Memorandum of Agreement Among The State of North Carolina's Division of Water Resources, The Yadkin/Pee Dee River Basin Association Permittees, and The Yadkin/Pee Dee River Basin Association

Yadkin/Pee-Dee River Basin Association

Effective: September 1, 2023 through August 31, 2028

Amended: Jan 2024

MEMORANDUM OF AGREEMENT

This Memorandum of Agreement (MOA) is entered into this 31st day of August 2023, by and among the NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY'S DIVISION OF WATER RESOURCES (DWR), the NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGERS in the Yadkin/Pee Dee River Basin Association who have voluntarily executed this MOA (YPDRBA PERMITTEES), and the YADKIN/PEE DEE RIVER BASIN ASSOCIATION (YPDRBA), a non-profit corporation whose members include the YPDRBA PERMITTEES (see Table 1).

WITNESSETH, THAT,

Whereas, the YPDRBA Permittees have instream (e.g., upstream and downstream) monitoring requirements in their respective NPDES permits pursuant to Federal and State law.

Whereas, the DWR has obligations to collect water quality data, which it uses for various purposes, including but not limited to enforcement, regulatory, scientific, and educational purposes.

Whereas, DWR has discretion in determining instream sampling locations in the context of NPDES permitting.

Whereas, all parties to this MOA benefit from the collection of instream water quality data in the Yadkin/Pee Dee River Basin.

NOW, THEREFORE, in consideration of mutual benefits that will accrue to each party, the parties agree as follows:

Purpose:

- The purpose of this MOA is to:
 - 1) facilitate the collection of instream water quality data for parameters that are of interest to all parties to this MOA;
 - 2) facilitate the collection of instream water quality data at preferred sampling locations (i.e., to reduce duplicative sampling locations and to sample at locations that would otherwise not be sampled);
 - 3) facilitate the collection of instream water quality data at frequencies that provide useful information to all parties to this MOA;
 - 4) leverage the resources available to the parties of this MOA for instream sampling; and
 - 5) provide all parties with consistent and robust instream water quality data for the Yadkin/Pee Dee River Basin.

General Provisions:

- This MOA only applies to the collection and submission of instream water quality monitoring data for the parameters, locations, and frequencies identified in Table 2.
- Nothing in this MOA precludes DWR from requesting YPDRBA Permittees or YPDRBA to take additional samples. Similarly, there is nothing in this MOA that precludes YPDRBA Permittees or YPDRBA to voluntarily conduct and submit sampling data to DWR in addition

to what is set forth in Table 2, including hardness and emerging contaminants.

- This MOA does not relieve YPDRBA Permittees from complying with other NPDES permit requirements, including influent and effluent monitoring requirements, or other Federal and State laws, including State water quality standards.
- By signing this MOA, the YPDRBA Permittees authorize the YPDRBA to act as their agent and on their behalf in collecting and submitting instream monitoring data to DWR for the parameters listed in Table 2.
- The YPDRBA PERMITTEES are exempted from instream water quality monitoring for certain parameters as specified in their individual NPDES permits. If there is any discrepancy or conflict between this MOA and an YPDRBA Permittee's NPDES permit, the YPDRBA Permittee's NPDES permit shall prevail.

Collection of instream water quality data:

- The YPDRBA and its agents shall perform the collection and analyses of the instream water quality monitoring data for the parameters, locations and frequencies specified in Table 2 of this MOA.
- The YPDRBA will contract for the performance of the monitoring activities with a laboratory appropriately certified by DWR for the required laboratory and field analysis.
- The YPDRBA and its agents shall comply with the requirements and protocols set forth in Tables 3 and 4 located in Appendix A.

Submission of (monthly) instream water quality data to DWR:

- The YPDRBA or its agents shall submit the monitoring results to DWR on behalf of YPDRBA PERMITTEES.
- The YPDRBA shall submit the water quality data to the DWR within 90 days of the end of the month in which the sampling was performed to coalitioncoordinator@deq.nc.gov.
- The YPDRBA shall submit the water quality data to the DWR in a format set forth in Table 5 located in Appendix B of this MOA and preferably in Microsoft® Excel.
- The YPDRBA shall archive all data for five (5) years.
- The YPDRBA PERMITTEES may provide comments to the DWR on data and work submitted by YPDRBA to DWR.
- Failure by the YPDRBA PERMITTEES or the YPDRBA or their agents to collect or analyze the water quality data as described in this MOA, or to provide data to the DWR in the required format, may result in the termination of this MOA by the DWR and the return to individual upstream and downstream monitoring requirements, as specified in the individual NPDES permits for each of the YPDRBA PERMITTEES.

YPDRBA MOA 2023-2028 2

 Special and/or additional data collected (i.e., hardness) at a designated monitoring station concurrently with the regularly scheduled samples, should be submitted to the Coalition Coordinator.

Annual Report:

- The YPDRBA shall submit an annual written report that summarizes the previous calendar year's sampling activities.
- The YPDRBA shall submit the annual report no later than April 30th each year that this MOA is in effect and shall comply with the requirements set forth in Appendix B.
- The YPDRBA shall submit the annual report to the DWR Coalition Coordinator at 1621 Mail Service Center, Raleigh, NC 27699-1621 or electronically at coalitioncoordinator@deq.nc.gov

Signatures for all Submissions to DWR:

• The YPDRBA Chair shall sign/certify all data and annual reports submitted to the DWR pursuant to this MOA.

Special Circumstances effecting sampling:

- Stream sampling under this MOA may be discontinued under the following circumstances:
 - 1) If flow conditions in the receiving waters and/or extreme weather conditions will result in a substantial risk of injury to the person(s) collecting samples; or
 - 2) If environmental conditions, such as a dry stream, prevent sample collection.
- If sampling is discontinued for any reason, the YPDRBA shall provide a detailed written explanation to the DWR explaining why sampling was not performed. The written explanation shall be submitted to the DWR Coalition Coordinator with YPDRBA's monthly data submittal.
- If sampling is discontinued under the provisions above, the YPDRBA shall resume stream sampling as soon as possible.

