00	0.035
19	73	350.00	939.24	6.00	-5.70	0.015
23	73	192.25	446.72	6.42	-6.12	0.015
24	73	183.46	456.84	12.50	-12.20	0.015
43	73	142.21	730.56	4.00	-3.70	0.015
44	73	677.56	730.56	0.30	0.00	0.035
4	74	86.02	539.07	4.00	-3.70	0.015
5	74	750.00	539.07	0.30	0.00	0.035
19	74	150.00	550.00	6.00	-5.70	0.015
23	74	162.53	456.30	5.62	-5.32	0.015
24	74	158.40	459.66	12.50	-12.20	0.015
43	74	142.21	733.30	4.00	-3.70	0.015
44	74	675.04	733.30	0.30	0.00	0.035
4	75	129.03	675.02	4.00	-3.70	0.015
5	75	900.00	675.02	0.30	0.00	0.035
18	75	1200.00	659.62	0.30	0.00	0.035
19	75	150.00	659.62	5.50	-5.20	0.015
23	75	132.19	420.70	3.03	-2.73	0.015
24	75	137.18	418.01	12.50	-12.20	0.015
43	75	190.39	617.45	4.00	-3.70	0.015
44	75	801.68	617.45	0.30	0.00	0.035
4	76	180.28	570.09	4.00	-3.70	0.015
5	76	800.00	570.09	0.30	0.00	0.035
18	76	898.26	551.06	0.30	0.00	0.035
19	76	150.00	551.06	5.50	-5.20	0.015
23	76	262.26	513.46	0.30	0.00	0.035
24	76	153.09	506.97	11.50	-11.20	0.015
43	76	201.56	665.68	4.00	-3.70	0.015
44	76	743.60	665.68	0.30	0.00	0.035
4	77	145.77	664.27	4.00	-3.70	0.015
5	77	800.00	664.27	0.30	0.00	0.035
18	77	704.64	702.49	0.30	0.00	0.035
19	77	150.00	702.49	5.00	-4.70	0.015
23	77	282.80	489.27	0.30	0.00	0.035
24	77	164.28	527.01	10.50	-10.20	0.015
43	77	176.78	649.04	4.00	-3.70	0.015
44	77	762.66	649.04	0.30	0.00	0.035
4	78	117.05	530.75	4.00	-3.70	0.015
5	78	700.00	530.75	0.30	0.00	0.035

19	78	150.00	649.44	4.50	-4.20	0.015
24	78	139.11	489.98	10.50	-10.20	0.015
43	78	180.28	721.11	4.00	-3.70	0.015
44	78	686.44	721.11	0.30	0.00	0.035
4	79	120.42	701.78	4.00	-3.70	0.015
5	79	900.00	701.78	0.30	0.00	0.035
22	79	113.15	522.62	6.00	-5.70	0.015
23	79	151.91	529.39	8.00	-7.70	0.015
24	79	140.83	508.50	8.00	-7.70	0.015
43	79	223.61	610.33	4.00	-3.70	0.015
44	79	847.22	610.33	0.30	0.00	0.035
4	80	107.35	634.05	4.00	-3.70	0.015
5	80	800.00	634.05	0.30	0.00	0.035
21	80	914.48	541.29	0.30	0.00	0.035
22	80	150.00	541.29	6.50	-6.20	0.015
24	80	140.83	587.83	10.50	-10.20	0.015
43	80	201.56	638.85	4.00	-3.70	0.015
44	80	501.56	638.85	4.00	-3.70	0.015
4	81	120.21	607.82	4.00	-3.70	0.015
5	81	800.00	607.82	0.30	0.00	0.035
21	81	1000.00	589.82	0.30	0.00	0.035
22	81	150.00	589.82	7.00	-6.70	0.015
24	81	157.98	583.93	10.50	-10.20	0.015
43	81	201.56	1038.85	4.00	-3.70	0.015
44	81	1003.12	1038.85	0.30	0.00	0.035
4	82	105.95	685.00	4.00	-3.70	0.015
5	82	675.00	685.00	0.30	0.00	0.035
43	82	201.56	2300.00	4.00	-3.70	0.015
44	82	1003.12	2300.00	0.30	0.00	0.035
4	83	105.95	603.92	4.00	-3.70	0.015
5	83	600.00	603.92	0.30	0.00	0.035
43	83	201.56	700.00	4.00	-3.70	0.015
44	83	1003.12	700.00	0.30	0.00	0.035
4	84	103.08	589.94	4.00	-3.70	0.015
5	84	600.00	589.94	0.30	0.00	0.035
43	84	201.56	1650.00	4.00	-3.70	0.015
44	84	1003.12	1650.00	0.30	0.00	0.035
4	85	134.54	628.01	4.00	-3.70	0.015
5	85	525.00	628.01	0.30	0.00	0.035
43	85	201.56	2140.00	4.00	-3.70	0.015
44	85	800.00	2140.00	0.30	0.00	0.035
43	86	201.56	1820.00	4.00	-3.70	0.015
44	86	1000.00	1820.00	0.30	0.00	0.035
43	87	201.56	2570.00	4.00	-3.70	0.015
44	87	1400.00	2570.00	0.30	0.00	0.035
43	88	201.56	2160.00	4.00	-3.70	0.015
44	88	1600.00	2160.00	0.30	0.00	0.035
43	89	101.56	2500.00	4.00	-3.70	0.015
44	89	903.12	2500.00	0.30	0.00	0.035
43	90	101.56	2100.00	4.00	-3.70	0.015
44	90	603.12	2100.00	0.30	0.00	0.035
43	91	101.56	1900.00	4.00	-3.70	0.015
44	91	903.12	1900.00	0.30	0.00	0.035
43	92	101.56	2360.00	4.00	-3.70	0.015
44	92	1403.12	2360.00	0.30	0.00	0.035

43	93	101.56	2000.00	4.00	-3.70	0.015
44	93	803.12	2000.00	0.30	0.00	0.035
43	94	71.56	1350.00	4.00	-3.70	0.015
44	94	603.12	1350.00	0.30	0.00	0.035
43	95	71.56	1220.00	4.00	-3.70	0.015
44	95	603.12	1220.00	0.30	0.00	0.035
43	96	71.56	1550.00	4.00	-3.70	0.015
44	96	603.12	1550.00	0.30	0.00	0.035
43	97	71.56	710.00	4.00	-3.70	0.015
44	97	603.12	710.00	0.30	0.00	0.035

C I		J XLNUTME	YLTUTMN C		CCUE	CCVE	CCUN	CCVN
C								
30	5	28.6640	5.1879	0.6001682	0.7998738	-0.7998738	0.6001682	-1.0000000
31	5	28.9620	4.7698	0.6388829	0.7693040	-0.7693040	0.6388829	-1.0000000
32	5	29.2820	4.3761	0.6796822	0.7335067	-0.7335067	0.6796822	-1.0000000
33	5	29.6730	3.9819	0.7768199	0.6297228	-0.6297228	0.7768199	-1.0000000
30	6	29.0820	5.5352	0.6028011	0.7978915	-0.7978915	0.6028011	-1.0000000
31	6	29.3690	5.1438	0.6482844	0.7613983	-0.7613983	0.6482844	-1.0000000
32	6	29.6770	4.7749	0.6946676	0.7193308	-0.7193308	0.6946676	-1.0000000
33	6	30.0280	4.4300	0.7529863	0.6580362	-0.6580362	0.7529863	-1.0000000
4	7	33.5230	45.5200	0.7695577	-0.6385772	0.6385772	0.7695577	-1.0000000
5	7	33.5230	45.5200	0.7695577	-0.6385772	0.6385772	0.7695577	-0.0100000
24	7	28.0190	7.6812	0.6344351	0.7729761	-0.7729761	0.6344351	-1.0000000
25	7	28.2230	7.4320	0.6772386	0.7357635	-0.7357635	0.6772386	-1.0000000
26	7	28.4460	7.1765	0.6609870	0.7503973	-0.7503973	0.6609870	-1.0000000
30	7	29.4490	5.8471	0.6120957	0.7907837	-0.7907837	0.6120957	-1.0000000
31	7	29.7220	5.4720	0.6479908	0.7616482	-0.7616482	0.6479908	-1.0000000
32	7	30.0100	5.1238	0.6942729	0.7197118	-0.7197118	0.6942729	-1.0000000
33	7	30.3260	4.8009	0.7750288	0.6319259	-0.6319259	0.7750288	-1.0000000
4	8	33.1580	46.0970	0.9412231	-0.3377853	0.3377853	0.9412231	-1.0000000
5	8	33.1580	46.0970	0.9412231	-0.3377853	0.3377853	0.9412231	-0.0100000
24	8	28.2870	7.9212	0.6309558	0.7758188	-0.7758188	0.6309558	-1.0000000
25	8	28.4840	7.6746	0.6651604	0.7467005	-0.7467005	0.6651604	-1.0000000
26	8	28.7070	7.4198	0.6756155	0.7372542	-0.7372542	0.6756155	-1.0000000
27	8	28.9600	7.1332	0.6596907	0.7515372	-0.7515372	0.6596907	-1.0000000
30	8	29.7570	6.1308	0.6470400	0.7624561	-0.7624561	0.6470400	-1.0000000
31	8	30.0340	5.7690	0.6630404	0.7485836	-0.7485836	0.6630404	-1.0000000
32	8	30.3100	5.4391	0.6918504	0.7220409	-0.7220409	0.6918504	-1.0000000
33	8	30.5830	5.1411	0.7389004	0.6738147	-0.6738147	0.7389004	-1.0000000
4	9	32.9380	46.7320	0.9547390	-0.2974447	0.2974447	0.9547390	-1.0000000
5	9	32.9380	46.7320	0.9547390	-0.2974447	0.2974447	0.9547390	-0.0100000
24	9	28.5550	8.1530	0.6153132	0.7882828	-0.7882828	0.6153132	-1.0000000
25	9	28.7400	7.9174	0.6749297	0.7378821	-0.7378821	0.6749297	-1.0000000
26	9	28.9640	7.6705	0.6988578	0.7152606	-0.7152606	0.6988578	-1.0000000
27	9	29.2290	7.3811	0.6789733	0.7341629	-0.7341629	0.6789733	-1.0000000
28	9	29.4970	7.0564	0.6529557	0.7573961	-0.7573961	0.6529557	-1.0000000
29	9	29.7580	6.7258	0.6482436	0.7614330	-0.7614330	0.6482436	-1.0000000
30	9	30.0350	6.3874	0.6454550	0.7637983	-0.7637983	0.6454550	-1.0000000
31	9	30.3190	6.0487	0.6757985	0.7370864	-0.7370864	0.6757985	-1.0000000
32	9	30.5940	5.7372	0.6998252	0.7143142	-0.7143142	0.6998252	-1.0000000
33	9	30.8620	5.4467	0.6859388	0.7276593	-0.7276593	0.6859388	-1.0000000
4	10	32.6210	47.1310	0.5318148	-0.8468607	0.8468607	0.5318148	-1.0000000
5	10	32.6210	47.1310	0.5318148	-0.8468607	0.8468607	0.5318148	-0.0100000
23	10	28.6800	8.6055	0.5486947	0.8360228	-0.8360228	0.5486947	-1.0000000
24	10	28.8490	8.3695	0.5735527	0.8191687	-0.8191687	0.5735527	-1.0000000
25	10	29.0040	8.1696	0.6566030	0.7542363	-0.7542363	0.6566030	-1.0000000
26	10	29.2030	7.9222	0.6866325	0.7270048	-0.7270048	0.6866325	-1.0000000
27	10	29.4740	7.6099	0.6745856	0.7381966	-0.7381966	0.6745856	-1.0000000
28	10	29.7480	7.2974	0.6649767	0.7468641	-0.7468641	0.6649767	-1.0000000
29	10	30.0210	6.9668	0.6622297	0.7493010	-0.7493010	0.6622297	-1.0000000
30	10	30.3110	6.6319	0.6732972	0.7393720	-0.7393720	0.6732972	-1.0000000
31	10	30.5880	6.3166	0.6797018	0.7334886	-0.7334886	0.6797018	-1.0000000
32	10	30.8630	6.0256	0.7320566	0.6812438	-0.6812438	0.7320566	-1.0000000
33	10	31.1380	5.7369	0.7078733	0.7063394	-0.7063394	0.7078733	-1.0000000
3	11	32.1750	47.2450	0.4929779	-0.8700418	0.8700418	0.4929779	-1.0000000
4	11	32.1750	47.3550	0.4929779	-0.8700418	0.8700418	0.4929779	-1.0000000
5	11	32.1750	47.3550	0.4929779	-0.8700418	0.8700418	0.4929779	-0.0100000
23	11	29.0800	8.8595	0.5535087	0.8328434	-0.8328434	0.5535087	-1.0000000
24	11	29.2360	8.6438	0.6071576	0.7945815	-0.7945815	0.6071576	-1.0000000
25	11	29.3690	8.4587	0.5625369	0.8267722	-0.8267722	0.5625369	-1.0000000
26	11	29.5440	8.2018	0.5647510	0.8252614	-0.8252614	0.5647510	-1.0000000
27	11	29.7880	7.8883	0.6587110	0.7523960	-0.7523960	0.6587110	-1.0000000
28	11	30.0535	7.5724	0.6678548	0.7441901	-0.7441901	0.6678548	-1.0000000
29	11	30.3190	7.2564	0.6769987	0.7359842	-0.7359842	0.6769987	-1.0000000
30	11	30.6110	6.9355	0.7159277	0.6981744	-0.6981744	0.7159277	-1.0000000
31	11	30.8900	6.6348	0.7010635	0.7130989	-0.7130989	0.7010635	-1.0000000
32	11	31.1660	6.3502	0.7262066	0.6874765	-0.6874765	0.7262066	-1.0000000
33	11	31.4390	6.0647	0.6865529	0.7270799	-0.7270799	0.6865529	-1.0000000
4	12	32.0000	47.7430	0.9989396	0.0460408	-0.0460408	0.9989396	-1.0000000

5	12	32.0000	47.7430	0.9989396	0.0460408	-0.0460408	0.9989396	-0.0100000
23	12	29.5680	9.1768	0.5495203	0.8354804	-0.8354804	0.5495203	-1.0000000
24	12	29.6990	8.9865	0.5917935	0.8060896	-0.8060896	0.5917935	-1.0000000
25	12	29.8380	8.7892	0.5730659	0.8195093	-0.8195093	0.5730659	-1.0000000
27	12	30.2180	8.2379	0.5987160	0.8009614	-0.8009614	0.5987160	-1.0000000
28	12	30.4615	7.9312	0.6319295	0.7738387	-0.7738387	0.6319295	-1.0000000
29	12	30.7050	7.6244	0.6651430	0.7467161	-0.7467161	0.6651430	-1.0000000
30	12	30.9760	7.3184	0.6952052	0.7188114	-0.7188114	0.6952052	-1.0000000
31	12	31.2530	7.0230	0.7065539	0.7076592	-0.7076592	0.7065539	-1.0000000
32	12	31.5290	6.7329	0.7077067	0.7065063	-0.7065063	0.7077067	-1.0000000
33	12	31.8060	6.4421	0.7027650	0.7114220	-0.7114220	0.7027650	-1.0000000
4	13	31.8250	48.2500	0.7254514	-0.6882734	0.6882734	0.7254514	-1.0000000
5	13	31.8250	48.2500	0.7254514	-0.6882734	0.6882734	0.7254514	-0.0100000
23	13	30.0680	9.5190	0.5866270	0.8098572	-0.8098572	0.5866270	-1.0000000
24	13	30.1990	9.3415	0.5822363	0.8130196	-0.8130196	0.5822363	-1.0000000
25	13	30.3380	9.1375	0.5522318	0.8336906	-0.8336906	0.5522318	-1.0000000
26	13	30.5175	8.8680	0.5866877	0.8098133	-0.8098133	0.5866877	-1.0000000
27	13	30.6970	8.5984	0.5866877	0.8098133	-0.8098133	0.5866877	-1.0000000
28	13	30.9070	8.3116	0.6182861	0.7859532	-0.7859532	0.6182861	-1.0000000
29	13	31.1560	8.0202	0.6450496	0.7624805	-0.7624805	0.6450496	-1.0000000
30	13	31.4050	7.7289	0.6718131	0.7390079	-0.7390079	0.6718131	-1.0000000
31	13	31.6540	7.4375	0.6985766	0.7155352	-0.7155352	0.6985766	-1.0000000
32	13	31.9260	7.1516	0.7109920	0.7032000	-0.7032000	0.7109920	-1.0000000
33	13	32.2040	6.8684	0.7247499	0.6890120	-0.6890120	0.7247499	-1.0000000
4	14	31.3000	48.4930	-0.0124970	-0.9999219	0.9999219	-0.0124970	-1.0000000
5	14	31.3000	48.4930	-0.0124970	-0.9999219	0.9999219	-0.0124970	-0.0100000
23	14	30.5680	9.8490	0.5580681	0.8297951	-0.8297951	0.5580681	-1.0000000
24	14	30.6990	9.6715	0.5630806	0.8264019	-0.8264019	0.5630806	-1.0000000
25	14	30.8320	9.4710	0.5399109	0.8417222	-0.8417222	0.5399109	-1.0000000
26	14	30.9940	9.2200	0.5727640	0.8197203	-0.8197203	0.5727640	-1.0000000
27	14	31.1740	8.9626	0.6011724	0.7991194	-0.7991194	0.6011724	-1.0000000
28	14	31.3730	8.6969	0.6280314	0.7781880	-0.7781880	0.6280314	-1.0000000
29	14	31.5920	8.4243	0.6537747	0.7566892	-0.7566892	0.6537747	-1.0000000
30	14	31.8290	8.1477	0.6768548	0.7361166	-0.7361166	0.6768548	-1.0000000
31	14	32.0810	7.8698	0.6953431	0.7186779	-0.7186779	0.6953431	-1.0000000
32	14	32.3450	7.5919	0.7085580	0.7056525	-0.7056525	0.7085580	-1.0000000
33	14	32.6170	7.3151	0.7161195	0.6979777	-0.6979777	0.7161195	-1.0000000
34	14	32.9000	7.0411	0.7244834	0.6892922	-0.6892922	0.7244834	-1.0000000
4	15	30.8750	48.7100	0.7983498	-0.6021940	0.6021940	0.7983498	-1.0000000
5	15	30.8750	48.7100	0.7983498	-0.6021940	0.6021940	0.7983498	-0.0100000
23	15	31.0180	10.1660	0.6410422	0.7675056	-0.7675056	0.6410422	-1.0000000
24	15	31.1430	9.9888	0.5650052	0.8250874	-0.8250874	0.5650052	-1.0000000
25	15	31.2750	9.7938	0.6155017	0.7881356	-0.7881356	0.6155017	-1.0000000
26	15	31.4440	9.5743	0.6325455	0.7745232	-0.7745232	0.6325455	-1.0000000
27	15	31.6290	9.3409	0.6436657	0.7653068	-0.7653068	0.6436657	-1.0000000
28	15	31.8290	9.0956	0.6558726	0.7548716	-0.7548716	0.6558726	-1.0000000
29	15	32.0440	8.8410	0.6704367	0.7419667	-0.7419667	0.6704367	-1.0000000
30	15	32.2740	8.5800	0.6862755	0.7273417	-0.7273417	0.6862755	-1.0000000
31	15	32.5180	8.3148	0.7016494	0.7125223	-0.7125223	0.7016494	-1.0000000
32	15	32.7740	8.0470	0.7152123	0.6989073	-0.6989073	0.7152123	-1.0000000
34	15	33.3150	7.5026	0.7367963	0.6761148	-0.6761148	0.7367963	-1.0000000
35	15	33.5830	7.2376	0.7430266	0.6692619	-0.6692619	0.7430266	-1.0000000
36	15	33.8390	6.9933	0.7355433	0.6774777	-0.6774777	0.7355433	-1.0000000
37	15	34.1060	6.7256	0.7077494	0.7064636	-0.7064636	0.7077494	-1.0000000
43	15	35.4910	46.6510	0.9433333	0.3318467	-0.3318467	0.9433333	-1.0000000
4	16	31.0250	49.0350	0.3951271	0.9186265	-0.9186265	0.3951271	-1.0000000
5	16	31.0250	49.0350	0.3951271	0.9186265	-0.9186265	0.3951271	-0.0100000
23	16	31.4440	10.5090	0.6623239	0.7492176	-0.7492176	0.6623239	-1.0000000
24	16	31.5690	10.3560	0.6115171	0.7912312	-0.7912312	0.6115171	-1.0000000
25	16	31.7060	10.1800	0.6786932	0.7344219	-0.7344219	0.6786932	-1.0000000
26	16	31.8850	9.9709	0.6667828	0.7452521	-0.7452521	0.6667828	-1.0000000
27	16	32.0750	9.7469	0.6655040	0.7463943	-0.7463943	0.6655040	-1.0000000
28	16	32.2760	9.5120	0.6715572	0.7409527	-0.7409527	0.6715572	-1.0000000
29	16	32.4545	9.2503	0.6715572	0.7409527	-0.7409527	0.6715572	-1.0000000
31	16	32.9530	8.7686	0.7104025	0.7037957	-0.7037957	0.7104025	-1.0000000
32	16	33.2040	8.5135	0.7240213	0.6897777	-0.6897777	0.7240213	-1.0000000
35	16	34.0120	7.7439	0.7465540	0.6653248	-0.6653248	0.7465540	-1.0000000
36	16	34.2830	7.4877	0.7335630	0.6796215	-0.6796215	0.7335630	-1.0000000
37	16	34.5560	7.2078	0.7065688	0.7076443	-0.7076443	0.7065688	-1.0000000
42	16	35.4080	47.2940	0.9998655	-0.0164028	0.0164028	0.9998655	-1.0000000
43	16	35.5840	47.2940	0.9999119	0.0132733	-0.0132733	0.9999119	-1.0000000

