Formulas for Land Application of Residuals - Page 1 of 2

Dry weight concentration $\quad \mathrm{mg} / \mathrm{kg}=\frac{\mathrm{mg} / \mathrm{L}}{\% \text { solids }}$

Plant Available Nitrogen (PAN), mg/kg

For Surface Application: $\quad\left[\mathrm{MR} \times\left(\mathrm{TKN}-\mathrm{NH}_{4}{ }^{+}\right)\right]+\left(0.5 \times \mathrm{NH}_{4}{ }^{+}\right)+\mathrm{NO}_{3}{ }^{-}+\mathrm{NO}_{2}{ }^{-}$

For Subsurface Application: $\left[\mathrm{MR} \mathrm{x}\left(\mathrm{TKN}-\mathrm{NH}_{4}{ }^{+}\right)\right]+\mathrm{NH}_{4}{ }^{+}+\mathrm{NO}_{3}{ }^{-}+\mathrm{NO}_{2}{ }^{-}$

Application Rate (dry tons/ac) $=\frac{\text { PAN residuals need to supply (lb/ac) }}{\text { PAN in residuals (lb/dry ton) }}$

Wet tons per acre wet tons/ac $=\frac{\text { dry tons/ac }}{\% \text { solids }}$

Formulas for Land Application of Residuals - page 2 of 2

Gallons per cubic yard $\mathrm{gal}_{\mathrm{yd}}{ }^{3}=\frac{201.974 \mathrm{gal}}{\mathrm{yd}^{3}}$

Cubic yards to dry tons $=\mathrm{yd}^{3} \times \%$ solids $\times 201.974{\mathrm{gal} / \mathrm{yd}^{3} \times 8.34 \mathrm{lbs} / \mathrm{gal} \times 1 \text { dry tons } / 2000 \mathrm{lbs}=\frac{\mathrm{dry}}{\text { ton }}}^{\text {to }}$

Dry tons to cubic yards $=\frac{\text { dry tons } \times 2000 \mathrm{lbs} / \mathrm{dry} \text { ton }}{\% \text { solids } \times 201.974 \mathrm{gal} / \mathrm{yd}^{3} \times 8.34 \mathrm{lbs} / \mathrm{gal}}=\mathrm{yd}^{3}$

Acres needed $=\quad \frac{\text { dry tons produced }}{\text { application rate (dry tons/ac) }}$

Pounds per acre $=\mathrm{lbs} /$ dry ton x drytons/acre

Lime Based Agronomic
Loading Rate (dry tons/ac)

Lime Based Application
Rate (dry tons/ac)

Sodium Adsorption Ratio (SAR) $=\frac{\mathrm{Na}^{+}}{\sqrt{1 / 2\left(\mathrm{Ca}^{2+}+\mathrm{Mg}^{2+}\right)}} \quad * *$ Units are milliequivalents/liter

$$
* * \text { Milliequivalents/liter }(\mathrm{meq} / \mathrm{L})=\frac{\text { concentration }(\mathrm{mg} / \mathrm{L})}{\text { equivalent weight }}
$$

$\begin{aligned} & \text { Exchangeable Sodium } \\ & \text { Percentage (ESP) }\end{aligned}=\frac{\text { Na meq/100g }}{\text { CEC meq/100g }} \quad x 100$

1 acre $=43560$ square feet