Modification:

• This MOA may be modified by the written consent of the DWR and the YPDRBA. Either DWR or the YPDRBA may determine that it is necessary to request changes in monitoring frequency, parameters, and/or sampling locations. Any changes to sampling parameters, locations, or frequencies shall be made by a written amendment to this MOA agreed to by the DWR, the YPDRBA PERMITTEES, and the YPDRBA. The amendment shall be signed by the YPDRBA Chairperson and by the DWR Director. Such amendments may be entered into at any time.

New Parties to this MOA:

- The following additional NPDES permit dischargers may enter into this MOA subsequent to the effective date hereof:
 - 1) Dischargers who receive a NPDES permit within the Yadkin/PeeDee River Basin, or
 - 2) Dischargers who have NPDES permits within the Yadkin/Pee Dee River Basin but

are not parties to this Agreement.

• The addition of such dischargers to this MOA may be made only with the consent of the DWR, the YPDRBA PERMITTEES, and the YPDRBA and shall require a written amendment to this MOA signed by the YPDRBA chairperson, by the DWR, and by an authorized representative of any such discharger who wishes to enter into the MOA. The DWR will not unreasonably withhold consent to the addition of a discharger to the MOA. The DWR will consider modification of the existing monitoring program described in this MOA for the addition of a NPDES permit discharger to the MOA. Such amendments may be made at any time that this MOA is in effect. The YPDRBA PERMITTEES included in this MOA are listed in Table 1.

Term:

• This MOA shall be effective upon the signature until August 31, 2028 unless extended by the consent of both the DWR Director and the YPDRBA.

Withdraw/Termination as between DWR and YPDRBA:

 Upon sixty (60) days written notice, the DWR or the YPDRBA may terminate this MOA for any reason. Upon termination of this MOA, the monitoring requirements contained in the individual NPDES permit for each YPDRBA PERMITTEE shall become effective immediately.

Withdraw/Termination as between DWR and individual YPDRBA PERMITTEES:

- An individual permit holder may withdraw and cancel its participation in this MOA by providing sixty (60) days written notice to the YPDRBA, and sixty (60) days written notice to the DWR Coalition Coordinator, the appropriate DWR Regional Office(s), and the DWR Water Quality Permitting Section. The monitoring requirements contained in the individual NPDES permit shall become effective upon the termination date specified in the notice.
- The withdraw of an individual YPDRBA Permittee shall require a written amendment to this MOA signed by the YPDRBA chair and by the DWR Director.
- In the event a permit holder withdraws or cancels its participation in this MOA or its membership in the YPDRBA is terminated for any reason, the YPDRBA may request that DWR review the monitoring plan described in this MOA for a possible reduction in sampling effort and/or requirements.

No limitation on use of the data:

• There are no limitations on the DWR's, the YPDRBA, or the YPDRBA Permittee's use of the data collected under this MOA.

Entire Agreement:

• This MOA constitutes the entire agreement between the parties and supersedes all previous agreements.

Incorporation:

Appendices A and B are attached to and incorporated into this MOA.

Savings Clause:

• Should any part of this Agreement be declared invalid or unenforceable by a court of competent jurisdiction, invalidation of the affected portion shall not invalidate the remaining portions of the Agreement and they shall remain in full force and effect.

Remedies for Breach:

• The only remedy for breach of this MOA is an action for specific performance or injunction.

IN WITNESS WHEREOF, the parties have caused the execution of this instrument by authority given, to be effective as of the date executed by the DWR.

DIVISION OF WATER RESOURCES

By: Richard Rogers

Richard Rodgers, Director Division of Water Resources

Date: 8/29/2023

YADKIN/PEE DEE RIVER BASIN

ASSOCIATION By: Samuel & Call

Sam Call, Chair

Yadkin/Pee Dee River Basin

Association

Date: 8/29/2023

Table 1 – YPDRBA Permittees

NPDES Permit Number	YPDRBA Permittees Ownership and Facility	Authorized Representative and Title	Authorized Representative Signature	Signature Date
NC0004774	Duke Energy Progress Inc. Buck CCT	Kris Eisenrieth Station Manager	DocuSigned by:	8/9/2023
NC0004944	SDC 26 WWTP LLC	Leah Weiss Member/Organizer	955 G\$Nf N7 # \$542E	8/11/2023
NC0005266	Louisiana Pacific Corporation ABT Co Mill	Matthew Holcombe Plant Manager	Rocksioners 194470	8/8/2023
NC0020338	Town of Yadkinville Yadkinville WWTP	Grant Trivette WWTP ORC	Grant Trivette	8/14/2023
NC0020427	City of Rockingham Rockingham WWTP	Monty R. Crump City Manager	Monty R. Chump	8/8/2023
NC0020567	Yadkin Valley Sewer Authority WWTP Elkin	Nicole Johnston Executive Director	P20418:18189 4700 437	8/11/2023
NC0020591	City of Statesville Third Creek WWTP	Andy Smith Water Resources Operations Manager	5289CEE75FCF40C Docusigned by: My Smith Docusigned by:	8/15/2023
NC0020761	Town of North Wilkesboro Thurman Street WWTP	Scott Perry ORC	Scott Perry	8/11/2023
NC0021105	Town of Mount Gilead Mount Gilead WWTP	Dylan Haman Town Manager	Dulan Haman	8/21/2023
NC0021121	City of Mount Airy Mount Airy WWTP	Chris Marion Plant Supervisor	Jesus Marion — 92948409566418	8/8/2023
NC0021491	Town of Mocksville Dutchman's Creek WWTP	Kenneth Gamble Town Manager	Eenneth Gamble	8/8/2023
NC0021717	Town of Wilkesboro Cub Creek WWTP	Sam Call Utility Director	Samuel K. Call	8/8/2023
NC0023884	City of Salisbury Salisbury WWTP	Jim Greene Jr. City Manager	Jim Grune Jr.	8/8/2023
NC0024112	City of Thomasville Hamby Creek WWTP	Leigh Conder Laboratory Supervisor	Ligh Conder	8/8/2023
NC0024228	City of High Point Westside WWTP	Robby Stone Public Services Director	5386866666699.44c7 Robby Stow	8/8/2023
NC0024333	City of Monroe Monroe WWTP	Scott Clark Director of Water Resources	7A7233FEE4F34CD Docusigned by: Scott Clark	8/8/2023
NC0024872	Davie County Water System Cooleemee WWTP	Johnny Lambert Utilities Director	Johnny Lambert	8/8/2023
NC0026646	Town of Pilot Mountain Pilot Mountain WWTP	Kent Scott Plant Superintendent	Eent Scott	8/8/2023
NC0026689	Town of Denton Denton WWTP	Troy Branch WWTP ORC	D75tDAS1gflAd337y49A	8/8/2023
NC0028916	Town of Troy Troy WWTP	Benny Dennis Public Works Director	Troy Branch Docustined by: 5590252699174EA Benny Dunis	8/22/2023
NC0031836	City of Statesville Fourth Creek WWTP	Andy Smith Water Resources Operations Manager	6CD27A22EE9844E DocuSigned by:	8/15/2023

