Formulas for Land Application of Residuals - Page 1 of 2

Dry weight concentration
$$mg/kg = \frac{mg/L}{\% \text{ solids}}$$

Wet weight concentration
$$mg/L = mg/kg \times % solids$$

Pounds per dry ton | Ibs/dry ton =
$$mg/kg \times 0.002$$

Gallons =
$$\frac{\text{dry tons x 2000 lbs/ton}}{8.34 \text{ lbs/gal x \% solids}}$$

Pounds per year (lbs/year) = $mg/L \times MGY$ (annual effluent application) $\times 8.34$ lb/gal

Dry tons per acre dry tons/ac =
$$\frac{\text{# dry tons}}{\text{# acres}}$$

Dry tons per acre
$$dry tons/ac = wet tons/ac x % solids$$

Plant Available Nitrogen (PAN), mg/kg

For Surface Application:
$$[MR \times (TKN - NH_4^+)] + (0.5 \times NH_4^+) + NO_3^- + NO_2^-$$

For Subsurface Application:
$$[MR \times (TKN - NH_4^+)] + NH_4^+ + NO_3^- + NO_2^-$$

Wet tons per acre wet tons/ac =
$$\frac{\text{dry tons/ac}}{\text{% solids}}$$

Formulas for Land Application of Residuals – page 2 of 2

Gallons per cubic yard gal/yd³ =
$$\frac{201.974 \text{ gal}}{\text{yd}^3}$$

Cubic yards to dry tons =
$$yd^3 \times %$$
 solids x 201.974 gal/yd³ x 8.34 lbs/gal x 1 dry tons/2000 lbs = $\frac{dry}{ton}$

Dry tons to cubic yards =
$$\frac{\text{dry tons } \times 2000 \text{ lbs/dry ton}}{\text{% solids } \times 201.974 \text{ gal/yd}^3 \times 8.34 \text{ lbs/gal}} = \text{yd}^3$$

Pounds per acre = lbs/dry ton x dry tons/acre

Lime Based Application
Rate (dry tons/ac) = ALE of residuals/1 ton ag-lime x Recommended tons ag-lime/acre

Sodium Adsorption Ratio (SAR) =
$$\frac{Na^+}{\sqrt{\frac{1}{2}(Ca^{2+} + Mg^{2+})}}$$
 **Units are milliequivalents/liter (meq/L)

**Milliequivalents/liter (meq/L) =
$$\frac{\text{concentration (mg/L)}}{\text{equivalent weight}}$$

Exchangeable Sodium =
$$\frac{\text{Na meq/100g}}{\text{CEC meq/100g}}$$
 x 100

1 acre = 43560 square feet