44	16	35.5840	47.2940	0.9999119	0.0132733	-0.0132733	0.9999119	-0.0100000
4	17	31.5500	49.3180	0.6234583	0.7818566	-0.7818566	0.6234583	-1.0000000
5	17	31.5500	49.3180	0.6234583	0.7818566	-0.7818566	0.6234583	-0.0100000
22	17	31.7230	11.0800	0.6277183	0.7784406	-0.7784406	0.6277183	-1.0000000
23	17	31.8730	10.8890	0.6934327	0.7205215	-0.7205215	0.6934327	-1.0000000
24	17	31.9940	10.7620	0.7079788	0.7062337	-0.7062337	0.7079788	-1.0000000
25	17	32.1360	10.6040	0.6761965	0.7367213	-0.7367213	0.6761965	-1.0000000
26	17	32.3220	10.3860	0.6693958	0.7429060	-0.7429060	0.6693958	-1.0000000
27	17	32.5140	10.1620	0.6715772	0.7409346	-0.7409346	0.6715772	-1.0000000
28	17	32.7130	9.9327	0.6794583	0.7337142	-0.7337142	0.6794583	-1.0000000
29	17	32.9230	9.6993	0.6910695	0.7227883	-0.7227883	0.6910695	-1.0000000
31	17	33.3770	9.2219	0.7194868	0.6945061	-0.6945061	0.7194868	-1.0000000
32	17	33.6230	8.9790	0.7332160	0.6799958	-0.6799958	0.7332160	-1.0000000
33	17	33.8830	8.7333	0.7442197	0.6679350	-0.6679350	0.7442197	-1.0000000
34	17	34.1560	8.4847	0.7507761	0.6605567	-0.6605567	0.7507761	-1.0000000
35	17	34.4380	8.2353	0.7543160	0.6565115	-0.6565115	0.7543160	-1.0000000
36	17	34.7140	7.9904	0.7539246	0.6569610	-0.6569610	0.7539246	-1.0000000
42	17	35.4020	47.9410	0.9998367	-0.0180733	0.0180733	0.9998367	-1.0000000
43	17	35.5720	47.9470	0.9991729	-0.0406649	0.0406649	0.9991729	-1.0000000
44	17	35.5720	47.9470	0.9991729	-0.0406649	0.0406649	0.9991729	-0.0100000
4	18	31.5500	49.7370	0.8638121	-0.5038141	0.5038141	0.8638121	-1.0000000
5	18	31.5500	49.7370	0.8638121	-0.5038141	0.5038141	0.8638121	-0.0100000
22	18	32.1260	11.4760	0.6805899	0.7326646	-0.7326646	0.6805899	-1.0000000
23	18	32.2760	11.2980	0.6860554	0.7275493	-0.7275493	0.6860554	-1.0000000
24	18	32.3940	11.1680	0.7079788	0.7062337	-0.7062337	0.7079788	-1.0000000
25	18	32.5430	11.0090	0.6895712	0.7242179	-0.7242179	0.6895712	-1.0000000
26	18	32.7380	10.7900	0.6833805	0.7300624	-0.7300624	0.6833805	-1.0000000
27	18	32.9340	10.5700	0.6846561	0.7288663	-0.7288663	0.6846561	-1.0000000
28	18	33.1340	10.3490	0.6913524	0.7225177	-0.7225177	0.6913524	-1.0000000
29	18	33.3400	10.1250	0.7019037	0.7122719	-0.7122719	0.7019037	-1.0000000
30	18	33.5570	9.8983	0.7149797	0.6991452	-0.6991452	0.7149797	-1.0000000
31	18	33.7840	9.6696	0.7291431	0.6843613	-0.6843613	0.7291431	-1.0000000
32	18	34.0260	9.4373	0.7423468	0.6700159	-0.6700159	0.7423468	-1.0000000
34	18	34.5580	8.9483	0.7450547	0.6670034	-0.6670034	0.7450547	-1.0000000
35	18	34.8220	8.6810	0.7163877	0.6977025	-0.6977025	0.7163877	-1.0000000
42	18	35.3930	48.5290	0.9984258	-0.0560881	0.0560881	0.9984258	-1.0000000
43	18	35.5570	48.5420	0.9990983	-0.0424564	0.0424564	0.9990983	-1.0000000
44	18	35.5570	48.5420	0.9990983	-0.0424564	0.0424564	0.9990983	-0.0100000
4	19	31.0250	49.9170	-0.2767535	-0.9609410	0.9609410	-0.2767535	-1.0000000
5	19	31.0250	49.9170	-0.2767535	-0.9609410	0.9609410	-0.2767535	-0.0100000
20	19	32.1960	12.2820	0.6305340	0.7761616	-0.7761616	0.6305340	-1.0000000
21	19	32.3630	12.0770	0.6679710	0.7441873	-0.7441873	0.6679710	-1.0000000
22	19	32.5300	11.8840	0.6722420	0.7403315	-0.7403315	0.6722420	-1.0000000
23	19	32.6760	11.7080	0.6752896	0.7375527	-0.7375527	0.6752896	-1.0000000
24	19	32.8060	11.5750	0.7358146	0.6771830	-0.6771830	0.7358146	-1.0000000
25	19	32.9630	11.4130	0.6635685	0.7481155	-0.7481155	0.6635685	-1.0000000
26	19	33.1530	11.1940	0.6770118	0.7359721	-0.7359721	0.6770118	-1.0000000
27	19	33.3450	10.9780	0.6874166	0.7262633	-0.7262633	0.6874166	-1.0000000
28	19	33.5420	10.7630	0.6979731	0.7161240	-0.7161240	0.6979731	-1.0000000
29	19	33.7440	10.5480	0.7100492	0.7041521	-0.7041521	0.7100492	-1.0000000
30	19	33.9550	10.3320	0.7239887	0.6898119	-0.6898119	0.7239887	-1.0000000
31	19	34.1760	10.1150	0.7396690	0.6729708	-0.6729708	0.7396690	-1.0000000
32	19	34.4120	9.8950	0.7566243	0.6538498	-0.6538498	0.7566243	-1.0000000
33	19	34.6690	9.6687	0.7727824	0.6346710	-0.6346710	0.7727824	-1.0000000
34	19	34.9370	9.4099	0.7383686	0.6743974	-0.6743974	0.7383686	-1.0000000
42	19	35.3220	49.1390	0.9754158	-0.2203725	0.2203725	0.9754158	-1.0000000
43	19	35.4920	49.1770	0.9835003	-0.1809066	0.1809066	0.9835003	-1.0000000
44	19	35.4920	49.1770	0.9835003	-0.1809066	0.1809066	0.9835003	-0.0100000
4	20	30.5500	49.7130	-0.3124077	-0.9499481	0.9499481	-0.3124077	-1.0000000
5	20	30.5500	49.7130	-0.3124077	-0.9499481	0.9499481	-0.3124077	-0.0100000
19	20	32.4750	12.8680	0.6385090	0.7696144	-0.7696144	0.6385090	-1.0000000
20	20	32.6380	12.6650	0.6371729	0.7707209	-0.7707209	0.6371729	-1.0000000
21	20	32.7980	12.4680	0.6510249	0.7590564	-0.7590564	0.6510249	-1.0000000
22	20	32.9520	12.2850	0.6624232	0.7491298	-0.7491298	0.6624232	-1.0000000
23	20	33.0980	12.1140	0.6617146	0.7497558	-0.7497558	0.6617146	-1.0000000
24	20	33.2310	11.9680	0.6851623	0.7283905	-0.7283905	0.6851623	-1.0000000
25	20	33.3830	11.8020	0.6672414	0.7448416	-0.7448416	0.6672414	-1.0000000
26	20	33.5650	11.5940	0.6818820	0.7314622	-0.7314622	0.6818820	-1.0000000
27	20	33.7520	11.3860	0.6925446	0.7213750	-0.7213750	0.6925446	-1.0000000
28	20	33.9430	11.1790	0.7040743	0.7101264	-0.7101264	0.7040743	-1.0000000
29	20	34.1400	10.9740	0.7174609	0.6965988	-0.6965988	0.7174609	-1.0000000

30	20	34.3450	10.7690	0.7325891	0.6806712	-0.6806712	0.7325891	-1.0000000
31	20	34.5580	10.5650	0.7494920	0.6620134	-0.6620134	0.7494920	-1.0000000
32	20	34.7830	10.3610	0.7699677	0.6380828	-0.6380828	0.7699677	-1.0000000
33	20	35.0220	10.1560	0.8023614	0.5968385	-0.5968385	0.8023614	-1.0000000
43	20	35.3170	49.7430	0.8284003	-0.5601366	0.5601366	0.8284003	-1.0000000
44	20	35.3170	49.7430	0.8284003	-0.5601366	0.5601366	0.8284003	-0.0100000
4	21	30.3750	49.8820	0.9863912	-0.1644152	0.1644152	0.9863912	-1.0000000
5	21	30.3750	49.8820	0.9863912	-0.1644152	0.1644152	0.9863912	-0.0100000
18	21	32.7090	13.4270	0.6519520	0.7582602	-0.7582602	0.6519520	-1.0000000
19	21	32.9520	13.1570	0.6593421	0.7518431	-0.7518431	0.6593421	-1.0000000
21	21	33.2170	12.8520	0.6780766	0.7349913	-0.7349913	0.6780766	-1.0000000
22	21	33.3730	12.6790	0.6838822	0.7295924	-0.7295924	0.6838822	-1.0000000
23	21	33.5210	12.5160	0.6903108	0.7235130	-0.7235130	0.6903108	-1.0000000
24	21	33.6440	12.3740	0.6787784	0.7343432	-0.7343432	0.6787784	-1.0000000
25	21	33.7870	12.2060	0.6995152	0.7146177	-0.7146177	0.6995152	-1.0000000
26	21	33.9720	11.9990	0.6889566	0.7248026	-0.7248026	0.6889566	-1.0000000
27	21	34.1560	11.7970	0.6961728	0.7178743	-0.7178743	0.6961728	-1.0000000
28	21	34.3420	11.5990	0.7108852	0.7033080	-0.7033080	0.7108852	-1.0000000
29	21	34.5320	11.4060	0.7291807	0.6843212	-0.6843212	0.7291807	-1.0000000
30	21	34.7290	11.2170	0.7495099	0.6619932	-0.6619932	0.7495099	-1.0000000
31	21	34.9350	11.0310	0.7704629	0.6374848	-0.6374848	0.7704629	-1.0000000
32	21	35.1500	10.8490	0.7892618	0.6140569	-0.6140569	0.7892618	-1.0000000
33	21	35.3770	10.6590	0.7836223	0.6212376	-0.6212376	0.7836223	-1.0000000
43	21	34.8950	50.1180	0.5809758	-0.8139208	0.8139208	0.5809758	-1.0000000
44	21	34.8950	50.1180	0.5809758	-0.8139208	0.8139208	0.5809758	-0.0100000
4	22	30.2000	50.3880	0.7447912	-0.6672976	0.6672976	0.7447912	-1.0000000
5	22	30.2000	50.3880	0.7447912	-0.6672976	0.6672976	0.7447912	-0.0100000
17	22	32.8900	13.8500	0.6364682	0.7713029	-0.7713029	0.6364682	-1.0000000
18	22	33.1200	13.7650	0.6364682	0.7713029	-0.7713029	0.6364682	-1.0000000
20	22	33.4420	13.4010	0.6886922	0.7250539	-0.7250539	0.6886922	-1.0000000
21	22	33.6060	13.2280	0.6969191	0.7171497	-0.7171497	0.6969191	-1.0000000
22	22	33.7660	13.0610	0.6951142	0.7188994	-0.7188994	0.6951142	-1.0000000
23	22	33.9190	12.8980	0.6794225	0.7337473	-0.7337473	0.6794225	-1.0000000
24	22	34.0440	12.7670	0.6844263	0.7290820	-0.7290820	0.6844263	-1.0000000
25	22	34.1880	12.6080	0.6661321	0.7458338	-0.7458338	0.6661321	-1.0000000
26	22	34.3720	12.4000	0.6896967	0.7240984	-0.7240984	0.6896967	-1.0000000
27	22	34.5530	12.2070	0.7088799	0.7053292	-0.7053292	0.7088799	-1.0000000
28	22	34.7340	12.0240	0.7266873	0.6869684	-0.6869684	0.7266873	-1.0000000
29	22	34.9180	11.8470	0.7453201	0.6667067	-0.6667067	0.7453201	-1.0000000
30	22	35.1070	11.6770	0.7664203	0.6423393	-0.6423393	0.7664203	-1.0000000
31	22	35.3040	11.5130	0.7911461	0.6116272	-0.6116272	0.7911461	-1.0000000
32	22	35.5120	11.3520	0.8066753	0.5909949	-0.5909949	0.8066753	-1.0000000
43	22	34.6950	50.4870	0.8634763	0.5043895	-0.5043895	0.8634763	-1.0000000
44	22	34.6950	50.4870	0.8634763	0.5043895	-0.5043895	0.8634763	-0.0100000
4	23	29.6880	50.6380	0.3606009	-0.9327202	0.9327202	0.3606009	-1.0000000
5	23	29.6880	50.6380	0.3606009	-0.9327202	0.9327202	0.3606009	-0.0100000
17	23	33.2247	14.1757	0.7236159	0.6902029	-0.6902029	0.7236159	-1.0000000
21	23	33.9500	13.5840	0.7322029	0.6810866	-0.6810866	0.7322029	-1.0000000
22	23	34.1220	13.4230	0.7334517	0.6797416	-0.6797416	0.7334517	-1.0000000
23	23	34.3010	13.2580	0.7152382	0.6988808	-0.6988808	0.7152382	-1.0000000
24	23	34.4430	13.1230	0.6844263	0.7290820	-0.7290820	0.6844263	-1.0000000
25	23	34.5820	12.9800	0.6942698	0.7197148	-0.7197148	0.6942698	-1.0000000
26	23	34.7590	12.8030	0.7317309	0.6815936	-0.6815936	0.7317309	-1.0000000
27	23	34.9410	12.6350	0.7507888	0.6605423	-0.6605423	0.7507888	-1.0000000
28	23	35.1240	12.4730	0.7616604	0.6479764	-0.6479764	0.7616604	-1.0000000
29	23	35.3060	12.3160	0.7709812	0.6368579	-0.6368579	0.7709812	-1.0000000
30	23	35.4810	12.1610	0.7696230	0.6384986	-0.6384986	0.7696230	-1.0000000
31	23	35.6650	12.0210	0.8373985	0.5465928	-0.5465928	0.8373985	-1.0000000
32	23	35.8800	11.8680	0.8015182	0.5979704	-0.5979704	0.8015182	-1.0000000
43	23	35.0130	50.9500	0.7714882	0.6362436	-0.6362436	0.7714882	-1.0000000
44	23	35.0130	50.9500	0.7714882	0.6362436	-0.6362436	0.7714882	-0.0100000
4	24	29.4130	51.0250	0.9983510	0.0574046	-0.0574046	0.9983510	-1.0000000
5	24	29.4130	51.0250	0.9983510	0.0574046	-0.0574046	0.9983510	-0.0100000
17	24	33.4497	14.4707	0.8075448	0.5898062	-0.5898062	0.8075448	-1.0000000
21	24	34.2400	13.9280	0.7868346	0.6171640	-0.6171640	0.7868346	-1.0000000
23	24	34.6170	13.6320	0.8127608	0.5825975	-0.5825975	0.8127608	-1.0000000
24	24	34.7800	13.5030	0.8036001	0.5951697	-0.5951697	0.8036001	-1.0000000
25	24	34.9290	13.3880	0.8087633	0.5881342	-0.5881342	0.8087633	-1.0000000
26	24	35.1090	13.2560	0.8265285	0.5628948	-0.5628948	0.8265285	-1.0000000
27	24	35.3000	13.1210	0.8316516	0.5552979	-0.5552979	0.8316516	-1.0000000
28	24	35.4970	12.9830	0.8277945	0.5610314	-0.5610314	0.8277945	-1.0000000