NPDES Permit Number	YPDRBA Permittees Ownership and Facility	Authorized Representative and Title	Authorized Representative Signature	Signature Date
NC0036269	Water and Sewer Authority of Cabarrus County Rocky River WWTP	Michael Wilson Executive Director		8/8/2023
NC0037834	City of Winston-Salem Archie Elledge WWTP	Courtney Driver City/County Utilities Director	Docusigned by: Courtney Driver &	3/22/2023
NC0041408	Anson County Anson County Regional WWTP	Mike Sessions Utilites Director	Mike Sessions	8/11/2023
NC0043320	Elevate Textiles Burlington Industries LLC Richmond Plant WWTP	Ed Cox Plant Manager	246502968CBC416 DocuSigned by: EL Cox	8/8/2023
NC0043532	Stanly County West Stanly WWTP	Duane Wingo Utilities Director	Duane Wings	8/11/2023
NC0046728	Town of Mooresville Mooresville WWTP	Jamie Levis WWTP Manager	Jamie Levis	8/8/2023
NC0049867	Town of Cleveland Cleveland WWTP	Patrick Phifer Mayor	Patrick Plufer	8/10/2023
NC0050342	City of Winston-Salem Muddy Creek WWTP # 2	Courtney Driver City/County Utilities Director	558AZECA85654FB Docusigned by: Cowtwy Driver	8/22/2023
NC0055786	City of Lexington Lexington Regional WWTP	Tom Johnson Water Resources Director	Docusigned by:	8/8/2023
NC0069523	Union County Public Works Department Tallwood Estates WWTP	Brian Matthews County Manager	Docusigned by: Brian W Matthews	8/22/2023
NC0069841	Union County Public Works Department Crooked Creek WWTP #2	Brian Matthews County Manager	Docusigned by: Brian W Matthews	8/22/2023
NC0074756	Greater Badin Water and Sewer District Badin WWTP	Duane Wingo Utilities Director	Duane Wings	8/11/2023
NC0081621	Water and Sewer Authority of Cabarrus County Muddy Creek WWTP	Michael Wilson Executive Director	DocuSigned by: Michael Wilson	8/8/2023
NC0085812	Union County Public Works Department Grassy Branch WWTP	Brian Matthews County Manager	Docusigned by: Brian W Matthews	8/22/2023
NC0089290	Town of Mocksville Hugh Lagle WTP	Kenneth Gamble Town Manager	Lenneth Gamble	8/8/2023

Table 2
YPDRBA Sampling Stations, Parameters, & Frequencies

	Location Description	Station Comments	Latitude	Longitude	County	Region	8 Digit HUC	Stream Class	Index	Field Measurements	2 Nutrients	Lab Turbidity	TSS	Fecal Coliform	3Hardness
00360000	Reddies River at SR 1517 at N. Wilkesboro	Significant tributary	36.1743	-81.1693	Wilkes	WSRO	03040101	WS-II HQW	12-40-(1)	M+2SM	M	M	Σ	M	
Q0450000	Yadkin River at Bus NC 421 Statesville Road in N. Wilkesboro	dns of Wilkesboro and N. Wilkesboro WWTPs	36.1659	-81.1344	Wilkes	WSRO	03040101	C	12-(38)	M+2SM	M	M		Σ	
Q0720000	Yadkin River at SR 2303 Clingman Rd nr Ronda	dns of LP, former ambient DWR station	36.2154	-80.9367	Wilkes	WSRO	03040101	WS-IV	12-(47.5)	M+2SM	¥	M		Σ	
Q1065000	Mitchell River at SR 1001 Popular Springs Rd nr North Elkin	Significant tributary to Yadkin River	36.3114	-80.8066	Surry	WSRO	03040101	O	12-62-	M+2SM	M	M	Σ	M	
Q1215000	Fisher River at NC 268 nr Fairview	dns of Wayne Poultry	36.3395	-80.6852	Surry	WSRO	03040101	2	12-63-(9)	M+2SM	M	M	M	M	
Q1350000	Yadkin River at SR 1003 nr Siloam	Mainstem, dns of Boonville, ups of Ararat River	36.2824	-80.5622	Surry	WSRO	03040101	C	12-(53)	M+2SM	Σ	M	Μ	×	
Q1500000	Ararat River at NC 52 nr Mt Airy	ups of Mt. Airy WWTP	36.4799	-80.6004	Surry	WSRO	03040101	С	12-72-(4.5)	M+2SM	M	M		M	
Q1935000	Ararat River at SR 2044 nr Pilot Mountain	dns Pilot Mfn. WWTP	36.3626	-80.5394	Surry	WSRO	03040101	C	12-72-(4.5)	M+2SM	M	M		M	
Q2135000	S Deep Ck at SR 1733 Old Stage Rd nr Shacktown	dns of proposed drinking water impoundment for Yadkinville water supply, ups of Cranberry Ck	36.1065	-80.5877	Yadkin	WSRO	03040101	VI-SW	12-84-2-	M+2SM	M	M		Σ	
Q2145000	Deep Ck at SR 1711 Speer Bridge Rd nr Yadkinville	dns confluence of N and S Deep Cks	36.1140	-80.5468	Yadkin	WSRO	03040101	WS-IV		M+2SM	×	Σ		×	
Q2180000	Yadkin River at US 158 at Clenmons	About 8 miles ups of Muddy Creek WWTP discharge, dns of Deep Creek	36.0144	-80.4164	Davie	WSRO	03040101	WS-IV	12-(86.7)	M+2SM	M	M	×	M	0
Q2291000	Muddy Ck at 140 nr Clemmons	above Silas and Little Creeks	36.0470	-80.3662	Forsyth	WSRO	03040101	၁	12-94-(0.5)	M+2SM	Σ	M		M	
Q2540000	Salem Ck at SR 1120 Clemmonsville Rd at Winston Salem	ups of Archie Elledge WWTP	36.0312	-80.3137	Forsyth	WSRO	03040101	υ	12-94-12-	M+2SM	M	×		×	0
Q2570000	Salem Ck at SR 2991 Fraternity Church Rd nr Winston Salem	blw Archie Elledge WWTP	36.0086	-80.3353	Forsyth	WSRO	03040101	υ	12-94-12-	M+2SM	M	×		M	
Q2720000	Muddy Ck at SR 1485 Hampton Rd nr Winston Salem	Muddy Ck above confluence	35.9402	-80.3580	Davidson	WSRO	03040101	ŭ	12-94-(0.5)	M+2SM	M	×		×	

³ Hardness							1						
Fecal		M	×	M	M	M	×	M	Σ	X	Σ	Σ	Σ
TSS		Σ				Σ	×	Σ	M				
Lab Turbidity		Σ	M	×	×	Σ	×	×	M	Σ	M	M	M
2 Nutrients		M	M	M	M	M	M	М		Σ		×	M
¹ Field Measurements		M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM
Index		12-(97.5)	12-102-2	12-108-20	12-108-20-	12-108-20-	12-108-	12-108-21	12-108-21	12-(108.5)	12-113	12-115-3	12-119-7
Stream Class		WS-IV CA	S	O	C	၁	O	O	υ	WS-V	O	O O	O .
8 Digit HUC		03040101	03040101	03040102	03040102	03040102	03040102	03040102	03040102	03040103	03040103	03040103	03040103
Region		WSRO	WSRO	MRO	MRO	MRO	MRO	MRO	MRO	MRO	WSRO	MRO	WSRO
County		Davidson	Davie	Iredell	Iredell	Iredell	Rowan	Rowan	Rowan	Rowan	Davidson	Rowan	Davidson
Longitude		-80.3863	-80.5012	-80.7958	-80.8775	-80.8039	-80.5067	-80.6117	-80.5108	-80.3905	-80.3057	-80.4155	-80.0787
Latitude		35.8570	35.8811	35.7761	35.7492	35.7330	35.7784	35.6970	35.7625	35.7230	35.7291	35.6798	35.9651
Station Comments	River	10.5 miles dns of Muddy Ck WWTP, DWR ambient stn	dns of Mocksville Dutchmans Ck WWTP	ups of Statesville Fourth Ck WWTP	ups of Third Ck WWTP	dns of Statesville Third Ck WWTP	dns of Cooleemee WWTP, significant tributary	ups of KoSa and 2nd Ck WWTP and above Beaverdam Ck	dns of KoSa and 2nd Ck WWTP	dns of combined Grants Ck and Sowers Ferry WWTP Discharge, ups of Color Tex and Buck Steam Station, DWR ambient stn	Swearing Ck at High Rock Lake	pre STW Phase II implementation	ups High Point Westside WWTP
Location Description		Yadkin River at US 64 at Yadkin College	Dutchman Ck at US 64 nr Mocksville	Fourth Ck at SR 2316 Bell Farm Rd nr Statesville	Third Ck at SR 2342 Amity Hill Rd nr Statesville	Third Ck at SR 2359 Bethesda Rd nr Statesville	S Yadkin River at US 601 nr Cooleemee	Second Ck at SR 1526 Sherrills Ford Rd nr Salisbury	Second Ck at US 601 nr Salisbury	Yadkin River at NC 150 nr Spencer	Swearing Ck at SR 1272 Jersey Church Road nr Linwood	Town Ck at SR 1915 Andrew St. at Spencer	Rich Fork Ck at SR 1757 Chestnut St. nr High Point
Station		Q2810000	Q3105000	Q3720000	Q3900000	Q3932000	Q3970000	Q4030000	Q4165000	Q4660000	Q5135000	Q5210000	Q5745000