29	24	35.6950	12.8400	0.8147732	0.5797799	-0.5797799	0.8147732	-1.0000000
43	24	35.0620	51.4750	0.8646075	-0.5024480	0.5024480	0.8646075	-1.0000000
44	24	35.0620	51.4750	0.8646075	-0.5024480	0.5024480	0.8646075	-0.0100000
4	25	29.5250	51.6750	0.9723064	0.2337099	-0.2337099	0.9723064	-1.0000000
5	25	29.5250	51.6750	0.9723064	0.2337099	-0.2337099	0.9723064	-0.0100000
17	25	33.6377	14.7597	0.8662348	0.4996371	-0.4996371	0.8662348	-1.0000000
21	25	34.4940	14.3080	0.8562559	0.5165517	-0.5165517	0.8562559	-1.0000000
23	25	34.8740	14.0700	0.8670021	0.4983045	-0.4983045	0.8670021	-1.0000000
24	25	35.0300	13.9730	0.8902680	0.4554370	-0.4554370	0.8902680	-1.0000000
25	25	35.1910	13.8870	0.9153073	0.4027561	-0.4027561	0.9153073	-1.0000000
26	25	35.3920	13.7880	0.9077492	0.4195133	-0.4195133	0.9077492	-1.0000000
27	25	35.6030	13.6830	0.9032380	0.4291400	-0.4291400	0.9032380	-1.0000000
28	25	35.8240	13.5710	0.8965612	0.4429198	-0.4429198	0.8965612	-1.0000000
29	25	36.0530	13.4450	0.8772830	0.4799734	-0.4799734	0.8772830	-1.0000000
30	25	36.2680	13.3140	0.8692204	0.4944249	-0.4944249	0.8692204	-1.0000000
31	25	36.4930	13.1870	0.8786447	0.4774762	-0.4774762	0.8786447	-1.0000000
43	25	34.7870	52.0370	0.9402708	-0.3404275	0.3404275	0.9402708	-1.0000000
44	25	34.7870	52.0370	0.9402708	-0.3404275	0.3404275	0.9402708	-0.0100000
4	26	29.5750	52.3120	0.9997522	0.0222634	-0.0222634	0.9997522	-1.0000000
5	26	29.5750	52.3120	0.9997522	0.0222634	-0.0222634	0.9997522	-0.0100000
17	26	33.8107	15.1217	0.9381382	0.3462611	-0.3462611	0.9381382	-1.0000000
21	26	34.7160	14.7630	0.9232709	0.3841495	-0.3841495	0.9232709	-1.0000000
23	26	35.1210	14.5860	0.9174718	0.3978008	-0.3978008	0.9174718	-1.0000000
24	26	35.2680	14.5190	0.9019989	0.4317383	-0.4317383	0.9019989	-1.0000000
25	26	35.4180	14.4530	0.9265593	0.3761488	-0.3761488	0.9265593	-1.0000000
26	26	35.6240	14.3720	0.9356194	0.3530105	-0.3530105	0.9356194	-1.0000000
27	26	35.8470	14.2840	0.9350733	0.3544543	-0.3544543	0.9350733	-1.0000000
28	26	36.0900	14.1820	0.9233244	0.3840209	-0.3840209	0.9233244	-1.0000000
43	26	34.7830	52.6120	0.9404899	0.3398216	-0.3398216	0.9404899	-1.0000000
44	26	34.7830	52.6120	0.9404899	0.3398216	-0.3398216	0.9404899	-0.0100000
4	27	29.6750	52.9150	0.8787842	0.4772194	-0.4772194	0.8787842	-1.0000000
5	27	29.6750	52.9150	0.8787842	0.4772194	-0.4772194	0.8787842	-0.0100000
18	27	34.0660	15.4620	0.9706644	0.2404383	-0.2404383	0.9706644	-1.0000000
19	27	34.4100	15.3990	0.9702239	0.2422097	-0.2422097	0.9702239	-1.0000000
20	27	34.6530	15.3360	0.9679702	0.2510650	-0.2510650	0.9679702	-1.0000000
21	27	34.8910	15.2720	0.9626060	0.2709052	-0.2709052	0.9626060	-1.0000000
22	27	35.1140	15.2040	0.9514159	0.3079087	-0.3079087	0.9514159	-1.0000000
23	27	35.3180	15.1350	0.9560024	0.2933590	-0.2933590	0.9560024	-1.0000000
24	27	35.4800	15.0890	0.9700117	0.2430585	-0.2430585	0.9700117	-1.0000000
25	27	35.6360	15.0470	0.9527801	0.3036612	-0.3036612	0.9527801	-1.0000000
26	27	35.8380	14.9830	0.9488931	0.3155977	-0.3155977	0.9488931	-1.0000000
27	27	36.0690	14.9040	0.9422109	0.3350203	-0.3350203	0.9422109	-1.0000000
28	27	36.3320	14.8060	0.9331436	0.3595040	-0.3595040	0.9331436	-1.0000000
29	27	36.6450	14.6860	0.9374290	0.3481765	-0.3481765	0.9374290	-1.0000000
43	27	35.0450	53.2100	0.9357268	0.3527257	-0.3527257	0.9357268	-1.0000000
44	27	35.0450	53.2100	0.9357268	0.3527257	-0.3527257	0.9357268	-0.0100000
4	28	30.0500	53.4900	0.7936341	0.6083954	-0.6083954	0.7936341	-1.0000000
5	28	30.0500	53.4900	0.7936341	0.6083954	-0.6083954	0.7936341	-0.0100000
22	28	35.2250	15.7510	0.9874628	0.1578516	-0.1578516	0.9874628	-1.0000000
23	28	35.4310	15.7070	0.9862506	0.1652567	-0.1652567	0.9862506	-1.0000000
24	28	35.5980	15.6730	0.9897601	0.1427409	-0.1427409	0.9897601	-1.0000000
25	28	35.7840	15.6390	0.9853291	0.1706653	-0.1706653	0.9853291	-1.0000000
26	28	36.0250	15.5860	0.9666363	0.2561528	-0.2561528	0.9666363	-1.0000000
27	28	36.2880	15.5140	0.9506565	0.3102454	-0.3102454	0.9506565	-1.0000000
28	28	36.5820	15.4250	0.9371049	0.3490480	-0.3490480	0.9371049	-1.0000000
29	28	36.9210	15.3210	0.9268980	0.3753133	-0.3753133	0.9268980	-1.0000000
30	28	37.3610	15.1850	0.9321541	0.3620618	-0.3620618	0.9321541	-1.0000000
43	28	34.9950	53.7980	0.8825015	-0.4703096	0.4703096	0.8825015	-1.0000000
44	28	34.9950	53.7980	0.8825015	-0.4703096	0.4703096	0.8825015	-0.0100000
4	29	30.0500	54.0220	0.7538046	-0.6570987	0.6570987	0.7538046	-1.0000000
5	29	30.0500	54.0220	0.7538046	-0.6570987	0.6570987	0.7538046	-0.0100000
21	29	35.0460	16.3610	0.9899104	0.1416951	-0.1416951	0.9899104	-1.0000000
22	29	35.2720	16.3200	0.9935336	0.1135388	-0.1135388	0.9935336	-1.0000000
23	29	35.4870	16.2850	0.9935947	0.1130023	-0.1130023	0.9935947	-1.0000000
24	29	35.6540	16.2440	0.9725293	0.2327804	-0.2327804	0.9725293	-1.0000000
25	29	35.8660	16.1990	0.9910555	0.1334501	-0.1334501	0.9910555	-1.0000000
26	29	36.1630	16.1490	0.9801720	0.1981484	-0.1981484	0.9801720	-1.0000000
27	29	36.4670	16.0830	0.9695137	0.2450373	-0.2450373	0.9695137	-1.0000000
28	29	36.7940	15.9980	0.9611259	0.2761104	-0.2761104	0.9611259	-1.0000000
29	29	37.1640	15.8960	0.9567010	0.2910723	-0.2910723	0.9567010	-1.0000000
30	29	37.6020	15.7760	0.9561771	0.2927890	-0.2927890	0.9561771	-1.0000000

31	29	38.0160	15.6620	0.9516390	0.3072185	-0.3072185	0.9516390	-1.0000000
43	29	34.4200	54.2130	0.4679558	-0.8837519	0.8837519	0.4679558	-1.0000000
44	29	34.4200	54.2130	0.4679558	-0.8837519	0.8837519	0.4679558	-0.0100000
4	30	29.5250	54.1780	-0.2899929	-0.9570288	0.9570288	-0.2899929	-1.0000000
5	30	29.5250	54.1780	-0.2899929	-0.9570288	0.9570288	-0.2899929	-0.0100000
20	30	34.8800	16.9390	0.9999987	0.0016130	-0.0016130	0.9999987	-1.0000000
21	30	35.1040	16.9260	0.9865689	0.1633455	-0.1633455	0.9865689	-1.0000000
22	30	35.3220	16.8770	0.9859585	0.1669906	-0.1669906	0.9859585	-1.0000000
23	30	35.5360	16.8280	0.9851987	0.1714165	-0.1714165	0.9851987	-1.0000000
24	30	35.7160	16.7890	0.9885377	0.1509742	-0.1509742	0.9885377	-1.0000000
25	30	35.9510	16.7560	0.9887211	0.1497684	-0.1497684	0.9887211	-1.0000000
26	30	36.2720	16.7060	0.9837881	0.1793347	-0.1793347	0.9837881	-1.0000000
27	30	36.5980	16.6400	0.9774381	0.2112221	-0.2112221	0.9774381	-1.0000000
28	30	36.9410	16.5570	0.9724447	0.2331337	-0.2331337	0.9724447	-1.0000000
29	30	37.3180	16.4550	0.9701402	0.2425450	-0.2425450	0.9701402	-1.0000000
30	30	37.7540	16.3220	0.9670946	0.2544171	-0.2544171	0.9670946	-1.0000000
43	30	33.8120	54.5130	0.4910846	-0.8711119	0.8711119	0.4910846	-1.0000000
44	30	33.8120	54.5130	0.4910846	-0.8711119	0.8711119	0.4910846	-0.0100000
4	31	28.9870	53.8800	-0.5232630	-0.8521712	0.8521712	-0.5232630	-1.0000000
5	31	28.9870	53.8800	-0.5232630	-0.8521712	0.8521712	-0.5232630	-0.0100000
20	31	34.9820	17.5810	0.9830278	0.1834570	-0.1834570	0.9830278	-1.0000000
21	31	35.2120	17.5380	0.9775684	0.2106183	-0.2106183	0.9775684	-1.0000000
22	31	35.4350	17.4890	0.9737473	0.2276317	-0.2276317	0.9737473	-1.0000000
23	31	35.6490	17.4380	0.9705318	0.2409729	-0.2409729	0.9705318	-1.0000000
24	31	35.8350	17.4110	0.9936789	0.1122602	-0.1122602	0.9936789	-1.0000000
25	31	36.0740	17.3720	0.9738554	0.2271687	-0.2271687	0.9738554	-1.0000000
26	31	36.3940	17.2920	0.9718764	0.2354914	-0.2354914	0.9718764	-1.0000000
27	31	36.7325	17.2055	0.9718764	0.2354914	-0.2354914	0.9718764	-1.0000000
28	31	37.0710	17.1190	0.9698592	0.2436661	-0.2436661	0.9698592	-1.0000000
29	31	37.4400	17.0190	0.9711381	0.2385179	-0.2385179	0.9711381	-1.0000000
30	31	37.8740	16.8850	0.9633242	0.2683400	-0.2683400	0.9633242	-1.0000000
43	31	33.2500	54.8450	0.4646240	-0.8855081	0.8855081	0.4646240	-1.0000000
44	31	33.2500	54.8450	0.4646240	-0.8855081	0.8855081	0.4646240	-0.0100000
4	32	28.5380	53.8750	0.7834641	-0.6214371	0.6214371	0.7834641	-1.0000000
5	32	28.5380	53.8750	0.7834641	-0.6214371	0.6214371	0.7834641	-0.0100000
20	32	35.1530	18.2500	0.9514315	0.3078605	-0.3078605	0.9514315	-1.0000000
21	32	35.3750	18.1810	0.9604740	0.2783697	-0.2783697	0.9604740	-1.0000000
22	32	35.5930	18.1220	0.9672033	0.2540035	-0.2540035	0.9672033	-1.0000000
23	32	35.8090	18.0700	0.9713605	0.2376105	-0.2376105	0.9713605	-1.0000000
24	32	35.9910	18.0330	0.9756268	0.2194364	-0.2194364	0.9756268	-1.0000000
25	32	36.2220	17.9650	0.9522054	0.3054585	-0.3054585	0.9522054	-1.0000000
26	32	36.5390	17.8620	0.9614001	0.2751543	-0.2751543	0.9614001	-1.0000000
28	32	37.2300	17.7025	0.9695262	0.2449876	-0.2449876	0.9695262	-1.0000000
29	32	37.5940	17.6030	0.9695262	0.2449876	-0.2449876	0.9695262	-1.0000000
30	32	38.0000	17.4900	0.9695262	0.2449876	-0.2449876	0.9695262	-1.0000000
43	32	32.8530	55.3200	0.9633588	-0.2682160	0.2682160	0.9633588	-1.0000000
44	32	32.8530	55.3200	0.9633588	-0.2682160	0.2682160	0.9633588	-0.0100000
4	33	28.4130	54.3880	0.9856443	0.1688350	-0.1688350	0.9856443	-1.0000000
5	33	28.4130	54.3880	0.9856443	0.1688350	-0.1688350	0.9856443	-0.0100000
19	33	35.0860	18.8500	0.9633446	0.2682669	-0.2682669	0.9633446	-1.0000000
20	33	35.3140	18.7800	0.9545438	0.2980707	-0.2980707	0.9545438	-1.0000000
21	33	35.5260	18.7090	0.9571682	0.2895324	-0.2895324	0.9571682	-1.0000000
22	33	35.7350	18.6440	0.9609579	0.2766946	-0.2766946	0.9609579	-1.0000000
23	33	35.9460	18.5830	0.9640154	0.2658465	-0.2658465	0.9640154	-1.0000000
24	33	36.1160	18.5280	0.9557030	0.2943330	-0.2943330	0.9557030	-1.0000000
25	33	36.3360	18.4590	0.9766065	0.2150341	-0.2150341	0.9766065	-1.0000000
26	33	36.6510	18.3800	0.9823801	0.1868940	-0.1868940	0.9823801	-1.0000000
28	33	37.3100	18.2750	0.9908106	0.1352568	-0.1352568	0.9908106	-1.0000000
29	33	37.7090	18.1700	0.9908106	0.1352568	-0.1352568	0.9908106	-1.0000000
30	33	38.0600	18.0650	0.9583178	0.2857045	-0.2857045	0.9583178	-1.0000000
43	33	32.7320	55.8750	0.9634417	-0.2679183	0.2679183	0.9634417	-1.0000000
44	33	32.7320	55.8750	0.9634417	-0.2679183	0.2679183	0.9634417	-0.0100000
4	34	28.2370	54.9470	0.7143571	-0.6997814	0.6997814	0.7143571	-1.0000000
5	34	28.2370	54.9470	0.7143571	-0.6997814	0.6997814	0.7143571	-0.0100000
19	34	35.2020	19.3090	0.9746724	0.2236374	-0.2236374	0.9746724	-1.0000000
20	34	35.4380	19.2470	0.9665051	0.2566476	-0.2566476	0.9665051	-1.0000000
21	34	35.6550	19.1850	0.9637472	0.2668169	-0.2668169	0.9637472	-1.0000000
22	34	35.8620	19.1240	0.9642811	0.2648811	-0.2648811	0.9642811	-1.0000000
23	34	36.0640	19.0650	0.9684821	0.2490834	-0.2490834	0.9684821	-1.0000000
24	34	36.2210	19.0100	0.9492237	0.3146019	-0.3146019	0.9492237	-1.0000000
25	34	36.4150	18.9590	0.9859970	0.1667632	-0.1667632	0.9859970	-1.0000000

26	34	36.7000	18.9170	0.9974847	0.0708827	-0.0708827	0.9974847	-1.0000000
28	34	37.3405	18.8320	0.9842117	0.1769952	-0.1769952	0.9842117	-1.0000000
29	34	37.7710	18.7470	0.9842117	0.1769952	-0.1769952	0.9842117	-1.0000000
30	34	38.1590	18.6400	0.9710875	0.2387238	-0.2387238	0.9710875	-1.0000000
43	34	32.3220	56.0250	-0.1465520	-0.9892030	0.9892030	-0.1465520	-1.0000000
44	34	32.3220	56.0250	-0.1465520	-0.9892030	0.9892030	-0.1465520	-0.0100000
4	35	27.6750	55.3350	0.3562477	-0.9343916	0.9343916	0.3562477	-1.0000000
5	35	27.6750	55.3350	0.3562477	-0.9343916	0.9343916	0.3562477	-0.0100000
19	35	35.2790	19.7730	0.9900692	0.1405811	-0.1405811	0.9900692	-1.0000000
20	35	35.5350	19.7310	0.9873909	0.1583007	-0.1583007	0.9873909	-1.0000000
21	35	35.7580	19.6940	0.9878280	0.1555502	-0.1555502	0.9878280	-1.0000000
22	35	35.9620	19.6610	0.9898052	0.1424280	-0.1424280	0.9898052	-1.0000000
23	35	36.1500	19.6320	0.9928368	0.1194780	-0.1194780	0.9928368	-1.0000000
24	35	36.3020	19.5940	0.9732487	0.2297542	-0.2297542	0.9732487	-1.0000000
25	35	36.4570	19.5540	0.9968849	0.0788707	-0.0788707	0.9968849	-1.0000000
26	35	36.6710	19.5300	0.9998183	-0.0190645	0.0190645	0.9998183	-1.0000000
27	35	36.9940	19.5020	0.9999999	0.0004214	-0.0004214	0.9999999	-1.0000000
28	35	37.4240	19.4570	0.9961948	0.0871549	-0.0871549	0.9961948	-1.0000000
29	35	37.8660	19.3930	0.9851460	0.1717187	-0.1717187	0.9851460	-1.0000000
30	35	38.2780	19.3100	0.9802942	0.1975432	-0.1975432	0.9802942	-1.0000000
43	35	31.6420	55.9750	0.1915226	-0.9814882	0.9814882	0.1915226	-1.0000000
44	35	31.6420	55.9750	0.1915226	-0.9814882	0.9814882	0.1915226	-0.0100000
4	36	27.0750	55.5880	0.3271701	-0.9449654	0.9449654	0.3271701	-1.0000000
19	36	35.3340	20.2400	0.9949861	0.1000137	-0.1000137	0.9949861	-1.0000000
20	36	35.5860	20.2200	0.9981602	0.0606322	-0.0606322	0.9981602	-1.0000000
21	36	35.8080	20.2080	0.9990488	0.0436072	-0.0436072	0.9990488	-1.0000000
22	36	36.0140	20.1990	0.9989846	0.0450535	-0.0450535	0.9989846	-1.0000000
23	36	36.2080	20.1930	0.9972126	0.0746120	-0.0746120	0.9972126	-1.0000000
24	36	36.3670	20.1770	0.9842031	0.1770432	-0.1770432	0.9842031	-1.0000000
25	36	36.5080	20.1570	0.9914514	0.1304767	-0.1304767	0.9914514	-1.0000000
26	36	36.6870	20.1450	0.9923452	0.1234950	-0.1234950	0.9923452	-1.0000000
27	36	37.0000	20.1205	0.9961115	0.0881021	-0.0881021	0.9961115	-1.0000000
28	36	37.4850	20.0960	0.9961115	0.0881021	-0.0881021	0.9961115	-1.0000000
29	36	37.9660	20.0630	0.9942500	0.1070836	-0.1070836	0.9942500	-1.0000000
30	36	38.4020	20.0280	0.9928061	0.1197332	-0.1197332	0.9928061	-1.0000000
43	36	31.4300	56.3200	0.9572459	0.2892753	-0.2892753	0.9572459	-1.0000000
44	36	31.4300	56.3200	0.9572459	0.2892753	-0.2892753	0.9572459	-0.0100000
4	37	26.5500	55.7000	0.0000000	-1.0000000	1.0000000	0.0000000	-1.0000000
5	37	26.4870	56.1500	0.0166598	-0.9998612	0.9998612	0.0166598	-1.0000000
6	37	26.5250	56.8380	0.1019175	-0.9947929	0.9947929	0.1019175	-1.0000000
7	37	26.5500	57.3500	0.0000000	-1.0000000	1.0000000	0.0000000	-1.0000000
20	37	35.5990	20.6940	0.9999930	0.0037393	-0.0037393	0.9999930	-1.0000000
21	37	35.8190	20.6940	0.9999934	-0.0036145	0.0036145	0.9999934	-1.0000000
22	37	36.0300	20.6930	0.9999002	0.0141315	-0.0141315	0.9999002	-1.0000000
23	37	36.2390	20.6870	0.9996251	0.0273795	-0.0273795	0.9996251	-1.0000000
24	37	36.4060	20.6820	1.0000000	0.0000000	0.0000000	1.0000000	-1.0000000
25	37	36.5660	20.6830	0.9998916	0.0147209	-0.0147209	0.9998916	-1.0000000
26	37	36.7520	20.6830	0.9996842	0.0251325	-0.0251325	0.9996842	-1.0000000
27	37	36.9220	20.6830	0.9996842	0.0251325	-0.0251325	0.9996842	-1.0000000
28	37	37.1320	20.6830	0.9996842	0.0251325	-0.0251325	0.9996842	-1.0000000
30	37	37.6580	20.6780	0.9998260	0.0186575	-0.0186575	0.9998260	-1.0000000
31	37	38.0310	20.6760	0.9984464	0.0557206	-0.0557206	0.9984464	-1.0000000
43	37	31.7180	56.8820	0.8378644	0.5458784	-0.5458784	0.8378644	-1.0000000
44	37	31.7180	56.8820	0.8378644	0.5458784	-0.5458784	0.8378644	-0.0100000
4	38	25.9620	55.7500	0.1554819	-0.9878387	0.9878387	0.1554819	-1.0000000
7	38	26.2500	57.4750	0.3690618	-0.9294049	0.9294049	0.3690618	-1.0000000
8	38	26.2500	57.4750	0.3690618	-0.9294049	0.9294049	0.3690618	-0.0100000
21	38	35.8290	21.2390	0.9999892	0.0046539	-0.0046539	0.9999892	-1.0000000
22	38	36.0370	21.2370	0.9996812	0.0252500	-0.0252500	0.9996812	-1.0000000
23	38	36.2410	21.2290	0.9997902	0.0204827	-0.0204827	0.9997902	-1.0000000
24	38	36.4050	21.2250	0.9999996	-0.0008606	0.0008606	0.9999996	-1.0000000
25	38	36.5680	21.2260	0.9997911	-0.0204365	0.0204365	0.9997911	-1.0000000
26	38	36.7570	21.2290	0.9998496	-0.0173443	0.0173443	0.9998496	-1.0000000
27	38	36.9220	21.2290	0.9989399	0.0460324	-0.0460324	0.9989399	-1.0000000
28	38	37.1320	21.2270	0.9980754	0.0620122	-0.0620122	0.9980754	-1.0000000
29	38	37.3980	21.2250	0.9993327	0.0365269	-0.0365269	0.9993327	-1.0000000
30	38	37.6960	21.2270	0.9994706	0.0325357	-0.0325357	0.9994706	-1.0000000
31	38	38.0620	21.2330	0.9999999	0.0002705	-0.0002705	0.9999999	-1.0000000
32	38	38.4240	21.2390	0.9997694	-0.0214729	0.0214729	0.9997694	-1.0000000
43	38	32.1250	57.4870	0.8012773	0.5982931	-0.5982931	0.8012773	-1.0000000
44	38	32.1250	57.4870	0.8012773	0.5982931	-0.5982931	0.8012773	-0.0100000

4	39	25.2700	55.8500	0.1554819	-0.9878387	0.9878387	0.1554819	-1.0000000
5	39	25.2700	55.8500	0.1554819	-0.9878387	0.9878387	0.1554819	-1.0000000
7	39	25.8400	57.8250	0.4584127	-0.8887394	0.8887394	0.4584127	-1.0000000
8	39	25.8400	57.8250	0.4584127	-0.8887394	0.8887394	0.4584127	-0.0100000
22	39	36.0400	21.8140	0.9998346	0.0181869	-0.0181869	0.9998346	-1.0000000
23	39	36.2410	21.8070	0.9999337	0.0115199	-0.0115199	0.9999337	-1.0000000
24	39	36.4050	21.8050	1.0000000	0.0000000	0.0000000	1.0000000	-1.0000000
25	39	36.5600	21.8070	0.9999191	-0.0127214	0.0127214	0.9999191	-1.0000000
26	39	36.7490	21.8110	0.9999030	-0.0139281	0.0139281	0.9999030	-1.0000000
27	39	36.9470	21.8130	0.9999957	0.0029346	-0.0029346	0.9999957	-1.0000000
28	39	37.1680	21.8120	0.9999439	0.0105946	-0.0105946	0.9999439	-1.0000000
29	39	37.4190	21.8100	0.9999998	-0.0006578	0.0006578	0.9999998	-1.0000000
30	39	37.7120	21.8120	0.9998754	-0.0157842	0.0157842	0.9998754	-1.0000000
31	39	38.0650	21.8160	0.9998900	-0.0148300	0.0148300	0.9998900	-1.0000000
32	39	38.4240	21.8160	0.9998900	-0.0148300	0.0148300	0.9998900	-1.0000000
43	39	32.6380	57.9380	0.6455021	0.7637585	-0.7637585	0.6455021	-1.0000000
44	39	32.6380	57.9380	0.6455021	0.7637585	-0.7637585	0.6455021	-0.0100000
4	40	24.6080	55.9900	0.1554819	-0.9878387	0.9878387	0.1554819	-1.0000000
5	40	24.6080	55.9900	0.1554819	-0.9878387	0.9878387	0.1554819	-1.0000000
7	40	25.3150	58.0000	-0.1525558	-0.9882948	0.9882948	-0.1525558	-1.0000000
8	40	25.3150	58.0000	-0.1525558	-0.9882948	0.9882948	-0.1525558	-0.0100000
23	40	36.2410	22.3970	0.9999999	-0.0004132	0.0004132	0.9999999	-1.0000000
24	40	36.4050	22.3970	0.9999999	-0.0004132	0.0004132	0.9999999	-1.0000000
25	40	36.5570	22.4010	0.9997835	-0.0208103	0.0208103	0.9997835	-1.0000000
26	40	36.7440	22.4060	0.9998882	-0.0149534	0.0149534	0.9998882	-1.0000000
27	40	36.9470	22.4080	0.9999945	-0.0033126	0.0033126	0.9999945	-1.0000000
28	40	37.1710	22.4060	0.9999669	0.0081378	-0.0081378	0.9999669	-1.0000000
29	40	37.4200	22.4010	0.9998735	0.0159050	-0.0159050	0.9998735	-1.0000000
30	40	37.7080	22.3920	0.9997147	0.0238873	-0.0238873	0.9997147	-1.0000000
31	40	38.0610	22.3670	0.9988315	0.0483286	-0.0483286	0.9988315	-1.0000000
43	40	32.7320	58.2750	0.7821845	-0.6230469	0.6230469	0.7821845	-1.0000000
44	40	32.7320	58.2750	0.7821845	-0.6230469	0.6230469	0.7821845	-0.0100000
4	41	23.9750	55.9700	0.0000000	-1.0000000	1.0000000	0.0000000	-1.0000000
5	41	23.9750	55.9700	0.0000000	-1.0000000	1.0000000	0.0000000	-0.0100000
7	41	24.7880	58.0250	0.4718579	-0.8816746	0.8816746	0.4718579	-1.0000000
8	41	24.7880	58.0250	0.4718579	-0.8816746	0.8816746	0.4718579	-0.0100000
23	41	36.2400	23.0530	0.9999999	-0.0003536	0.0003536	0.9999999	-1.0000000
24	41	36.3980	23.0530	0.9999577	-0.0091924	0.0091924	0.9999577	-1.0000000
25	41	36.5510	23.0520	0.9999986	-0.0016686	0.0016686	0.9999986	-1.0000000
26	41	36.7500	23.0470	0.9994124	0.0342764	-0.0342764	0.9994124	-1.0000000
28	41	37.1930	23.0190	0.9971045	0.0760432	-0.0760432	0.9971045	-1.0000000
29	41	37.4440	22.9980	0.9967363	0.0807263	-0.0807263	0.9967363	-1.0000000
30	41	37.7310	22.9740	0.9971915	0.0748933	-0.0748933	0.9971915	-1.0000000
31	41	38.0970	22.9200	0.9875750	0.1571484	-0.1571484	0.9875750	-1.0000000
43	41	32.2320	58.7000	0.6852555	-0.7283028	0.7283028	0.6852555	-1.0000000
44	41	32.2320	58.7000	0.6852555	-0.7283028	0.7283028	0.6852555	-0.0100000
4	42	23.7630	56.2630	0.9549969	0.2966157	-0.2966157	0.9549969	-1.0000000
5	42	23.7630	56.2630	0.9549969	0.2966157	-0.2966157	0.9549969	-0.0100000
7	42	24.8120	58.2250	0.7428958	0.6694070	-0.6694070	0.7428958	-1.0000000
8	42	24.8120	58.2250	0.7428958	0.6694070	-0.6694070	0.7428958	-0.0100000
22	42	36.0260	23.7720	0.9954726	0.0950491	-0.0950491	0.9954726	-1.0000000
23	42	36.2590	23.7600	0.9996480	0.0265299	-0.0265299	0.9996480	-1.0000000
24	42	36.4100	23.7470	0.9907788	0.1354895	-0.1354895	0.9907788	-1.0000000
25	42	36.5780	23.7220	0.9942727	0.1068730	-0.1068730	0.9942727	-1.0000000
26	42	36.8030	23.6930	0.9900991	0.1403699	-0.1403699	0.9900991	-1.0000000
28	42	37.2720	23.6180	0.9834660	0.1810931	-0.1810931	0.9834660	-1.0000000
29	42	37.5260	23.5750	0.9819075	0.1893611	-0.1893611	0.9819075	-1.0000000
30	42	37.8060	23.5300	0.9843979	0.1759569	-0.1759569	0.9843979	-1.0000000
43	42	32.0130	59.2750	0.9538864	0.3001678	-0.3001678	0.9538864	-1.0000000
44	42	32.0130	59.2750	0.9538864	0.3001678	-0.3001678	0.9538864	-0.0100000
4	43	23.8000	56.8750	0.9944351	-0.1053515	0.1053515	0.9944351	-1.0000000
5	43	23.8000	56.8750	0.9944351	-0.1053515	0.1053515	0.9944351	-0.0100000
7	43	25.1120	58.5500	0.9885548	0.1508618	-0.1508618	0.9885548	-1.0000000
8	43	25.1120	58.5500	0.9885548	0.1508618	-0.1508618	0.9885548	-0.0100000
23	43	36.3340	24.4160	0.9958323	0.0912032	-0.0912032	0.9958323	-1.0000000
24	43	36.4860	24.3910	0.9547542	0.2973960	-0.2973960	0.9547542	-1.0000000
25	43	36.6650	24.3430	0.9835840	0.1804507	-0.1804507	0.9835840	-1.0000000
26	43	36.9070	24.2960	0.9797590	0.2001808	-0.2001808	0.9797590	-1.0000000
27	43	37.1480	24.2450	0.9768392	0.2139748	-0.2139748	0.9768392	-1.0000000
28	43	37.3940	24.1910	0.9750853	0.2218301	-0.2218301	0.9750853	-1.0000000
29	43	37.6480	24.1320	0.9750735	0.2218819	-0.2218819	0.9750735	-1.0000000

30	43	37.9170	24.0700	0.9777054	0.2099816	-0.2099816	0.9777054	-1.0000000
31	43	38.1940	23.9880	0.9594585	0.2818498	-0.2818498	0.9594585	-1.0000000
43	43	32.4700	59.6750	0.0669665	0.9977552	-0.9977552	0.0669665	-1.0000000
44	43	32.4700	59.6750	0.0669665	0.9977552	-0.9977552	0.0669665	-0.0100000
4	44	23.4130	57.3120	0.2847662	-0.9585970	0.9585970	0.2847662	-1.0000000
5	44	23.4130	57.3120	0.2847662	-0.9585970	0.9585970	0.2847662	-0.0100000
7	44	25.0380	58.8500	0.7447901	-0.6672989	0.6672989	0.7447901	-1.0000000
8	44	25.0380	58.8500	0.7447901	-0.6672989	0.6672989	0.7447901	-0.0100000
23	44	36.4540	24.9960	0.9691049	0.2466490	-0.2466490	0.9691049	-1.0000000
24	44	36.6050	24.9650	0.9867981	0.1619553	-0.1619553	0.9867981	-1.0000000
25	44	36.7910	24.9330	0.9751245	0.2216581	-0.2216581	0.9751245	-1.0000000
26	44	37.0370	24.8810	0.9746800	0.2236042	-0.2236042	0.9746800	-1.0000000
27	44	37.2830	24.8250	0.9731268	0.2302702	-0.2302702	0.9731268	-1.0000000
28	44	37.5330	24.7670	0.9715608	0.2367900	-0.2367900	0.9715608	-1.0000000
29	44	37.7900	24.7070	0.9699782	0.2431921	-0.2431921	0.9699782	-1.0000000
30	44	38.0520	24.6410	0.9651112	0.2618403	-0.2618403	0.9651112	-1.0000000
31	44	38.3340	24.5910	0.9651112	0.2618403	-0.2618403	0.9651112	-1.0000000
33	44	0.0000	0.0000	1.0000000	0.0000000	0.0000000	1.0000000	-1.0000000
34	44	0.0000	0.0000	1.0000000	0.0000000	0.0000000	1.0000000	-1.0000000
35	44	0.0000	0.0000	1.0000000	0.0000000	0.0000000	1.0000000	-1.0000000
43	44	33.1400	59.8380	0.2684468	0.9632945	-0.9632945	0.2684468	-1.0000000
44	44	33.1400	59.8380	0.2684468	0.9632945	-0.9632945	0.2684468	-0.0100000
4	45	22.7750	57.4500	0.1380637	-0.9904233	0.9904233	0.1380637	-1.0000000
5	45	22.7750	57.4500	0.1380637	-0.9904233	0.9904233	0.1380637	-0.0100000
7	45	24.7500	59.0370	0.5658044	-0.8245395	0.8245395	0.5658044	-1.0000000
8	45	24.7500	59.0370	0.5658044	-0.8245395	0.8245395	0.5658044	-0.0100000
22	45	36.3250	25.6660	0.9862451	0.1652894	-0.1652894	0.9862451	-1.0000000
23	45	36.5770	25.6100	0.9654331	0.2606511	-0.2606511	0.9654331	-1.0000000
24	45	36.7300	25.5700	0.9898514	0.1421067	-0.1421067	0.9898514	-1.0000000
25	45	36.9220	25.5380	0.9816907	0.1904819	-0.1904819	0.9816907	-1.0000000
26	45	37.1750	25.4860	0.9779080	0.2090356	-0.2090356	0.9779080	-1.0000000
27	45	37.4230	25.4330	0.9776682	0.2101546	-0.2101546	0.9776682	-1.0000000
28	45	37.6700	25.3810	0.9800057	0.1989692	-0.1989692	0.9800057	-1.0000000
29	45	37.9240	25.3270	0.9826248	0.1856028	-0.1856028	0.9826248	-1.0000000
30	45	38.1720	25.2770	0.9826248	0.1856028	-0.1856028	0.9826248	-1.0000000
43	45	33.6700	60.2130	0.6968868	0.7171811	-0.7171811	0.6968868	-1.0000000
44	45	33.6700	60.2130	0.6968868	0.7171811	-0.7171811	0.6968868	-0.0100000
4	46	22.2000	57.6950	0.3963514	-0.9180989	0.9180989	0.3963514	-1.0000000
5	46	22.2000	57.6950	0.3963514	-0.9180989	0.9180989	0.3963514	-0.0100000
7	46	24.4130	59.0880	0.1706729	-0.9853277	0.9853277	0.1706729	-1.0000000
8	46	24.4130	59.0880	0.1706729	-0.9853277	0.9853277	0.1706729	-0.0100000
22	46	36.4310	26.2920	0.9851137	0.1719037	-0.1719037	0.9851137	-1.0000000
23	46	36.6960	26.2360	0.9772605	0.2120425	-0.2120425	0.9772605	-1.0000000
24	46	36.8690	26.2010	0.9822542	0.1875545	-0.1875545	0.9822542	-1.0000000
25	46	37.0520	26.1730	0.9820345	0.1887013	-0.1887013	0.9820345	-1.0000000
26	46	37.3100	26.1330	0.9848358	0.1734891	-0.1734891	0.9848358	-1.0000000
27	46	37.5590	26.0970	0.9860556	0.1664166	-0.1664166	0.9860556	-1.0000000
28	46	37.7930	26.0550	0.9820862	0.1884321	-0.1884321	0.9820862	-1.0000000
43	46	34.1750	60.6380	0.5301558	0.8479002	-0.8479002	0.5301558	-1.0000000
44	46	34.1750	60.6380	0.5301558	0.8479002	-0.8479002	0.5301558	-0.0100000
4	47	21.6120	57.9200	0.1464948	-0.9892114	0.9892114	0.1464948	-1.0000000
5	47	21.6120	57.9200	0.1464948	-0.9892114	0.9892114	0.1464948	-0.0100000
7	47	24.2630	59.3750	0.9562553	-0.2925336	0.2925336	0.9562553	-1.0000000
8	47	24.2630	59.3750	0.9562553	-0.2925336	0.2925336	0.9562553	-0.0100000
22	47	36.5060	26.8930	0.9929683	0.1183803	-0.1183803	0.9929683	-1.0000000
23	47	36.7830	26.8490	0.9917006	0.1285683	-0.1285683	0.9917006	-1.0000000
24	47	36.9760	26.8380	0.9980386	-0.0626007	0.0626007	0.9980386	-1.0000000
25	47	37.1510	26.8430	0.9975356	0.0701625	-0.0701625	0.9975356	-1.0000000
26	47	37.3890	26.8300	0.9992295	0.0392482	-0.0392482	0.9992295	-1.0000000
27	47	37.6300	26.8190	0.9997009	0.0244566	-0.0244566	0.9997009	-1.0000000
43	47	34.5500	60.5750	-0.9122413	0.4096533	-0.4096533	-0.9122413	-1.0000000
44	47	34.5500	60.5750	-0.9122413	0.4096533	-0.4096533	-0.9122413	-0.0100000
4	48	20.9380	58.0750	0.4587257	-0.8885779	0.8885779	0.4587257	-1.0000000
5	48	20.9380	58.0750	0.4587257	-0.8885779	0.8885779	0.4587257	-0.0100000
7	48	24.2120	59.9500	0.8217237	-0.5698861	0.5698861	0.8217237	-1.0000000
8	48	24.2120	59.9500	0.8217237	-0.5698861	0.5698861	0.8217237	-0.0100000
21	48	36.2130	27.4910	0.9973906	-0.0721946	0.0721946	0.9973906	-1.0000000
22	48	36.5080	27.5060	0.9982136	-0.0597467	0.0597467	0.9982136	-1.0000000
23	48	36.7850	27.5160	0.9985209	-0.0543693	0.0543693	0.9985209	-1.0000000
24	48	36.9750	27.5260	0.9949672	-0.1002008	0.1002008	0.9949672	-1.0000000
25	48	37.1510	27.5360	0.9986563	-0.0518219	0.0518219	0.9986563	-1.0000000