³ Hardness																
Fecal Coliform	M	M	M	M	M	M	M	M	M	Μ	M	M	M	M	Σ	×
TSS						M				×				Σ		Σ
Lab Turbidity	M	M	M	M	M	M	M	M	M	Σ	M	M	M	×	×	M
2 Nutrients	M	M	M	M	M	M			M	Σ	M		×	M	×	
¹ Field Measurements	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM
Index	12-119-7	12-119-7	12-119-7-4	12-119-7-4	12-119-(6)	12-(124.5)	12-126-(3)	13-2-(1.5)	13-5-1-(2)	13-(1)	13-17	13-17	13-17	13-17-6-	13-17	13-17-9-4- (1.5)
Stream	C	C	C	C	C	WS-IV, B; CA	WS-IV	С	WS-IV	WS-IV, B; CA	C	၁	Ü	Ŋ	O O	C
8 Digit HUC	03040103	03040103	03040103	03040103	03040103	03040103	03040103	03040103	03040104	03040104	03040105	03040105	03040105	03040105	03040105	03040105
Region	WSRO	WSRO	WSRO	WSRO	WSRO	WSRO	WSRO	WSRO	MRO	MRO	MRO	MRO	MRO	MRO	MRO	MRO
County	Davidson	Davidson	Davidson	Davidson	Davidson	Davidson	Davidson	Randolph	Stanly	Stanly	Mecklenburg	Саватив	Cabarrus	Сарагтиѕ	Cabarrus	Cabarrus
Longitude	-80.1454	-80.1822	-80.1064	-80.1321	-80.2349	-80.2313	-80.1754	-79,9650	-80.1129	-80.0797	-80.7795	-80.6751	-80.6444	-80.6347	-80.5603	-80.5303
Latitude	35.8984	35.8543	35.8501	35.8425	35.8063	35.5968	35.6164	35.6421	35.3812	35.3083	35.4749	35.3590	35.3345	35.3592	35.3244	35.3624
Station	ups of Hunts Fork Ck, dns of High Point West Side WWTP	ps of Abbots Creek	ups Thomasville WWTP	dns Thomasville WWTP	dns Lexington WWTP, DWR ambient stn	Just dns of High Rock Lake Dam and DWR ambient stn	dns Denton WWTP	Significant tributary	dns of Badin WWTP	Pee Dee River in Lake Tillery	dns Town of Mooresville WWTP, DWR ambient station	blw confluence of E and W branches of Rocky River, ups of Mallard Creek	dns of Mallard Ck, ups of Chemical Specialties	Significant tributary	dns of Coddle Ck and Back Ck	Significant tributary
Location Description	Rich Fork Ck at SR 1792 Kanoy Rd nr High Point	Rich Fork Ck at SR 2123 Old Hwy 29 nr High Point	Hamby Ck at SR 2775 Old Emanuel Church Rd nr Thomasville	Hamby Crk at I 85 Rest Area nr Thomasville	Abbotts Crk at SR 1243 Center Street at Lexington	Yadkin River at SR 1002 Bringle Ferry Rd at High Rock	Lick Ck at SR 1002 nr Healing Springs	Uwharric River at NC 49 nr Farmer	Little Mountain Ck at NC 1720 Valley Rd nr Badin	Pee Dee River at NC 24, 27 and 73 nr Albemarle	Rocky River at SR 2420 E. Rocky River Rd nr Davidson	Rocky River at US 29 nr Harrisburg	Rocky River at SR 1304 Roberta Rd nr Harrisburg	Coddle Creek at SR 1304 Roberta Rd nr Roberta Mill	Rocky River at SR 1132 Flowes Store Rd nr Harrisburg	Cold Water Ck at SR 1132 Miami Church Rd nr Concord
Station	Q5785000	05790000	02860000	Q5901000	Q5930000	Q6120000	Q6140000	06705000	06930000	Q7030000	Q7330000	Q7450000	Q7600000	Q7700000	Q7780000	08200000

10															
3Hardness															
Fecal	M	N	M	×	×	Σ	M	×	Σ	M	M	M	M	Σ	M
TSS			×					Σ				11-11	Σ		
Lab Turbidity	M	M	M	M	Σ	M	×	M	×	Σ	M	M	Σ	M	Σ
2 Nutrients	M		Σ		Σ			M	Σ	Σ	×	M	M	Σ	
¹ Field Measurements	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM	M+2SM
rapul	13-17	13-17-17	13-17	13-17-18	13-17	13-17-20-1	13-17-20-1	13-17-20	13-17	13-17	13-17-36-	13-17-36-	13-17-40-	13-25-	13-28-2-4
Stream Class	D	D	2	C	C	D	C	Ü	C	C	S	O O	WS-V	WS-IV	v
8 Digit HUC	03040105	03040105	03040105	03040105	03040105	03040105	03040105	03040105	03040105	03040105	03040105	03040105	03040105	03040104	03040104
Region	MRO	MRO	MRO	MRO	MRO	MRO	MRO	MRO	MRO	MRO	MRO	MRO	FRO	FRO	FRO
County	Сарагтиѕ	Union	Cabarrus	Union	Union	Union	Union	Union	Stanly	Stanly	Union	Union	Union	Richmond	Richmond
Longitude	-80.5154	-80.5293	-80.4871	-80.6311	-80.4728	-80.6154	-80.5843	-80.4896	-80.2821	-80.2770	-80.5097	-80.4716	-80.3422	-79.8989	-79.7894
Latitude	35.3245	35.1947	35.2212	35.1309	35.1699	35.1079	35.1024	35.1330	35.1950	35.1606	34.9897	35.0322	34.9232	35.1063	35.0878
Station	dns of Cold water Ck, dns of Rocky River WWTP, DWR ambient stn	dns Tallwood Estates, significant tributary	ups of Muddy Ck WWTP and Muddy Creek	dns Hunley Ck WWTP, DWR ambient stn	dns of Goose Ck, ups Crooked Creek; nr Fairview Crossroads	ups Union County WWTP	dns of Union County WWTP	dns Grassy Branch WWTP nr Fairview Crossroads	Large drainage area ups of W Stanly WWTP	dns of W Stanly WWTP	ups of Monroe WWTP	dns of Monroe WWTP	Significant tributary to Rocky River	ups of Pee Dee River, significant tributary	dns of Town of Ellerbe WWTP
Location Description	Rocky River at US 601 nr Concord	Clear Ck at US 601 nr Brief	Rocky River at SR 1114 Garmon Mill Rd nr Midland	Goose Ck at SR 1524 Stevens Mill Rd nr Mint Hill	Rocky River at SR 1606 Sykes Mill Rd nr Monroe	N Fork Crooked Ck at SR 1520 Indian Trail- Fairview Rd nr Monroe	N Fork Crooked Ck at SR 1514 Rocky River Rd nr Monroe	Crooked Ck at NC 218 nr Monroe	Rocky Riv at SR 1970 Hillford Rd nr Oakboro	Rocky Riv off SR 1943 Old Davis Rd nr Cottonville	Richardson Ck at SR 1751 Walkup Ave. at Monroe	Richardson Ck at SR 1006 Olie Branch Road nr Monroe	Lanes Ck at SR 1005 Landsford Rd nr Marshville	Little River at SR 1148 Grassy Island Rd nr Ellerbe	Toms Branch at SR 1310 Bennett Rd nr Ellerbe
Station	Q8210000	Q8342000	Q8355000	Q8360000	Q8385000	08386000	08386200	08388000	Q8510000	Q8748000	08800000	08820000	Q9021300	Q9320000	Q9340000

3Hardness		
Fecal	M	M
TSS		M
Lab TSS	M	M
2 Nutrients	M	×
¹ Field Measurements	M+2SM	M+2SM
Index	13-28-(0.5)	13-(34)
Stream Class	WS-IV	O.
8 Digit HUC	03040104	03040201
Region	FRO	FRO
County	Richmond	Richmond
Latitude Longitude	-79.8351	-79.8706
Latitude	35.0891	34.9464
Station Comments	Previously unmonitored tributary to Pee Dee River	Pee Dee River blw Blewett Falls Lake, DWR ambient stn
Location Description	. Mountain Ck at SR 1150 Green Rd nr Ellerbe	Pee Dee River at US 74 nr Rockingham
Station Number	Q9345000	Q9400000

1. Field measurement include: Temperature, Dissolved Oxygen, pH, and Conductivity. M=Monthly, M+2SM=Monthly with twice monthly summer sampling. Summer includes the months of May, June, July August and September. ice monthly samples are to be collected at least ten days apart except when extenuating conditions arise.

2. Nutrient sampling includes: Ammonia as N (NH3), Nitrate/Nitrite as N (NO2/NO3), Total Kjeldahl Nitrogen (TKN), and Total Phosphorus as P (TP).

3. Hardness: Q=Quarterly

APPENDIX A SAMPLE COLLECTION AND ANALYSIS

Sample Collection Procedures

Sample collection shall be performed by trained personnel employed by NC DWR-certified laboratories in accordance with the DWR Monitoring Coalition Program Field Monitoring Guidance Document (November 2017) and subsequent documents. The Field Monitoring Guidance Document can be found on the web at: http://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/ecosystems-branch/monitoring-coalition-program. Alternate collection procedures require the approval of the DWR Coalition Coordinator prior to use.

Laboratory Analysis

All laboratory analyses shall be performed at a DWR-certified laboratory using approved methods as prescribed by section 40 of the Code of Federal Regulations part 136 (40 CFR part 136) or other methods certified by the DWR Laboratory Certification Branch (http://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/rules-regulations.

Reporting levels will be at least as stringent as the reporting levels used by the DWR Laboratory. For guidance purposes Table 3 lists target reporting levels for each parameter based on the reporting levels of the DWR Laboratory. The lowest possible analytical limits for all the parameters should be pursued.

Table 3
DWR Laboratory Reporting Limits

DWR Laboratory Reporting Limits Parameters	Target Reporting Level	Comments
Water Temperature		Resolution to 0.1 degree Celsius
Dissolved Oxygen		Report results to the nearest 0.1 mg/L.
рН		Report results to the nearest 0.1 pH units.
Specific Conductivity		Report results to the nearest whole μmho/cm at 25 °C.
Turbidity	1.0 NTU	
TSS	6.2 mg/L	
Fecal Coliform	1 colony/100 mL	At least 3 dilutions should be used to achieve optimum colony counts per membrane filter of 20-60 colonies.
Chlorophyll a	1 μg/L	Report Chlorophyll <i>a</i> values free from pheophytin and other chlorophyll pigments. Analysis by HPLC is not approved by DWR.
Ammonia (NH3 as N)	0.02 mg/L	Address distillation requirement. See 40CFR136 Table II footnote.
Nitrate + Nitrite as N	0.02 mg/L	
Total Kjeldahl Nitrogen as N	0.20 mg/L	
Total Phosphorus as P	0.02 mg/L	
Hardness	1.0 mg/L	

YPDRBA MOA 2023-2028 14

Data Qualification Codes

When reporting data, the DWR's data qualifier codes must be used to provide additional information regarding data quality and interpretation. The current set of qualifier codes to be used is provided in Table 4. Review the data remark codes at least annually and utilize the most current set, as codes are subject to change. Contact the Coalition Coordinator for a current copy of the codes.

Table 4
Data Qualification Codes for Use with Coalition Data

Symbol	Definition
A	Value reported is the mean (average) of two or more determinations. This code is to be used if the results of two or more discrete and separate samples are averaged. These samples shall have been processed and analyzed independently (e.g. field duplicates, different dilutions of the same sample). This code is not required for BOD, coliform or acute/chronic metals reporting since averaging multiple results for these parameters is fundamental to those methods or manner of reporting. 1 The reported value is an average, where at least one result is qualified with a "U". The PQL is used for the qualified result(s) to calculate the average.
В	Results based upon colony counts outside the acceptable range and should be used with caution. This code applies to microbiological tests and specifically to membrane filter (MF) colony counts. It is to be used if less than 100% sample was analyzed and the colony count is generated from a plate in which the number of colonies exceeds the ideal ranges indicated by the method. These ideal ranges are defined in the method as: Fecal coliform or Enterococcus bacteria: 20-60 colonies Total coliform bacteria: 20-80 colonies 1 Countable membranes with less than 20 colonies. Reported value is estimated or is a total of the counts on all filters reported per 100 ml. 2 Counts from all filters were zero. The value reported is based on the number of colonies per 100 ml that would have been reported if there had been one colony on the filter representing the largest filtration volume (reported as a less than "<" value). 3 Countable membranes with more than 60 or 80 colonies. The value reported is calculated using the count from the smallest volume filtered and reported as a greater than ">" value. 4 Filters have counts of both >60 or 80 and <20. Reported value is estimated or is a total of the counts on all filters reported per 100 ml. 5 Too many colonies were present; too numerous to count (TNTC). TNTC is generally defined as >150 colonies. The numeric value represents the maximum number of counts typically accepted on a filter membrane (60 for fecal or enterococcus and 80 for total), multiplied by 100 and then divided by the smallest filtration volume analyzed. This number is reported as a greater than value. 6 Estimated Value. Blank contamination evident. 7 Many non-coliform or non-enterococcus colonies or interfering non-coliform or non-enterococcus growth present. In this competitive situation, the reported value may under- represent actual density. Note: A "B" value shall be accompanied by justification for its use denoted by the numbers listed above (e.g., B1, B2, etc.). Note: A "J2" should be used for spiki
C	Total residual chlorine was present in sample upon receipt in the laboratory; value is estimated . Generally applies to cyanide, phenol, NH3, TKN, coliform, and organics.