Appendix B

26	48	37.3900	27.5410	0.9997076	-0.0241826	0.0241826	0.9997076	-1.0000000
27	48	37.6310	27.5470	0.9998791	-0.0155474	0.0155474	0.9998791	-1.0000000
28	48	37.8770	27.5540	0.9998484	-0.0174091	0.0174091	0.9998484	-1.0000000
43	48	34.5880	59.9500	-0.9965926	-0.0824812	0.0824812	-0.9965926	-1.0000000
44	48	34.5880	59.9500	-0.9965926	-0.0824812	0.0824812	-0.9965926	-0.0100000
4	49	20.3370	58.4250	0.7024830	-0.7117006	0.7117006	0.7024830	-1.0000000
5	49	20.3370	58.4250	0.7024830	-0.7117006	0.7117006	0.7024830	-0.0100000
7	49	23.8880	60.1750	-0.1740423	-0.9847382	0.9847382	-0.1740423	-1.0000000
8	49	23.8880	60.1750	-0.1740423	-0.9847382	0.9847382	-0.1740423	-0.0100000
21	49	36.1360	28.1210	0.9899129	-0.1416776	0.1416776	0.9899129	-1.0000000
22	49	36.4310	28.1580	0.9909456	-0.1342640	0.1342640	0.9909456	-1.0000000
23	49	36.7150	28.1890	0.9932561	-0.1159412	0.1159412	0.9932561	-1.0000000
24	49	36.9120	28.2040	0.9987404	-0.0501760	0.0501760	0.9987404	-1.0000000
25	49	37.1010	28.2130	0.9976012	-0.0692236	0.0692236	0.9976012	-1.0000000
26	49	37.3590	28.2280	0.9984771	-0.0551680	0.0551680	0.9984771	-1.0000000
27	49	37.6050	28.2400	0.9982271	-0.0595206	0.0595206	0.9982271	-1.0000000
28	49	37.8380	28.2630	0.9915454	-0.1297605	0.1297605	0.9915454	-1.0000000
43	49	34.7870	59.3500	-0.7189829	0.6950278	-0.6950278	-0.7189829	-1.0000000
44	49	34.7870	59.3500	-0.7189829	0.6950278	-0.6950278	-0.7189829	-0.0100000
4	50	19.8880	58.9320	0.7616763	-0.6479577	0.6479577	0.7616763	-1.0000000
5	50	19.8880	58.9320	0.7616763	-0.6479577	0.6479577	0.7616763	-0.0100000
7	50	23.6250	59.9380	-0.8744090	-0.4851896	0.4851896	-0.8744090	-1.0000000
8	50	23.6250	59.9380	-0.8744090	-0.4851896	0.4851896	-0.8744090	-0.0100000
21	50	36.0180	28.8060	0.9882227	-0.1530227	0.1530227	0.9882227	-1.0000000
22	50	36.3280	28.8420	0.9919519	-0.1266151	0.1266151	0.9919519	-1.0000000
23	50	36.6230	28.8740	0.9926128	-0.1213249	0.1213249	0.9926128	-1.0000000
24	50	36.8290	28.8890	0.9973666	-0.0725246	0.0725246	0.9973666	-1.0000000
25	50	37.0350	28.9000	0.9950978	-0.0988962	0.0988962	0.9950978	-1.0000000
26	50	37.3020	28.9190	0.9965158	-0.0834041	0.0834041	0.9965158	-1.0000000
27	50	37.5370	28.9340	0.9957656	-0.0919290	0.0919290	0.9957656	-1.0000000
28	50	37.7570	28.9340	0.9957656	-0.0919290	0.0919290	0.9957656	-1.0000000
43	50	35.2870	59.0880	0.0203985	0.9997919	-0.9997919	0.0203985	-1.0000000
44	50	35.2870	59.0880	0.0203985	0.9997919	-0.9997919	0.0203985	-0.0100000
4	51	19.3750	59.1600	0.0675665	-0.9977148	0.9977148	0.0675665	-1.0000000
5	51	19.3750	59.1600	0.0675665	-0.9977148	0.9977148	0.0675665	-1.0000000
7	51	23.4380	59.8380	0.3907743	-0.9204865	0.9204865	0.3907743	-1.0000000
8	51	23.4380	59.8380	0.3907743	-0.9204865	0.9204865	0.3907743	-0.0100000
21	51	35.9270	29.5420	0.9985710	-0.0534405	0.0534405	0.9985710	-1.0000000
22	51	36.2490	29.5550	0.9984819	-0.0550818	0.0550818	0.9984819	-1.0000000
23	51	36.5400	29.5670	0.9973355	-0.0729517	0.0729517	0.9973355	-1.0000000
24	51	36.7470	29.5740	0.9988502	-0.0479403	0.0479403	0.9988502	-1.0000000
25	51	36.9660	29.5820	0.9980040	-0.0631503	0.0631503	0.9980040	-1.0000000
27	51	37.5020	29.5990	0.9999764	0.0068682	-0.0068682	0.9999764	-1.0000000
28	51	37.7220	29.5990	0.9999764	0.0068682	-0.0068682	0.9999764	-1.0000000
43	51	35.5750	59.3000	0.8816737	0.4718597	-0.4718597	0.8816737	-1.0000000
44	51	35.5750	59.3000	0.8816737	0.4718597	-0.4718597	0.8816737	-0.0100000
4	52	18.7750	59.1030	-0.0045454	-0.9999897	0.9999897	-0.0045454	-1.0000000
5	52	18.7750	59.1030	-0.0045454	-0.9999897	0.9999897	-0.0045454	-1.0000000
7	52	23.1250	60.2370	0.8905388	-0.4549073	0.4549073	0.8905388	-1.0000000
8	52	23.1250	60.2370	0.8905388	-0.4549073	0.4549073	0.8905388	-0.0100000
21	52	35.9040	30.2900	0.9997537	0.0221955	-0.0221955	0.9997537	-1.0000000
22	52	36.2260	30.2780	0.9997140	0.0239155	-0.0239155	0.9997140	-1.0000000
23	52	36.5080	30.2660	0.9996815	0.0252368	-0.0252368	0.9996815	-1.0000000
24	52	36.7150	30.2600	0.9999998	-0.0007032	0.0007032	0.9999998	-1.0000000
25	52	36.9470	30.2540	0.9996598	0.0260798	-0.0260798	0.9996598	-1.0000000
27	52	37.5160	30.2210	0.9986607	0.0517387	-0.0517387	0.9986607	-1.0000000
28	52	37.7360	30.2210	0.9986607	0.0517387	-0.0517387	0.9986607	-1.0000000
43	52	35.9250	59.5330	-0.0291295	0.9995757	-0.9995757	-0.0291295	-1.0000000
44	52	35.9250	59.5330	-0.0291295	0.9995757	-0.9995757	-0.0291295	-0.0100000
4	53	18.1880	58.9950	-0.2255335	-0.9742354	0.9742354	-0.2255335	-1.0000000
5	53	18.1880	58.9950	-0.2255335	-0.9742354	0.9742354	-0.2255335	-1.0000000
7	53	22.8370	60.8620	0.8944252	-0.4472176	0.4472176	0.8944252	-1.0000000
8	53	22.8370	60.8620	0.8944252	-0.4472176	0.4472176	0.8944252	-0.0100000
20	53	35.5620	31.0000	0.9977726	0.0667063	-0.0667063	0.9977726	-1.0000000
21	53	35.9150	30.9760	0.9997212	0.0236134	-0.0236134	0.9997212	-1.0000000
22	53	36.2370	30.9730	0.9999347	0.0114232	-0.0114232	0.9999347	-1.0000000
23	53	36.5270	30.9720	0.9995725	0.0292360	-0.0292360	0.9995725	-1.0000000
24	53	36.7390	30.9640	0.9969051	0.0786149	-0.0786149	0.9969051	-1.0000000
25	53	36.9770	30.9450	0.9972379	0.0742743	-0.0742743	0.9972379	-1.0000000
26	53	37.2790	30.9220	0.9977372	0.0672345	-0.0672345	0.9977372	-1.0000000
27	53	37.5460	30.9030	0.9978903	0.0649225	-0.0649225	0.9978903	-1.0000000

28	53	37.7660	30.9030	0.9978903	0.0649225	-0.0649225	0.9978903	-1.0000000
43	53	36.2870	59.2320	-0.8934140	0.4492344	-0.4492344	-0.8934140	-1.0000000
44	53	36.2870	59.2320	-0.8934140	0.4492344	-0.4492344	-0.8934140	-0.0100000
4	54	17.6250	58.9950	0.1975061	-0.9803017	0.9803017	0.1975061	-1.0000000
5	54	17.6250	58.9950	0.1975061	-0.9803017	0.9803017	0.1975061	-1.0000000
7	54	22.4750	61.3880	0.6324716	-0.7745836	0.7745836	0.6324716	-1.0000000
8	54	22.4750	61.3880	0.6324716	-0.7745836	0.7745836	0.6324716	-0.0100000
20	54	35.5520	31.5130	0.9975114	-0.0705053	0.0705053	0.9975114	-1.0000000
21	54	36.2370	31.5130	0.9975114	-0.0705053	0.0705053	0.9975114	-1.0000000
24	54	36.7770	31.6050	0.9997712	0.0213893	-0.0213893	0.9997712	-1.0000000
25	54	36.9980	31.6090	0.9998575	-0.0168831	0.0168831	0.9998575	-1.0000000
26	54	37.3010	31.6150	0.9999893	-0.0046180	0.0046180	0.9999893	-1.0000000
27	54	37.5840	31.6110	0.9992100	0.0397417	-0.0397417	0.9992100	-1.0000000
43	54	36.4250	58.6750	-0.9341418	0.3569020	-0.3569020	-0.9341418	-1.0000000
44	54	36.4250	58.6750	-0.9341418	0.3569020	-0.3569020	-0.9341418	-0.0100000
4	55	17.0750	59.0750	-0.0415583	-0.9991361	0.9991361	-0.0415583	-1.0000000
5	55	17.0750	59.0750	-0.0415583	-0.9991361	0.9991361	-0.0415583	-1.0000000
7	55	22.1380	61.9630	0.8607903	-0.5089598	0.5089598	0.8607903	-1.0000000
8	55	22.1380	61.9630	0.8607903	-0.5089598	0.5089598	0.8607903	-0.0100000
20	55	35.4850	31.9310	0.9681812	-0.2502502	0.2502502	0.9681812	-1.0000000
21	55	36.2370	31.9310	0.9681812	-0.2502502	0.2502502	0.9681812	-1.0000000
24	55	36.7140	32.2590	0.9593446	-0.2822373	0.2822373	0.9593446	-1.0000000
25	55	36.9090	32.3200	0.9685498	-0.2488196	0.2488196	0.9685498	-1.0000000
26	55	37.1960	32.4030	0.9680122	-0.2509030	0.2509030	0.9680122	-1.0000000
27	55	37.4790	32.4810	0.9709209	-0.2394007	0.2394007	0.9709209	-1.0000000
43	55	36.7000	58.2750	-0.2756825	0.9612488	-0.9612488	-0.2756825	-1.0000000
44	55	36.7000	58.2750	-0.2756825	0.9612488	-0.9612488	-0.2756825	-0.0100000
4	56	16.5870	58.7370	-0.7071068	-0.7071068	0.7071068	-0.7071068	-1.0000000
5	56	16.5870	58.7370	-0.7071068	-0.7071068	0.7071068	-0.7071068	-1.0000000
7	56	22.0500	62.6620	0.9816423	-0.1907311	0.1907311	0.9816423	-1.0000000
8	56	22.0500	62.6620	0.9816423	-0.1907311	0.1907311	0.9816423	-0.0100000
20	56	35.3380	32.3790	0.9203100	-0.3911899	0.3911899	0.9203100	-1.0000000
21	56	35.6330	32.5100	0.9101977	-0.4141740	0.4141740	0.9101977	-1.0000000
22	56	35.9310	32.6480	0.9006951	-0.4344518	0.4344518	0.9006951	-1.0000000
23	56	36.2470	32.8030	0.8816995	-0.4718114	0.4718114	0.8816995	-1.0000000
24	56	36.4610	32.9180	0.8514692	-0.5244046	0.5244046	0.8514692	-1.0000000
25	56	36.6480	33.0280	0.8733473	-0.4870980	0.4870980	0.8733473	-1.0000000
26	56	36.9210	33.1880	0.8755207	-0.4831806	0.4831806	0.8755207	-1.0000000
27	56	37.1750	33.3510	0.8494966	-0.5275940	0.5275940	0.8494966	-1.0000000
43	56	36.8750	58.4500	0.9819567	0.1891057	-0.1891057	0.9819567	-1.0000000
44	56	36.8750	58.4500	0.9819567	0.1891057	-0.1891057	0.9819567	-0.0100000
4	57	16.2350	58.2370	-0.5268322	-0.8499693	0.8499693	-0.5268322	-1.0000000
5	57	16.2350	58.2370	-0.5268322	-0.8499693	0.8499693	-0.5268322	-1.0000000
7	57	21.9620	63.3500	0.9440873	-0.3296956	0.3296956	0.9440873	-1.0000000
8	57	21.9620	63.3500	0.9440873	-0.3296956	0.3296956	0.9440873	-0.0100000
20	57	35.0890	32.8700	0.8733296	-0.4871298	0.4871298	0.8733296	-1.0000000
21	57	35.3580	33.0230	0.8524539	-0.5228024	0.5228024	0.8524539	-1.0000000
22	57	35.6130	33.1860	0.8306066	-0.5568597	0.5568597	0.8306066	-1.0000000
23	57	35.8610	33.3560	0.7877274	-0.6160241	0.6160241	0.7877274	-1.0000000
24	57	36.0460	33.4890	0.7843815	-0.6202787	0.6202787	0.7843815	-1.0000000
25	57	36.2370	33.6240	0.7910602	-0.6117383	0.6117383	0.7910602	-1.0000000
26	57	36.4760	33.7950	0.7568150	-0.6536292	0.6536292	0.7568150	-1.0000000
43	57	37.0000	59.0250	0.8006779	0.5990951	-0.5990951	0.8006779	-1.0000000
44	57	37.0000	59.0250	0.8006779	0.5990951	-0.5990951	0.8006779	-0.0100000
4	58	15.7350	58.0400	-0.0149208	-0.9998887	0.9998887	-0.0149208	-1.0000000
5	58	15.7350	58.0400	-0.0149208	-0.9998887	0.9998887	-0.0149208	-1.0000000
7	58	21.9380	64.0370	0.9910745	-0.1333093	0.1333093	0.9910745	-1.0000000
8	58	21.9380	64.0370	0.9910745	-0.1333093	0.1333093	0.9910745	-0.0100000
20	58	34.7000	33.4320	0.8567287	-0.5157673	0.5157673	0.8567287	-1.0000000
21	58	35.0120	33.6020	0.8567287	-0.5157673	0.5157673	0.8567287	-1.0000000
22	58	35.2340	33.7440	0.8318910	-0.5549390	0.5549390	0.8318910	-1.0000000
23	58	35.4490	33.8910	0.8186513	-0.5742909	0.5742909	0.8186513	-1.0000000
24	58	35.6230	34.0160	0.8090318	-0.5877649	0.5877649	0.8090318	-1.0000000
25	58	35.8050	34.1440	0.8011975	-0.5984000	0.5984000	0.8011975	-1.0000000
26	58	36.0190	34.2900	0.8027360	-0.5963345	0.5963345	0.8027360	-1.0000000
43	58	37.3250	58.9630	-0.5194607	0.8544943	-0.8544943	-0.5194607	-1.0000000
44	58	37.3250	58.9630	-0.5194607	0.8544943	-0.8544943	-0.5194607	-0.0100000
4	59	15.1000	57.9850	-0.0743757	-0.9972303	0.9972303	-0.0743757	-1.0000000
5	59	15.1000	57.9850	-0.0743757	-0.9972303	0.9972303	-0.0743757	-1.0000000
7	59	21.9130	64.6130	0.8903607	-0.4552558	0.4552558	0.8903607	-1.0000000
8	59	21.9130	64.6130	0.8903607	-0.4552558	0.4552558	0.8903607	-0.0100000

20	59	34.4180	34.1500	0.8854092	-0.4648124	0.4648124	0.8854092	-1.0000000
21	59	34.6680	34.1940	0.8854092	-0.4648124	0.4648124	0.8854092	-1.0000000
22	59	34.8880	34.3060	0.8782620	-0.4781798	0.4781798	0.8782620	-1.0000000
23	59	35.1630	34.4620	0.8703567	-0.4924219	0.4924219	0.8703567	-1.0000000
24	59	35.2960	34.5360	0.8771753	-0.4801702	0.4801702	0.8771753	-1.0000000
25	59	35.4790	34.6370	0.8807117	-0.4736528	0.4736528	0.8807117	-1.0000000
26	59	35.7190	34.7630	0.8987764	-0.4384074	0.4384074	0.8987764	-1.0000000
27	59	35.9950	34.9160	0.8831446	-0.4691010	0.4691010	0.8831446	-1.0000000
43	59	37.6880	58.8250	0.6672976	0.7447912	-0.7447912	0.6672976	-1.0000000
44	59	37.6880	58.8250	0.6672976	0.7447912	-0.7447912	0.6672976	-0.0100000
4	60	14.5000	57.8450	-0.1527375	-0.9882668	0.9882668	-0.1527375	-1.0000000
5	60	14.5000	57.8450	-0.1527375	-0.9882668	0.9882668	-0.1527375	-1.0000000
7	60	21.6380	65.1370	0.7839124	-0.6208714	0.6208714	0.7839124	-1.0000000
8	60	21.6380	65.1370	0.7839124	-0.6208714	0.6208714	0.7839124	-0.0100000
21	60	34.3250	34.8170	0.8981718	-0.4396447	0.4396447	0.8981718	-1.0000000
22	60	34.6250	34.8170	0.8981718	-0.4396447	0.4396447	0.8981718	-1.0000000
23	60	34.9010	34.9680	0.8881603	-0.4595336	0.4595336	0.8881603	-1.0000000
24	60	35.0370	35.0430	0.8816512	-0.4719016	0.4719016	0.8816512	-1.0000000
25	60	35.2260	35.1390	0.9049813	-0.4254515	0.4254515	0.9049813	-1.0000000
26	60	35.4850	35.2570	0.9074348	-0.4201930	0.4201930	0.9074348	-1.0000000
27	60	35.7610	35.3860	0.8922241	-0.4515930	0.4515930	0.8922241	-1.0000000
28	60	36.0310	35.5220	0.8705022	-0.4921645	0.4921645	0.8705022	-1.0000000
43	60	38.0750	59.3380	0.8695643	0.4938197	-0.4938197	0.8695643	-1.0000000
44	60	38.0750	59.3380	0.8695643	0.4938197	-0.4938197	0.8695643	-0.0100000
4	61	13.9000	57.6750	-0.1221857	-0.9925073	0.9925073	-0.1221857	-1.0000000
5	61	13.9000	57.6750	-0.1221857	-0.9925073	0.9925073	-0.1221857	-1.0000000
7	61	21.1380	65.3500	0.0489322	-0.9988021	0.9988021	0.0489322	-1.0000000
8	61	21.1380	65.3500	0.0489322	-0.9988021	0.9988021	0.0489322	-0.0100000
21	61	34.1650	35.3040	0.9083694	-0.4181688	0.4181688	0.9083694	-1.0000000
22	61	34.3950	35.3040	0.9083694	-0.4181688	0.4181688	0.9083694	-1.0000000
23	61	34.6210	35.4050	0.9023107	-0.4310863	0.4310863	0.9023107	-1.0000000
24	61	34.8100	35.5070	0.8565553	-0.5160553	0.5160553	0.8565553	-1.0000000
25	61	35.0050	35.6050	0.9167880	-0.3993741	0.3993741	0.9167880	-1.0000000
27	61	35.5390	35.8280	0.9083964	-0.4181101	0.4181101	0.9083964	-1.0000000
28	61	35.8020	35.9550	0.8976976	-0.4406120	0.4406120	0.8976976	-1.0000000
29	61	36.0810	36.0500	0.8976976	-0.4406120	0.4406120	0.8976976	-1.0000000
43	61	38.4870	59.8880	0.6370447	0.7708268	-0.7708268	0.6370447	-1.0000000
44	61	38.4870	59.8880	0.6370447	0.7708268	-0.7708268	0.6370447	-0.0100000
4	62	13.2500	57.5750	-0.0356462	-0.9993645	0.9993645	-0.0356462	-1.0000000
5	62	13.2500	57.5750	-0.0356462	-0.9993645	0.9993645	-0.0356462	-1.0000000
7	62	20.5380	65.4250	0.0995512	-0.9950324	0.9950324	0.0995512	-1.0000000
8	62	20.5380	65.4250	0.0995512	-0.9950324	0.9950324	0.0995512	-0.0100000
21	62	33.9500	35.8500	0.9598657	-0.2804601	0.2804601	0.9598657	-1.0000000
22	62	34.1840	35.8500	0.9598657	-0.2804601	0.2804601	0.9598657	-1.0000000
23	62	34.4110	35.9140	0.9555624	-0.2947889	0.2947889	0.9555624	-1.0000000
24	62	34.5830	35.9700	0.9160641	-0.4010320	0.4010320	0.9160641	-1.0000000
25	62	34.8030	36.0450	0.9329047	-0.3601233	0.3601233	0.9329047	-1.0000000
27	62	35.3740	36.2270	0.9485602	-0.3165967	0.3165967	0.9485602	-1.0000000
28	62	35.6510	36.3240	0.9442009	-0.3293700	0.3293700	0.9442009	-1.0000000
29	62	35.9310	36.3940	0.9442009	-0.3293700	0.3293700	0.9442009	-1.0000000
43	62	39.0250	60.0880	-0.0574046	0.9983510	-0.9983510	-0.0574046	-1.0000000
44	62	39.0250	60.0880	-0.0574046	0.9983510	-0.9983510	-0.0574046	-0.0100000
4	63	12.5250	57.5920	0.1711236	-0.9852496	0.9852496	0.1711236	-1.0000000
5	63	12.5250	57.5920	0.1711236	-0.9852496	0.9852496	0.1711236	-1.0000000
7	63	19.9380	65.5000	-0.1947787	-0.9808472	0.9808472	-0.1947787	-1.0000000
8	63	19.9380	65.5000	-0.1947787	-0.9808472	0.9808472	-0.1947787	-0.0100000
21	63	33.8800	36.5530	0.9998210	0.0189193	-0.0189193	0.9998210	-1.0000000
22	63	34.1050	36.5530	0.9998210	0.0189193	-0.0189193	0.9998210	-1.0000000
23	63	34.3260	36.5530	0.9999964	0.0026806	-0.0026806	0.9999964	-1.0000000
24	63	34.4890	36.5470	0.9965425	0.0830845	-0.0830845	0.9965425	-1.0000000
25	63	34.7040	36.5580	0.9988645	-0.0476422	0.0476422	0.9988645	-1.0000000
26	63	35.0060	36.5930	0.9943762	-0.1059052	0.1059052	0.9943762	-1.0000000
27	63	35.2910	36.6250	0.9950503	-0.0993730	0.0993730	0.9950503	-1.0000000
28	63	35.5870	36.6470	0.9975940	-0.0693269	0.0693269	0.9975940	-1.0000000
43	63	39.6250	60.2000	0.2470855	0.9689937	-0.9689937	0.2470855	-1.0000000
44	63	39.6250	60.2000	0.2470855	0.9689937	-0.9689937	0.2470855	-0.0100000
4	64	11.9050	57.8050	0.6183338	-0.7859156	0.7859156	0.6183338	-1.0000000
5	64	11.9050	57.8050	0.6183338	-0.7859156	0.7859156	0.6183338	-1.0000000
7	64	19.3000	65.2750	-0.2609794	-0.9653444	0.9653444	-0.2609794	-1.0000000
8	64	19.3000	65.2750	-0.2609794	-0.9653444	0.9653444	-0.2609794	-0.0100000
22	64	34.1140	37.2260	0.9865040	0.1637369	-0.1637369	0.9865040	-1.0000000

Appendix B

23	64	34.3940	37.2260	0.9865040	0.1637369	-0.1637369	0.9865040	-1.0000000
24	64	34.5700	37.1880	0.9655078	0.2603740	-0.2603740	0.9655078	-1.0000000
25	64	34.7620	37.1530	0.9909816	0.1339979	-0.1339979	0.9909816	-1.0000000
26	64	35.0140	37.1350	0.9971902	0.0749107	-0.0749107	0.9971902	-1.0000000
27	64	35.2980	37.1150	0.9952444	0.0974089	-0.0974089	0.9952444	-1.0000000
28	64	35.6000	37.0810	0.9932615	0.1158948	-0.1158948	0.9932615	-1.0000000
43	64	40.0130	60.0370	-0.8443334	0.5358183	-0.5358183	-0.8443334	-1.0000000
44	64	40.0130	60.0370	-0.8443334	0.5358183	-0.5358183	-0.8443334	-0.0100000
4	65	11.5550	58.2870	0.9234211	-0.3837884	0.3837884	0.9234211	-1.0000000
5	65	11.5550	58.2870	0.9234211	-0.3837884	0.3837884	0.9234211	-1.0000000
7	65	18.6880	65.2250	0.3076707	-0.9514929	0.9514929	0.3076707	-1.0000000
8	65	18.6880	65.2250	0.3076707	-0.9514929	0.9514929	0.3076707	-0.0100000
22	65	34.3080	37.8420	0.9888400	0.1489810	-0.1489810	0.9888400	-1.0000000
23	65	34.4880	37.8420	0.9888400	0.1489810	-0.1489810	0.9888400	-1.0000000
24	65	34.6640	37.8110	0.9922076	0.1245959	-0.1245959	0.9922076	-1.0000000
25	65	34.8450	37.7860	0.9948414	0.1014425	-0.1014425	0.9948414	-1.0000000
26	65	35.0840	37.7610	0.9941316	0.1081773	-0.1081773	0.9941316	-1.0000000
27	65	35.3040	37.6610	0.9941316	0.1081773	-0.1081773	0.9941316	-1.0000000
43	65	40.1120	59.3880	0.9684899	-0.2490529	0.2490529	0.9684899	-1.0000000
44	65	40.1120	59.3880	0.9684899	-0.2490529	0.2490529	0.9684899	-0.0100000
4	66	11.5120	58.9380	0.9999809	0.0061868	-0.0061868	0.9999809	-1.0000000
5	66	11.5120	58.9380	0.9999809	0.0061868	-0.0061868	0.9999809	-1.0000000
7	66	18.0620	65.6000	0.6124235	-0.7905298	0.7905298	0.6124235	-1.0000000
8	66	18.0620	65.6000	0.6124235	-0.7905298	0.7905298	0.6124235	-0.0100000
19	66	33.5460	38.5080	0.9931667	0.1167046	-0.1167046	0.9931667	-1.0000000
20	66	33.7960	38.5080	0.9931667	0.1167046	-0.1167046	0.9931667	-1.0000000
21	66	34.0540	38.4830	0.9937400	0.1117173	-0.1117173	0.9937400	-1.0000000
22	66	34.3310	38.4640	0.9956812	0.0928388	-0.0928388	0.9956812	-1.0000000
23	66	34.5510	38.4320	0.9826409	0.1855181	-0.1855181	0.9826409	-1.0000000
24	66	34.7210	38.4010	0.9961902	0.0872063	-0.0872063	0.9961902	-1.0000000
25	66	34.8910	38.3880	0.9976149	0.0690250	-0.0690250	0.9976149	-1.0000000
43	66	40.3750	58.9000	-0.4631031	0.8863044	-0.8863044	-0.4631031	-1.0000000
44	66	40.3750	58.9000	-0.4631031	0.8863044	-0.8863044	-0.4631031	-0.0100000
4	67	11.2550	59.3880	0.6386882	-0.7694656	0.7694656	0.6386882	-1.0000000
5	67	11.2550	59.3880	0.6386882	-0.7694656	0.7694656	0.6386882	-1.0000000
7	67	17.6750	66.1250	0.9341418	-0.3569020	0.3569020	0.9341418	-1.0000000
8	67	17.6750	66.1250	0.9341418	-0.3569020	0.3569020	0.9341418	-0.0100000
18	67	33.3940	39.1580	0.9992611	-0.0384342	0.0384342	0.9992611	-1.0000000
19	67	33.5960	39.1650	0.9992186	-0.0395252	0.0395252	0.9992186	-1.0000000
20	67	33.8200	39.1620	0.9998428	0.0177342	-0.0177342	0.9998428	-1.0000000
23	67	34.5950	38.9590	0.9913591	0.1311760	-0.1311760	0.9913591	-1.0000000
24	67	34.7650	38.9340	0.9972720	0.0738143	-0.0738143	0.9972720	-1.0000000
25	67	34.9290	38.9280	0.9993833	0.0351133	-0.0351133	0.9993833	-1.0000000
43	67	40.9250	58.7700	0.0362918	0.9993412	-0.9993412	0.0362918	-1.0000000
44	67	40.9250	58.7700	0.0362918	0.9993412	-0.9993412	0.0362918	-0.0100000
4	68	10.6550	59.6300	0.4893424	-0.8720917	0.8720917	0.4893424	-1.0000000
5	68	10.6550	59.6300	0.4893424	-0.8720917	0.8720917	0.4893424	-1.0000000
7	68	17.5250	66.7500	0.9944351	-0.1053515	0.1053515	0.9944351	-1.0000000
8	68	17.5250	66.7500	0.9944351	-0.1053515	0.1053515	0.9944351	-0.0100000
18	68	33.3260	39.9250	0.9940071	-0.1093160	0.1093160	0.9940071	-1.0000000
19	68	33.5270	39.9440	0.9935773	-0.1131556	0.1131556	0.9935773	-1.0000000
24	68	34.8080	39.5750	0.9994620	0.0327986	-0.0327986	0.9994620	-1.0000000
43	68	41.4870	58.8570	0.1893369	0.9819122	-0.9819122	0.1893369	-1.0000000
44	68	41.4870	58.8570	0.1893369	0.9819122	-0.9819122	0.1893369	-0.0100000
4	69	10.1580	59.9550	0.6740256	-0.7387080	0.7387080	0.6740256	-1.0000000
5	69	10.1580	59.9550	0.6740256	-0.7387080	0.7387080	0.6740256	-1.0000000
7	69	17.4620	67.5000	0.9847905	-0.1737459	0.1737459	0.9847905	-1.0000000
8	69	17.4620	67.5000	0.9847905	-0.1737459	0.1737459	0.9847905	-0.0100000
17	69	33.1970	40.6920	0.9840309	-0.1779976	0.1779976	0.9840309	-0.0100000
18	69	33.1970	40.6920	0.9840309	-0.1779976	0.1779976	0.9840309	-1.0000000
19	69	33.3990	40.7230	0.9837608	-0.1794844	0.1794844	0.9837608	-1.0000000
23	69	34.6400	40.2230	0.9997077	0.0241757	-0.0241757	0.9997077	-1.0000000
24	69	34.8290	40.2100	0.9999974	-0.0022844	0.0022844	0.9999974	-1.0000000
43	69	41.9870	59.1250	0.5723556	0.8200055	-0.8200055	0.5723556	-1.0000000
44	69	41.9870	59.1250	0.5723556	0.8200055	-0.8200055	0.5723556	-0.0100000
4	70	9.7900	60.1620	0.5019256	-0.8649108	0.8649108	0.5019256	-1.0000000
5	70	9.7900	60.1620	0.5019256	-0.8649108	0.8649108	0.5019256	-1.0000000
7	70	17.3620	68.2250	0.8756611	-0.4829261	0.4829261	0.8756611	-1.0000000
8	70	17.3620	68.2250	0.8756611	-0.4829261	0.4829261	0.8756611	-0.0100000
17	70	33.0230	41.4300	0.9785854	-0.2058412	0.2058412	0.9785854	-0.0100000
18	70	33.0230	41.4300	0.9785854	-0.2058412	0.2058412	0.9785854	-1.0000000

Appendix B

19	70	33.2310	41.4620	0.9806373	-0.1958329	0.1958329	0.9806373	-1.0000000
23	70	34.6130	40.7430	0.9997286	-0.0232990	0.0232990	0.9997286	-1.0000000
24	70	34.8080	40.7430	0.9997869	-0.0206469	0.0206469	0.9997869	-1.0000000
43	70	42.4750	59.5850	0.6230873	0.7821523	-0.7821523	0.6230873	-1.0000000
44	70	42.4750	59.5850	0.6230873	0.7821523	-0.7821523	0.6230873	-0.0100000
4	71	9.4325	60.0620	0.1084285	-0.9941043	0.9941043	0.1084285	-1.0000000
5	71	9.4325	60.0620	0.1084285	-0.9941043	0.9941043	0.1084285	-1.0000000
7	71	17.0250	68.8500	0.6407458	-0.7677531	0.7677531	0.6407458	-1.0000000
8	71	17.0250	68.8500	0.6407458	-0.7677531	0.7677531	0.6407458	-0.0100000
17	71	32.8710	42.1890	0.9917078	-0.1285131	0.1285131	0.9917078	-0.0100000
18	71	32.8710	42.1890	0.9917078	-0.1285131	0.1285131	0.9917078	-1.0000000
19	71	33.0910	42.2150	0.9929819	-0.1182664	0.1182664	0.9929819	-1.0000000
23	71	34.6290	41.2900	0.9954019	0.0957862	-0.0957862	0.9954019	-1.0000000
24	71	34.8240	41.2710	0.9938225	0.1109816	-0.1109816	0.9938225	-1.0000000
43	71	43.0620	60.0100	0.4570889	0.8894210	-0.8894210	0.4570889	-1.0000000
44	71	43.0620	60.0100	0.4570889	0.8894210	-0.8894210	0.4570889	-0.0100000
4	72	9.1625	60.2630	0.8397512	-0.5429713	0.5429713	0.8397512	-1.0000000
5	72	9.1625	60.2630	0.8397512	-0.5429713	0.5429713	0.8397512	-1.0000000
7	72	16.5130	69.2500	0.2858175	-0.9582841	0.9582841	0.2858175	-1.0000000
18	72	32.6880	42.9430	0.9531692	-0.3024376	0.3024376	0.9531692	-1.0000000
19	72	32.8960	43.0000	0.9531636	-0.3024552	0.3024552	0.9531636	-1.0000000
23	72	34.7090	41.7850	0.9730717	0.2305028	-0.2305028	0.9730717	-1.0000000
24	72	34.9040	41.7400	0.9762105	0.2168251	-0.2168251	0.9762105	-1.0000000
43	72	43.6250	60.3250	0.4178606	0.9085112	-0.9085112	0.4178606	-1.0000000
44	72	43.6250	60.3250	0.4178606	0.9085112	-0.9085112	0.4178606	-0.0100000
4	73	8.8700	60.7630	0.6413739	-0.7672285	0.7672285	0.6413739	-1.0000000
5	73	8.8700	60.7630	0.6413739	-0.7672285	0.7672285	0.6413739	-1.0000000
18	73	32.3440	43.7110	0.8784728	-0.4777924	0.4777924	0.8784728	-1.0000000
19	73	32.5130	43.8000	0.8829616	-0.4694452	0.4694452	0.8829616	-1.0000000
23	73	34.8130	42.2290	0.9726977	0.2320757	-0.2320757	0.9726977	-1.0000000
24	73	34.9950	42.1840	0.9786102	0.2057235	-0.2057235	0.9786102	-1.0000000
43	73	44.2370	60.5200	0.1495430	0.9887552	-0.9887552	0.1495430	-1.0000000
44	73	44.2370	60.5200	0.1495430	0.9887552	-0.9887552	0.1495430	-0.0100000
4	74	8.4350	61.1250	0.7369719	-0.6759234	0.6759234	0.7369719	-1.0000000
5	74	8.4350	61.1250	0.7369719	-0.6759234	0.6759234	0.7369719	-1.0000000
19	74	32.0570	44.4290	0.8754952	-0.4832268	0.4832268	0.8754952	-1.0000000
23	74	34.9240	42.6660	0.9686953	0.2482525	-0.2482525	0.9686953	-1.0000000
24	74	35.0820	42.6340	0.9829894	0.1836624	-0.1836624	0.9829894	-1.0000000
43	74	44.9630	60.6200	0.1629133	0.9866404	-0.9866404	0.1629133	-1.0000000
44	74	44.9630	60.6200	0.1629133	0.9866404	-0.9866404	0.1629133	-0.0100000
4	75	8.2275	61.6380	0.9511582	-0.3087040	0.3087040	0.9511582	-1.0000000
5	75	8.2275	61.6380	0.9511582	-0.3087040	0.3087040	0.9511582	-1.0000000
18	75	31.8430	44.9810	0.9966757	-0.0814712	0.0814712	0.9966757	-0.0100000
19	75	31.8430	44.9810	0.9966757	-0.0814712	0.0814712	0.9966757	-1.0000000
23	75	35.0350	43.0900	0.9773861	0.2114628	-0.2114628	0.9773861	-1.0000000
24	75	35.1680	43.0650	0.9813164	0.1924011	-0.1924011	0.9813164	-1.0000000
43	75	45.6120	60.7870	0.3792095	0.9253109	-0.9253109	0.3792095	-1.0000000
44	75	45.6120	60.7870	0.3792095	0.9253109	-0.9253109	0.3792095	-0.0100000
4	76	7.9500	61.9000	0.1601805	-0.9870877	0.9870877	0.1601805	-1.0000000
5	76	7.9500	61.9000	0.1601805	-0.9870877	0.9870877	0.1601805	-1.0000000
18	76	31.7810	45.5770	0.9644126	-0.2644018	0.2644018	0.9644126	-0.0100000
19	76	31.7810	45.5770	0.9644126	-0.2644018	0.2644018	0.9644126	-1.0000000
23	76	35.1350	43.5460	0.9788923	0.2043765	-0.2043765	0.9788923	-1.0000000
24	76	35.2740	43.5150	0.9694539	0.2452736	-0.2452736	0.9694539	-1.0000000
43	76	46.1750	61.0880	0.5301558	0.8479002	-0.8479002	0.5301558	-1.0000000
44	76	46.1750	61.0880	0.5301558	0.8479002	-0.8479002	0.5301558	-0.0100000
4	77	7.5625	62.1380	0.7725407	-0.6349652	0.6349652	0.7725407	-1.0000000
5	77	7.5625	62.1380	0.7725407	-0.6349652	0.6349652	0.7725407	-1.0000000
18	77	31.8620	46.1610	0.9407222	0.3391779	-0.3391779	0.9407222	-0.0100000
19	77	31.8620	46.1610	0.9407222	0.3391779	-0.3391779	0.9407222	-1.0000000
23	77	35.2170	44.0410	0.9972686	0.0738612	-0.0738612	0.9972686	-1.0000000
24	77	35.3680	44.0220	0.9868888	0.1614020	-0.1614020	0.9868888	-1.0000000
43	77	46.7630	61.3620	0.5048463	0.8632092	-0.8632092	0.5048463	-1.0000000
44	77	46.7630	61.3620	0.5048463	0.8632092	-0.8632092	0.5048463	-0.0100000
4	78	7.2700	62.6450	0.5539256	-0.8325662	0.8325662	0.5539256	-1.0000000
5	78	7.2700	62.6450	0.5539256	-0.8325662	0.8325662	0.5539256	-1.0000000
19	78	32.0820	46.7960	0.9803649	0.1971922	-0.1971922	0.9803649	-1.0000000
24	78	35.3280	44.5190	0.9819896	-0.1889350	0.1889350	0.9819896	-1.0000000
43	78	47.2750	61.7500	0.8320503	0.5547002	-0.5547002	0.8320503	-1.0000000
44	78	47.2750	61.7500	0.8320503	0.5547002	-0.5547002	0.8320503	-0.0100000
4	79	6.7950	62.6500	-0.3218375	-0.9467949	0.9467949	-0.3218375	-1.0000000