Symbol	Definition
G	 A single quality control failure occurred during biochemical oxygen demand (BOD) analysis. The sample results should be used with caution. 1 The dissolved oxygen (DO) depletion of the dilution water blank exceeded 0.2 mg/L. 2 The bacterial seed controls did not meet the requirement of a DO depletion of at least 2.0 mg/L and/or a DO residual of at least 1.0 mg/L. 3 No sample dilution met the requirement of a DO depletion of at least 2.0 mg/L and/or a DO residual of a least 1.0 mg/L. 4 Evidence of toxicity was present. This is generally characterized by a significant increase in the BOD value as the sample concentration decreases. The reported value is calculated from the highest dilution representing the maximum loading potential and should be considered an estimated value. 5 The glucose/ glutamic acid standard exceeded the range of 198 ± 30.5 mg/L. 6 The calculated seed correction exceeded the range of 0.6 to 1.0 mg/L. 7 Less than 1 mg/L DO remained for all dilutions set. The reported value is an estimated greater than value and is calculated for the dilution using the least amount of sample. 8 Oxygen usage is less than 2 mg/L for all dilutions set. The reported value is an estimated less than value and is calculated for the dilution using the most amount of sample. 9 The DO depletion of the dilution water blank produced a negative value. The cBOD value is greater than the BOD value.
	Note: A "G" value shall be accompanied by justification for its use denoted by the numbers listed above (e.g., G1, G2, etc.).
J	Estimated value; value may not be accurate. This code is to be used in the following instances: Surrogate recovery limits have been exceeded. The reported value failed to meet the established quality control criteria for either precision or accuracy. The sample matrix interfered with the ability to make any accurate determination. The data is questionable because of improper laboratory or field protocols (e.g., composite sample was collected instead of grab, plastic instead of glass container, etc.). Temperature limits exceeded (samples frozen or >6°C) during transport or not verifiable (e.g., no temperature blank provided): non-reportable for NPDES compliance monitoring. The laboratory analysis was from an unpreserved or improperly chemically preserved sample. The data may not be accurate. This qualifier is used to identify analyte concentration exceeding the upper calibration range of the analytical instrument/method. The reported value should be considered estimated. Temperature limits exceeded (samples frozen or >6°C) during storage, the data may not be accurate. The reported value is determined by a one-point estimation rather than against a regression equation. The estimated concentration is less than the laboratory PQL and greater than the laboratory method detection limit. Unidentified peak; estimated value. The reported value is determined by a one-point estimation rather than against a regression equation. The estimated concentration is less than the laboratory PQL and greater than the instrument noise level. This code is used when an MDL has not been established for the analyte in question. The calibration verification did not meet the calibration acceptance criterion for field parameters. Note: A "J" value shall be accompanied by justification for its use denoted by the numbers listed above (e.g.
M	J1, J2, etc.). A "J" value shall not be used if another code applies (e.g., N, V, M). Sample and duplicate results are "out of control". The sample is non-homogenous (e.g., VOA soil). The
***	reported value is the lower value of duplicate analyses of a sample.

Symbol	Definition
	Presumptive evidence of presence of material; estimated value. This code is to be used if:
N	1 The component has been tentatively identified based on mass spectral library search.
	2 There is an indication that the analyte is present, but quality control requirements for confirmation were not
	met (i.e., presence of analyte was not confirmed by alternate procedures).
	3 This code shall be used if the level is too low to permit accurate quantification, but the estimated
	concentration is less than the laboratory PQL and greater than the laboratory method detection limit. This
	code is not routinely used for most analyses.
	4 This code shall be used if the level is too low to permit accurate quantification, but the estimated
	concentration is less than the laboratory practical quantitation limit and greater than the instrument noise
	level. This code is used when an MDL has not been established for the analyte in question.
	5 The component has been tentatively identified based on a retention time standard.
Q	Holding time exceeded. These codes shall be used if the value is derived from a sample that was received,
	prepared and/or analyzed after the approved holding time restrictions for sample preparation and analysis. The
	value does not meet NPDES requirements.
	1 Holding time exceeded prior to receipt by lab.
	2 Holding time exceeded following receipt by lab.
P	Elevated PQL due to matrix interference and/or sample dilution.
S	Not enough sample provided to prepare and/or analyze a method-required matrix spike (MS) and/or matrix
	spike duplicate (MSD).
U	Indicates that the analyte was analyzed for, but not detected above the reported PQL. The number value
	reported with the "U" qualifier is equal to the laboratory's PQL*.
UU	Indicates that the analyte was not detected by a screen analysis. The number value reported with the "UU"
	qualifier is equal to the laboratory's PQL. The number value was determined by a one-point estimation at the
	PQL, rather than against a regression equation.
\mathbf{V}	Indicates the analyte was detected in both the sample and the associated blank. Note: The value in the blank
	shall not be subtracted from the associated samples.
	1 The analyte was detected in both the sample and the method blank.
	2 The analyte was detected in both the sample and the field blank.
X	Sample not analyzed for this constituent. This code is to be used if:
	1 Sample not screened for this compound.
	2 Sampled, but analysis lost or not performed-field error.
	3 Sampled, but analysis lost or not performed-lab error.
	Note: an "X" value shall be accompanied by justification for its use by the numbers listed.
Y	Elevated PQL due to insufficient sample size.
Z	The sample analysis/results are not reported due to:
	1 Inability to analyze the sample.
	2 Questions concerning data reliability.
	Note: The presence or absence of the analyte cannot be verified.
MDI	Supporting Definitions listed below
MDL	A Method Detection Limit (MDL) is defined as the minimum concentration of a substance that can be
	measured and reported with 99 percent confidence that the true value is greater than zero and is determined in
2.57	accordance with 40 CFR Part 136, Appendix B.
ML	Minimum Levels are used in some EPA methods. A Minimum Level (ML) is the lowest level at which the
	entire analytical system must give a recognizable signal and acceptable calibration point for the analyte. It is
	equivalent to the concentration of the lowest calibration standard, assuming that all method - specified sample
	weights, volumes, and cleanup procedures have been employed. The ML is calculated by multiplying the
	MDL by 3.18 and rounding the result to the nearest factor of 10 multiple (i.e., 1, 2, or 5). For example, MDL
	= 1.4 mg/L; ML = 1.4 mg/L x 3.18 = 4.45 rounded to the nearest factor of 10 multiple (i.e., 5) = 5.0 mg/L.