Appendix B

5	79	6.7950	62.6500	-0.3218375	-0.9467949	0.9467949	-0.3218375	-1.0000000
22	79	34.9190	44.8930	0.9080355	-0.4188932	0.4188932	0.9080355	-1.0000000
23	79	35.0390	44.9500	0.9217742	-0.3877271	0.3877271	0.9217742	-1.0000000
24	79	35.1770	44.9940	0.9677365	-0.2519643	0.2519643	0.9677365	-1.0000000
43	79	47.6500	62.3000	0.8591530	0.5117188	-0.5117188	0.8591530	-1.0000000
44	79	47.6500	62.3000	0.8591530	0.5117188	-0.5117188	0.8591530	-1.0000000
4	80	6.2000	62.5620	0.3957258	-0.9183687	0.9183687	0.3957258	-1.0000000
5	80	6.2000	62.5620	0.3957258	-0.9183687	0.9183687	0.3957258	-1.0000000
21	80	34.5790	45.2610	0.3922861	-0.9198433	0.9198433	0.3922861	-0.0100000
22	80	34.5790	45.2610	0.3922861	-0.9198433	0.9198433	0.3922861	-1.0000000
24	80	35.1270	45.5270	0.9896071	0.1437977	-0.1437977	0.9896071	-1.0000000
43	80	47.9870	62.8250	0.8646075	0.5024480	-0.5024480	0.8646075	-1.0000000
44	80	47.9870	62.8250	0.8646075	0.5024480	-0.5024480	0.8646075	-1.0000000
4	81	5.8175	62.9580	0.8627293	-0.5056661	0.5056661	0.8627293	-1.0000000
5	81	5.8175	62.9580	0.8627293	-0.5056661	0.5056661	0.8627293	-1.0000000
21	81	34.0510	45.3300	0.0077300	-0.9999701	0.9999701	0.0077300	-1.0000000
22	81	34.0510	45.3300	0.0077300	-0.9999701	0.9999701	0.0077300	-1.0000000
24	81	35.2770	46.0860	0.8954697	0.4451226	-0.4451226	0.8954697	-1.0000000
43	81	48.1570	63.6050	1.0000000	0.0000000	-0.0000000	1.0000000	-1.0000000
44	81	48.1570	63.6050	1.0000000	0.0000000	-0.0000000	1.0000000	-1.0000000
4	82	5.3925	63.2500	0.1675430	-0.9858648	0.9858648	0.1675430	-1.0000000
5	82	5.3925	63.2500	0.1675430	-0.9858648	0.9858648	0.1675430	-1.0000000
43	82	47.5570	65.0350	-0.8443334	0.5358183	-0.5358183	-0.8443334	-1.0000000
44	82	47.5570	65.0350	-0.8443334	0.5358183	-0.5358183	-0.8443334	-1.0000000
4	83	4.7575	63.1750	-0.2896261	-0.9571398	0.9571398	-0.2896261	-1.0000000
5	83	4.7575	63.1750	-0.2896261	-0.9571398	0.9571398	-0.2896261	-1.0000000
43	83	46.9900	66.4000	1.0000000	0.0000000	-0.0000000	1.0000000	-1.0000000
44	83	46.9900	66.4000	1.0000000	0.0000000	-0.0000000	1.0000000	-1.0000000
4	84	4.1875	63.2000	0.2911504	-0.9566773	0.9566773	0.2911504	-1.0000000
5	84	4.1875	63.2000	0.2911504	-0.9566773	0.9566773	0.2911504	-1.0000000
43	84	46.4300	67.2800	-0.7189829	0.6950278	-0.6950278	-0.7189829	-1.0000000
44	84	46.4300	67.2800	-0.7189829	0.6950278	-0.6950278	-0.7189829	-1.0000000
4	85	3.7200	63.5500	0.7358159	-0.6771816	0.6771816	0.7358159	-1.0000000
5	85	3.7200	63.5500	0.7358159	-0.6771816	0.6771816	0.7358159	-1.0000000
43	85	45.7200	68.9000	0.9884899	-0.1512869	0.1512869	0.9884899	-1.0000000
44	85	45.7200	68.9000	0.9884899	-0.1512869	0.1512869	0.9884899	-1.0000000
43	86	45.5500	70.8500	1.0000000	0.0000000	-0.0000000	1.0000000	-1.0000000
44	86	45.4500	70.8500	1.0000000	0.0000000	-0.0000000	1.0000000	-1.0000000
43	87	45.3000	72.9700	0.9684899	-0.2490529	0.2490529	0.9684899	-1.0000000
44	87	45.4500	72.9700	1.0000000	0.0000000	-0.0000000	1.0000000	-1.0000000
43	88	45.6700	75.0500	0.7587842	0.6513421	-0.6513421	0.7587842	-1.0000000
44	88	45.6700	75.0500	0.7587842	0.6513421	-0.6513421	0.7587842	-1.0000000
43	89	46.4100	77.1600	1.0000000	0.0000000	-0.0000000	1.0000000	-1.0000000
44	89	46.4100	77.1600	1.0000000	0.0000000	-0.0000000	1.0000000	-1.0000000
43	90	47.2800	79.0800	0.6587842	0.7523320	-0.7523320	0.6587842	-1.0000000
44	90	47.2800	79.0800	0.6587842	0.7523320	-0.7523320	0.6587842	-1.0000000
43	91	47.5800	80.5800	-0.8443334	0.5358183	-0.5358183	-0.8443334	-1.0000000
44	91	47.5800	80.5800	-0.8443334	0.5358183	-0.5358183	-0.8443334	-1.0000000
43	92	47.5700	82.4800	0.9219567	0.3872930	-0.3872930	0.9219567	-1.0000000
44	92	47.5500	82.4800	0.9219567	0.3872930	-0.3872930	0.9219567	-1.0000000
43	93	46.9700	83.5300	0.0669665	0.9977552	-0.9977552	0.0669665	-1.0000000
44	93	46.9700	83.6300	0.0669665	0.9977552	-0.9977552	0.0669665	-1.0000000
43	94	45.5100	83.9000	-0.6443334	0.7647447	-0.7647447	-0.6443334	-1.0000000
44	94	45.5100	83.9000	-0.6443334	0.7647447	-0.7647447	-0.6443334	-1.0000000
43	95	44.4500	84.6000	-0.4443334	0.8958615	-0.8958615	-0.4443334	-1.0000000
44	95	44.4500	84.6000	-0.4443334	0.8958615	-0.8958615	-0.4443334	-1.0000000
43	96	43.1300	84.8000	0.0669665	0.9977552	-0.9977552	0.0669665	-1.0000000
44	96	43.1300	84.8000	0.0669665	0.9977552	-0.9977552	0.0669665	-1.0000000
43	97	42.1100	84.9700	-0.6443334	0.7647447	-0.7647447	-0.6443334	-1.0000000
44	97	42.1100	84.9700	-0.6443334	0.7647447	-0.7647447	-0.6443334	-1.0000000

```
C71B FOOD CHAIN MODEL OUTPUT CONTROL
C
    NFDCHZ: NUMBER OF SPATIAL ZONES
    HBFDCH: AVERAGING DEPTH FOR TOP PORTION OF BED (METERS)
    TFCAVG: TIME AVERAGING INTERVAL FOR FOOD CHAIN OUTPUT (SECONDS)
C
C71B ISFDCH NFDCHZ HBFDCH TFCAVG
    0 0.1524 86400.
--------------------------------------------------------------------------------------772
CONTROLS FOR HORIZONTAL SURFACE ELEVATION OR PRESSURE CONTOURING
C72 CONTROLS FOR HORIZONTAL SURFACE ELEVATION OR PRESSURE CONTOURING |
    C
    ISPPH: 1 TO WRITE FILE FOR SURF ELEVATION CONTOURING
|
                    2 ~ W R I T E ~ O N L Y ~ D U R I N G ~ L A S T ~ R E F E R E N C E ~ T I M E ~ P E R I O D ~
            NPPPH: NUMBER OF WRITES PER REFERENCE TIME PERIOD
            ISRPPH: 1 TO WRITE FILE FOR RESIDUAL SURFACE ELEVATION CONTOURNG IN
                HORIZONTAL PLANE
            IPPHXY: O DOES NOT WRITE I,J,X,Y IN surfplt.out and rsurfplt.out FILES
                    1 WRITES I,J ONLY IN surfplt.out and rsurfplt.out FILES
                    2 WRITES I,J,X,Y IN surfplt.out and rsurfplt.out FILES
                    3 WRITES EFDC EXPLORER BINARY FORMAT FILES
C
C72 ISPPH NPPPH ISRPPH IPPHXY ।
-------------------------------------------------------------------------------------------
C73 CONTROLS FOR HORIZONTAL PLANE VELOCITY VECTOR PLOTTING
C
            ISVPH: 1 TO WRITE FILE FOR VELOCITY PLOTTING IN HORIZONTAL PLANE
                    2 WRITE ONLY DURING LAST REFERENCE TIME PERIOD
            NPVPH: NUMBER OF WRITES PER REFERENCE TIME PERIOD
            ISRVPH: 1 TO WRITE FILE FOR RESIDUAL VELOCITY PLOTTIN IN
                HORIZONTAL PLANE
            IVPHXY: O DOES NOT WRITE I,J,X,Y IN velplth.out and rvelplth.out FILES
            1 WRITES I,J ONLY IN velplth.out and rvelplth.out FILES
                    2 \text { WRITES I,J,X,Y IN velplth.out and rvelplth.out FILES}
                    3 WRITES EFDC EXPLORER BINARY FORMAT FILES
C
C73 ISVPH NPVPH ISRVPH IVPHXY
```



```
C74 CONTROLS FOR VERTICAL PLANE SCALAR FIELD CONTOURING
C
            ISECSPV: N AN INTEGER NUMBER OF VERTICAL SECTIONS (N.LE.9) TO WRITE 
                N FILES FOR SCALAR FIELD CONTOURING
            NPSPV: NUMBER OF WRITES PER REFERENCE TIME PERIOD
            ISSPV: 1 TO ACTIVATE INSTANTANEOUS SCALAR FIELDS
            2 ~ T O ~ W R I T E ~ O N L Y ~ D U R I N G ~ L A S T ~ R E F E R E N C E ~ T I M E ~ P E R I O D ~
            ISRSPV: 1 TO ACTIVATE FOR RESIDUAL SCALAR FIELDS
            ISHPLTV: 1 FOR VERTICAL PLANE PLOTTING FOR MSL DATUMS, ZERO OTHERWISE
            DATA LINE REPEATS 7 TIMES FOR SAL,TEM,DYE,SFL,TOX,SED,SND
            ISECSPV IS DETERMINED FOR ALL 7 VARIABLES BY VALUE ON FIRST DATA LINE
C
\begin{tabular}{cccccc} 
C74 4 ISECSPV & NPSPV & ISSPV & ISRSPV & ISHPLTV & \\
1 & 6 & 0 & 0 & 1 & !SAL \\
0 & 6 & 0 & 0 & 1 & !TEM \\
0 & 6 & 0 & 0 & 1 & !DYE \\
0 & 6 & 0 & 0 & 1 & !SFL \\
0 & 6 & 0 & 0 & 1 & !TOX \\
0 & 6 & 0 & 0 & 1 & !SED
\end{tabular}
```



```
            2 TO WRITE TO 3D CHARACTER ARRAY FORMAT FILES (NOT ACTIVE) |
            3 TO WRITE TO 3D HDF IMAGE FORMAT FILES (NOT ACTIVE)
            4 ~ T O ~ W R I T E ~ T O ~ 3 D ~ H D F ~ F L O A T I N G ~ P O I N T ~ F O R M A T ~ F I L E S ~ ( N O T ~ A C T I V E ) ~
                ISR3DO: SAME AS IS3DO EXCEPT FOR RESIDUAL VARIABLES
                NP3DO: NUMBER OF WRITES PER LAST REF TIME PERIOD FOR INST VARIABLES
                KPC: NUMBER OF UNSTRETCHED PHYSICAL VERTICAL LAYERS
                NWGG: IF NWGG IS GREATER THAN ZERO, NWGG DEFINES THE NUMBER OF !2877।
                    WATER CELLS IN CARTESIAN 3D GRAPHICS GRID OVERLAY OF THE
                        CURVILINEAR GRID. FOR NWGG>0 AND EFDC RUNS ON A CURVILINEAR
                        GRID, I3DMI,I3DMA,J3DMI,J3DMA REFER TO CELL INDICES ON THE
                                    ON THE CARTESIAN GRAPHICS GRID OVERLAY DEFINED BY FILE
                                    gcell.inp. THE FILE gcell.inp IS NOT USED BY EFDC, BUT BY
                                    THE COMPANION GRID GENERATION CODE GEFDC.F. INFORMATION
                                    DEFINING THE OVERLAY IS READ BY EFDC.F FROM THE FILE
                                    gcellmp.inp. IF NWGG EQUALS 0, I3DMI,I3DMA,J3DMI,J3DMA REFER
                                    TO INDICES ON THE EFDC GRID DEFINED BY cell.inp.
                                    ACTIVATION OF THE REWRITE OPTION I3DRW=1 WRITES TO THE FULL
                                    GRID DEFINED BY cell.inp AS IF cell.inp DEFINES A CARTESIAN
                                    GRID. IF NWGG EQ O AND THE EFDC COMP GRID IS CO, THE REWRITE |
                    OPTION IS NOT RECOMMENDED AND A POST PROCESSOR SHOULD BE USED |
                        TO TRANSFER THE SHORT FORM, I3DRW=0, OUTPUT TO AN APPROPRIATE |
                    FORMAT FOR VISUALIZATION. CONTACT DEVELOPER FOR MORE DETAILS |
I3DMI: MINIMUM OR BEGINNING I INDEX FOR 3D ARRAY OUTPUT |
I3DMA: MAXIMUM OR ENDING I INDEX FOR 3D ARRAY OUTPUT
J3DMI: MINIMUM OR BEGINNING J INDEX FOR 3D ARRAY OUTPUT
J3DMA: MAXIMUM OR ENDING J INDEX FOR 3D ARRAY OUTPUT
I3DRW: O FILES WRITTEN FOR ACTIVE CO WATER CELLS ONLY
    1 REWRITE FILES TO CORRECT ORIENTATION DEFINED BY gcell.inp
        AND gcellmp.inp FOR CO WITH NWGG.GT.O OR BY cell.inp IF THE
        COMPUTATIONAL GRID IS CARTESIAN AND NWGG.EQ.O
        SELVMAX: MAXIMUM SURFACE ELEVATION FOR UNSTRETCHING (ABOVE MAX SELV )
        BELVMIN: MINIMUM BOTTOM ELEVATION FOR UNSTRETCHING (BELOW MIN BELV)
C
C80 IS3DO ISR3DO NP3DO KPC NWGG I3DMI I3DMA J3DMI J3DMA I3DRW SELVMAX BELVMIN |
```



```
-------------------------------------------------------------------------------------------------------
C81 OUTPUT ACTIVATION AND SCALES FOR 3D FIELD OUTPUT
C
    VARIABLE: DUMMY VARIBLE ID (DO NOT CHANGE ORDER) |
    IS3(VARID): 1 TO ACTIVATE THIS VARIBLES |
    JS3(VARID): 0 FOR NO SCALING OF THIS VARIABLE
    1 ~ F O R ~ A U T O ~ S C A L I N G ~ O F ~ T H I S ~ V A R I A B L E ~ O V E R ~ R A N G E ~ 0 < V A L < 2 5 5 ~
                        AUTO SCALES FOR EACH FRAME OUTPUT IN FILES out3d.dia AND |
                        rout3d.dia OUTPUT IN I4 FORMAT
    2 ~ F O R ~ S C A L I N G ~ S P E C I F I E D ~ I N ~ N E X T ~ T W O ~ C O L U M N S ~ W I T H ~ O U T P U T ~
    DEFINED OVER RANGE 0<VAL<255 AND WRITTEN IN I4 FORMAT
    3 ~ F O R ~ M U L T I P L I E R ~ S C A L I N G ~ B Y ~ M A X ~ S C A L E ~ V A L U E ~ W I T H ~ O U T P U T ~
        WRITTEN IN F7.1 FORMAT (IS3DO AND ISR3DO MUST BE 1)
C
\begin{tabular}{lllrr} 
'U VEL' & 1 & 3 & 100.0 & -1.0 \\
'V VEL' & 1 & 3 & 100.0 & -1.0 \\
'W VEL' & 0 & 0 & 1000.0 & \(-1.0 \mathrm{E}-3\) \\
'SALINITY' & 1 & 3 & 1.0 & 0.0 \\
'TEMP' & 1 & 3 & 1.0 & 10.0 \\
'DYE' & 0 & 0 & 1000.0 & 0.0 \\
'COH SED' & 1 & 3 & 1000.0 & 0.0 \\
'NCH SED' & 1 & 3 & 1000.0 & 0.0 \\
'TOX CON' & 1 & 3 & 1000.0 & 0.0
\end{tabular}
----------------------------------------------------------------------------------------
C82 INPLACE HARMONIC ANALYSIS PARAMETERS
C
ISLSHA: 1 FOR IN PLACE LEAST SQUARES HARMONIC ANALYSIS


```

C90 MMLVSFP TIMVSFP IVSFP JVSFP |


```
```


<-- set first character to "\#" to use extended annotation in this file

C--
CO1 MAIN TITLE CARDS
C
C TITLE(M), M=1,3
C
C01 THREE TITLE CARDS FOLLOW:
': Cape Fear River Water Quality Model'
': Variable stream flow and variable NPDES discharges'
': using tetratech input files'
C--
C02 I/O CONTROL VARIABLE CARD
C
CO2 ONE TITLE CARD FOLLOWS:

$$
C02 I/O control variables
$$
C02
C IWQLVL = kinetic complexity level
1 WASP5 LEVEL KINETICS (SINGLE ORGANIC CARBON, PHOSPHOROUS, AND
NITROGEN CLASSES + REACTIVE DOC/CBOD VARIABLE)
2 INTERMEDIATE LEVEL KINETICS (TOTAL REFRACTORY AND TOTAL LABILE
ORGANIC CARBON, PHOSPHOROUS, AND NITROGEN CLASSES
+ REACTIVE DOC/CBOD)
3 CE-QUAL-ICM (ORIGINAL CHES BAY VARIABLES)
4 EXTENDED CE-QUAL-ICM (4 ORGANIC CARBON, PHOSPHOROUS, AND
NITROGEN CLASSES + REACTIVE DOC/CBOD VARIABLE)
NWQV = number of water quality water column variables
NWQZ = max. number of spatial zones having varying water quality parameters
NWQPS = max. number of water quality point source locations
NWQTD = number of data points in the temperature lookup table
NWQTS = max. number of water quality time-series output locations
NTSWQV = max. number of water quality time-series output variables
NSMG = number of sediment model groups (= 3)
NSMZ = max. number of sediment model spatial variation zones
NTSSMV = max. number of sediment model time-series output variables
NSMTS = not used
NWQKDPT = number of kinetic updates per transport update
C
C02 IWQLVL NWQV NWQZ NWQPS NWQTD NWQTS NTSWQV NSMG NSMZ NTSSMV NSMTS NWQKDPT
3 21 1 1 3 3 % 551 22 m
CO2A TRANSPORT BYPASS FLAGS

C	B	B	B	R	L	D	R	L	D	P	R	L	D	N	N	S	S	C	D	T	F
C	c	d	g	P	P	0	P	P	0	\bigcirc	P	P	0	H	0	U	A	\bigcirc	\bigcirc	A	C
C				0	0	C	\bigcirc	0	P	4	0	0	N	4	3			D		M	
C				C	C		P	P		t	N	N									
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0

C03
IWQDT = number of water quality time steps per hydrodynamic time step
=1 for 2 time level hydrodynamic and =2 for three time level
IWQM = full or reduced model switch (1=full model; 2=reduced model)
C IWQBEN = benthic flux model switch (0=specified flux; 1=predictive flux, 2
predictive flux w/ time and space variation)
C IWQSI = switch to activate silica state variables (0=off; 1=activated)
C IWQFCB = switch to activate fecal coliform bacteria (0=off; 1=activated)
C IWQSRP = switch for sediment sorption (1=TAM sorption; 2=sediment sorption)
C IWQSTOX = cyanobacteria salinity toxicity switch (0=no toxicity; 1=toxicity)
C IWQKA = reaeration option
C = 0, constant reaeration (WQKRO), no wind reaeration
C = 1, constant reaeration (WQKRO) plus wind reaeration
C = 2, use O'Connor-Dobbins (1958) formula
C = 3, use Owens \& Gibbs (1964) formula
C = 4, modified Owens \& Gibbs (1964) formula (for Christina River)

```









```

C38 SIX TITLE CARDS FOLLOW:

$$
C38 EAST OPEN BOUNDARY
$$

\$\$ TIME SERIES ID'S FOR EACH STATE VARIABLE

\$ I	J	B	B	B	R	L	D	R	L	D	P	R	L	D	N	N	S	S	c	D	T
\$		c	d	9	P	P	0	P	P	0	0	P	P	0	H	0	U	A	0	0	A
\$					\bigcirc	0	C	\bigcirc	0	P	4	0	\bigcirc	N	4	3			D		M
\$					c	c		P	P		t	N	N								
35	44	0	O	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	1	0

C---
C39 FIVE TITLE CARDS FOLLOW:

$$
C39 EAST OPEN BOUNDARY
$$

\$\$ CONSTANT BOTTOM CONCENTRATION BC'S

$\$$	I	J	BC	Bd	Bg	RPOC	LPOC	DOC		
$\$$			RPOP	LPOP	DOP	PO4t	RPON	LPON	DON	
$\$$		NH4	NO3	SU	SA	COD	DO	TAM	FCB	
35	44	0.0	0.0	0.3	0.1	0.0	0.1			
		0.05	0.0	0.05	0.1	0.2	0.0	0.2		
			0.04	0.08	0.0	0.0	0.0	0.0	0.0	0.0

```

```

C41 SIX TITLE CARDS FOLLOW:

$$
C41 NORTH OPEN BOUNDARY
$$

\$\$ TIME SERIES ID'S FOR EACH STATE VARIABLE

\$ I	J	B	B	B	R	L	D	R	L	D	P	R	L	D	N	N	S	S	C	D		F
\$		c	d	g	P	P	0	P	P	0	\bigcirc	P	P	0	H	0	U	A	\bigcirc	0		C
\$					\bigcirc	0	C	\bigcirc	0	P	4	0	0	N	4	3			D			
\$					C	C		P	P		t	N	N									

C42 FIVE TITLE CARDS FOLLOW:

$$
C42 NORTH OPEN BOUNDARY
$$

$$
CONSTANT BOTTOM CONCENTRATION BC'S
```

```
C44 ONE TITLE CARD FOLLOWS:
$$ C44 constant ICs (g/m^3): TAM(mol/m^3), FCB(MPN/100mL) \$\$

C44
C Definitions:
C BC = cyanobacteria
C Bd = algae diatoms
C Bg = algae greens
C RPOC = refractory particulate carbon
C LPOC = labile particulate carbon
C DOC = dissolved organic carbon
C RPOP = refractory particulate organic phosphorus
C LPOP = labile particulate organic phosphorus

```

```

C FNO3 = benthic flux rate of nitrite+nitrite nitrogen
C FSAD = benthic flux rate of silica
C FCOD = benthic flux rate of chemical oxygen demand
C SOD = sediment oxygen demand rate
C
C47 FPO4 FNH4 FNO3 FSAD FCOD SOD
0.000 0.000 -0.05 0.000 0.000 -0.50

```
C48 ONE TITLE CARD FOLLOWS:
\$\$ C48 const PS (kg/d): PSQ(m^3/s),DO(g/m^3),TAM(kmol/d),FCB(MPN/100mL)
C48
C IWQPS = number of point sources
C NPSTMSR = number of point source time series
C
C48 const PS (kg/d): PSQ(m^3/s),DO(g/m^3),TAM(kmol/d),FCB(MPN/100mL)
C IWQPS NPSTMSR
C IWQPS NPSTMSR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 8 & & & & & & & & & & & \\
\hline C & I & J & K & N & PSQ & BC & Bd & Bg & RPOC & LPOC & DOC & \\
\hline C & & & & S & RPOP & LPOP & DOP & PO4t & RPON & LPON & DON & \\
\hline C & & & & R & NH4 & NO3 & SU & SA & COD & DO & TAM & FCB \\
\hline & 4 & 32 & 0 & 1 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & DUPONT- \\
\hline \multicolumn{13}{|l|}{WILMINGTON/BRUNSWICK} \\
\hline & & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline & & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 4 & 32 & 0 & 2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & DUPONT- \\
\hline
\end{tabular}
WILMINGTON/BRUNSWICK
\(0.0 \quad 0.0\)
    \(\begin{array}{lllll}4 & 32 & 0 & 3 & 0 .\end{array}\)
        0.0
    \(0.0 \quad 0.0\)
    \(\begin{array}{lllll}4 & 27 & 0 & 4 & 0.0\end{array}\)
SPECIALTIES-WILMINGTON
    \(0.0 \quad 0.0\)
    0.0
SPECIALTIES-WILMINGTON
    \(\begin{array}{llllllll}0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\end{array}\)
\(\begin{array}{lllllllllll}4 & 63 & 0 & 6 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\end{array}\)
PAPER BD CO-RIEGELWD
\begin{tabular}{llllllll}
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0
\end{tabular}
\begin{tabular}{cccccccccc}
23 & 10 & 0 & 8 \\
TOWN-WWTP/SOUTHPORT
\end{tabular}

WWTP
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|l|}{} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & . 0 \\
\hline 23 & 18 & 0 & 13 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & ARCHER \\
\hline \multicolumn{13}{|l|}{DANIELS MIDLAND CO.} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{0}} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline 4 & 31 & 0 & 14 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & TAKEDA \\
\hline \multicolumn{13}{|l|}{CHEMICAL PRODUCTS} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{0.0}} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline 4 & 31 & 0 & 14 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & TAKEDA \\
\hline \multicolumn{13}{|l|}{CHEMICAL PRODUCTS, number 2} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|l|}{} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 4 & 15 & 0 & 15 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & Leland \\
\hline \multicolumn{13}{|l|}{INDUSTRIAL PARK WWTP} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|l|}{} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & . 0 \\
\hline 18 & 72 & 0 & 16 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & BELVILLE, \\
\hline \multicolumn{13}{|l|}{TOWN - WWTP} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|l|}{} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & . 0 \\
\hline 4 & 27 & 0 & 17 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & FORTRON \\
\hline \multicolumn{13}{|l|}{INDUSTRIES} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{0.0}} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline 4 & 85 & 0 & 18 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & cape fear \\
\hline \multicolumn{13}{|l|}{} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|l|}{} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & . 0 \\
\hline 7 & 72 & 0 & 19 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & black \\
\hline \multicolumn{13}{|l|}{river} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{0.0}} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline 43 & 97 & 0 & 20 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & ne cape \\
\hline \multicolumn{13}{|l|}{fear river} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|l|}{} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 43 & 21 & 0 & 21 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & NE Cape \\
\hline \multicolumn{13}{|l|}{Fear, estuary 1} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{0}} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline 43 & 35 & 0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & NE Cape \\
\hline \multicolumn{13}{|l|}{Fear, estuary 2} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|l|}{} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 43 & 93 & 0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & ! & NE Cape \\
\hline \multicolumn{13}{|l|}{Fear, estuary 3} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \multicolumn{2}{|l|}{} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 43 & 87 & 0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & NE Cape \\
\hline \multicolumn{13}{|l|}{Fear, estuary 4} \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 43 & 47 & 0 & 25 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & NE Cape \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{Fear, estuary 5 0 0}} \\
\hline & & & & & & & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline 43 & 79 & 0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & NE Cape \\
\hline \multicolumn{13}{|l|}{\multirow[t]{3}{*}{\(\begin{array}{llllllll}\text { Fear, estuary 6 } & & & \\ & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\end{array}\)}} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline \multicolumn{8}{|l|}{C51 ONE TITLE CARD FOLLOWS:} \\
\hline \multicolumn{4}{|l|}{\$\$ C51 File names for spatially/temp} & va & param & 10 & \\
\hline \multicolumn{6}{|l|}{Restart file for end spatial distribution \(=\) wq3drst.out} & & \\
\hline \multicolumn{4}{|l|}{File for initial conditions (ICIFN)} & \(=\mathrm{N}\) & IFN. & & \\
\hline File & gal g & resp & d ( & \(=\mathrm{N}\) & RFN. & & \\
\hline File f & trlin & lgae & (STI & \(=\mathrm{N}\) & FN. & & \\
\hline Input & for I & KT, & SUNFN) & \(=\mathrm{N}\) & NFN. & & \\
\hline Input & for b & flu & BENFN) & \(=\mathrm{b}\) & tse & & \\
\hline \multicolumn{2}{|l|}{Input file for p} & sourc & ut (P & \(=\mathrm{N}\) & FN. & & \\
\hline \multicolumn{5}{|l|}{File for NPS input inc/atm input (NPLFN) \(=\mathrm{N}\)} & FN. & & \\
\hline \multicolumn{5}{|l|}{Diagnostic file-negative conc. (NCOFN) = N} & 3 dnc & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{912.50} \\
\hline 1 & 0.0 & 0.0 & -0.0278 & 0.0 & 0.0 & -0.696 \\
\hline 2 & 0.0 & 0.0 & -0.0300 & 0.0 & 0.0 & -1.044 \\
\hline \multicolumn{7}{|l|}{942.92} \\
\hline 1 & 0.0 & 0.0 & -0.0255 & 0.0 & 0.0 & -0.638 \\
\hline 2 & 0.0 & 0.0 & -0.0300 & 0.0 & 0.0 & -0.956 \\
\hline \multicolumn{7}{|l|}{973.33} \\
\hline 1 & 0.0 & 0.0 & -0.0214 & 0.0 & 0.0 & -0.535 \\
\hline 2 & 0.0 & 0.0 & -0.0300 & 0.0 & 0.0 & -0.803 \\
\hline \multicolumn{7}{|l|}{1003.75} \\
\hline 1 & 0.0 & 0.0 & -0.0180 & 0.0 & 0.0 & -0.449 \\
\hline 2 & 0.0 & 0.0 & -0.0270 & 0.0 & 0.0 & -0.674 \\
\hline \multicolumn{7}{|l|}{1034.17} \\
\hline 1 & 0.0 & 0.0 & -0.0134 & 0.0 & 0.0 & -0.336 \\
\hline 2 & 0.0 & 0.0 & -0.0202 & 0.0 & 0.0 & -0.504 \\
\hline \multicolumn{7}{|l|}{1064.58} \\
\hline 1 & 0.0 & 0.0 & -0.0089 & 0.0 & 0.0 & -0.223 \\
\hline 2 & 0.0 & 0.0 & -0.0134 & 0.0 & 0.0 & -0.335 \\
\hline \multicolumn{7}{|l|}{1095.00} \\
\hline 1 & 0.0 & 0.0 & -0.0075 & 0.0 & 0.0 & -0.188 \\
\hline 2 & 0.0 & 0.0 & -0.0113 & 0.0 & 0.0 & -0.281 \\
\hline \multicolumn{7}{|l|}{1125.42} \\
\hline 1 & 0.0 & 0.0 & -0.0080 & 0.0 & 0.0 & -0.199 \\
\hline 2 & 0.0 & 0.0 & -0.0119 & 0.0 & 0.0 & -0.298 \\
\hline \multicolumn{7}{|l|}{1155.83} \\
\hline 1 & 0.0 & 0.0 & -0.0095 & 0.0 & 0.0 & -0.237 \\
\hline 2 & 0.0 & 0.0 & -0.0142 & 0.0 & 0.0 & -0.355 \\
\hline \multicolumn{7}{|l|}{1186.25} \\
\hline 1 & 0.0 & 0.0 & -0.0134 & 0.0 & 0.0 & -0.336 \\
\hline 2 & 0.0 & 0.0 & -0.0202 & 0.0 & 0.0 & -0.504 \\
\hline \multicolumn{7}{|l|}{1216.67} \\
\hline 1 & 0.0 & 0.0 & -0.0180 & 0.0 & 0.0 & -0.449 \\
\hline 2 & 0.0 & 0.0 & -0.0270 & 0.0 & 0.0 & -0.674 \\
\hline \multicolumn{7}{|l|}{1247.08} \\
\hline 1 & 0.0 & 0.0 & -0.0241 & 0.0 & 0.0 & -0.601 \\
\hline 2 & 0.0 & 0.0 & -0.0300 & 0.0 & 0.0 & -0.902 \\
\hline \multicolumn{7}{|l|}{1277.50} \\
\hline 1 & 0.0 & 0.0 & -0.0278 & 0.0 & 0.0 & -0.696 \\
\hline 2 & 0.0 & 0.0 & -0.0300 & 0.0 & 0.0 & -1.044 \\
\hline \multicolumn{7}{|l|}{1307.92} \\
\hline 1 & 0.0 & 0.0 & -0.0255 & 0.0 & 0.0 & -0.638 \\
\hline 2 & 0.0 & 0.0 & -0.0300 & 0.0 & 0.0 & -0.956 \\
\hline \multicolumn{7}{|l|}{1338.33} \\
\hline 1 & 0.0 & 0.0 & -0.0214 & 0.0 & 0.0 & -0.535 \\
\hline 2 & 0.0 & 0.0 & -0.0300 & 0.0 & 0.0 & -0.803 \\
\hline \multicolumn{7}{|l|}{1368.75} \\
\hline 1 & 0.0 & 0.0 & -0.0180 & 0.0 & 0.0 & -0.449 \\
\hline 2 & 0.0 & 0.0 & -0.0270 & 0.0 & 0.0 & -0.674 \\
\hline \multicolumn{7}{|l|}{1399.17} \\
\hline 1 & 0.0 & 0.0 & -0.0134 & 0.0 & 0.0 & -0.336 \\
\hline 2 & 0.0 & 0.0 & -0.0202 & 0.0 & 0.0 & -0.504 \\
\hline \multicolumn{7}{|l|}{1429.58} \\
\hline 1 & 0.0 & 0.0 & -0.0089 & 0.0 & 0.0 & -0.223 \\
\hline 2 & 0.0 & 0.0 & -0.0134 & 0.0 & 0.0 & -0.335 \\
\hline \multicolumn{7}{|l|}{1465.00} \\
\hline 1 & 0.0 & 0.0 & -0.0075 & 0.0 & 0.0 & -0.188 \\
\hline 2 & 0.0 & 0.0 & -0.0113 & 0.0 & 0.0 & -0.281 \\
\hline
\end{tabular}```


[^0]:    Assumptions
    $\mathrm{DOC}=\mathrm{BODu} * \mathrm{C}$ to O 2 molecular weight ratio
    $\mathrm{ON}=(\mathrm{TN}-\mathrm{NH} 4) * .25$
    OP = DON