Supporting Definitions listed below

The Practical Quantitation Limit (PQL) is defined as the lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. PQLs are subjectively set at some multiple of typical MDLs for reagent water (generally 3 to 10 times the MDL depending upon the parameter or analyte and based on the analyst's best professional judgement, the quality and age of the instrument and the nature of the samples) rather than explicitly determined. PQLs may be nominally chosen within these guidelines to simplify data reporting and, where applicable, are generally equal to the concentration of the lowest non-zero standard in the calibration curve. PQLs are adjusted for sample size, dilution and % moisture. For parameters that are not amenable to MDL studies, the PQL may be defined by the sample volume and buret graduations for titrations or by minimum measurement values set by the method for method-defined parameters (e.g., BOD requires a minimum DO depletion of 2.0 mg/L, fecal coliform requires a minimum plate count of 20 cfu, total suspended residue requires a minimum weight gain of 2.5 mg, etc.). Additionally, some EPA methods prescribe Minimum Levels (MLs) and the lab may set the PQL equal to this method-stated ML. Determination of PQL is fully described in the laboratory's analytical Standard Operating Procedure (SOP) document.

*PQL, The Practical Quantitation Limit (PQL), is defined as the lowest level achievable among laboratories within specified limits during routine laboratory operation. The Practical Quantitation Limit (PQL) is "about three to five times the method detection limit (MDL) and represents a practical and routinely achievable detection level with a relatively good certainty that any reported value is reliable." (APHA, AWWA, WEF. 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed.)

PQL

YPDRBA MOA 2023-2028

18

^{**} Data remarks are current as of May 4, 2018.

APPENDIX B DATA FORMAT AND REPORTING REQUIREMENTS

Data Format for Monthly submittals

Table 5 provides the format of a data submittal spreadsheet format. It is very important that the format of the headings and the number and order of the columns is consistent among all monthly submissions. Do not use commas, tabs, or other common file delimiters anywhere in the submittal spreadsheet table. Do not add, delete, or hide any rows or columns. The first row should contain the column headings only. Column headings must include appropriate information on measurement units (e.g., mg/L, μg/L, cfu/100mL, etc.). The second row must contain the method code. The DWR station number (e.g., B6140000) must be provided as identified in the MOA. The comment column is used for describing pertinent information related to the sampling event or specific samples. Ensure that there are no missing values for station, date, time, and depth. Place all remark codes in a separate column, as demonstrated in Table 5. If there is no result for a particular parameter, leave the cell blank. Delete duplicate rows for stations that were not sampled (e.g., stations sampled twice in summer months). Screen all data for inappropriate or improbable values, such as a pH of 21.2 SU.

Annual Report

The YPDRBA will be required to submit an annual report by April 30th for each year the MOA is in effect. The annual report will formally summarize all data collection activities in the past calendar year and contain at least the following elements:

- Monitoring Station List to include station number, station description, county, accurate coordinates (in decimal degrees to 4 decimal places), stream classification, and 8-digit hydrologic unit code (HUC).
- List of all certified laboratories that conducted work for the coalition in the past year; identify time frames for all laboratories and analysis methods used during the year; and summarize any laboratory certification issues for individual parameters.
- A list of active YPDRBA members with authorized representative updates, contact names, email addresses, and phone numbers. Identify the facility name and permit number.
- A list of members whom became inactive during the year and their permit numbers.
- A summary of all quality assurance and quality control issues and any field audits conducted.
- A summary of any significant issues, special studies, or projects.
- Description of any required data collection that was missed, with an explanation.
- Suggested changes to the monitoring program and/or MOA modifications.
- The YPDRBA's website address.

YPDRBA MOA 2023-2028 20

Table 5
File Format for Coalition Data Reporting

							 		 100	
	900 900rmk Comments									
Hardness_rmk	900rmk									
Hardness (ug/L)	006									
TP_rmk	665rmk									
TP (mg/L)	599							Т		
Mmn_N_EON_SON	630rmk									
(7/8m) N_EON_LON	530	7								
TKN_N_rmk	625rmk 630 630rmk									
TKN_N (mg/L)	525	T						Г		
Jm3_N_EHN	610rmk									
(7/8m) N_EHN	019		П							
Chlorophyll_rmk	530rmk 82079 82079rmk 32209 32209rmk 610 610rmk 625									
Chlorophyll_a (ug/L)	2209									
Turbidity_rmk	2079rmk 3.									
(UTN) gibidinT	82079									
Suspended Residue_rmk	530rmk									
(J/gm) subissad beandere?	530									
Fecal Coliform	94rmk 31616 31616rmk 530									
myoliloO lass9	31616									
Conductivity_rmk	94rmk									
Conductivity (umbos/em)	94									
pH_rmk	400rmk									
(ns) Hd	400									
DOrmk	300rmk									
DO (mg/L)	300					-				
_temb_r.mk	10rmk									
(2°) qmaT	2	_	_							
	Depth (m)									
	Time (hh:mm)									
	Station Date (m/d/yyyy) Time (hh:mm) Depth (m) 10 10rmk 300 300r									
	Station									